1.- In the real vector space \mathbb{R}^{2} we consider the following subsets:
(a) $A=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$.
(b) $B=\left\{(x, y) \in \mathbb{R}^{2} \mid x=3 y\right\}$.
(c) $C=\left\{(x, y) \in \mathbb{R}^{2} \mid x+y=1\right\}$
(d) $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x=y\right.$; e $\left.y \geq 0\right\}$.
(e) $E=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \geq 0\right\}$.

- Draw a picture of each one of them.
- Based on these pictures, deduce which of them are vector subspaces of \mathbb{R}^{2}.
- Prove it.
2.- In the vector space $M_{2 \times 2}(\mathbb{R})$ we consider the following sets of matrices:

$$
\begin{aligned}
B & =\left\{\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\} \\
U & =\left\{A \in M_{2 \times 2}(\mathbb{R}) \mid \operatorname{trace}(A)=0\right\} \\
V & =\mathcal{L}\left\{\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\} .
\end{aligned}
$$

(i) Prove that B is a basis of $M_{2 \times 2}(\mathbb{R})$.
(ii) Find the parametric and implicit equations of V with respect to the basis B.
(iii) Find the implicit equations of $U \cap V$ with respect to the basis B.
(Final exam, July 2017)
3.- In the vector space \mathbb{R}^{4} we consider the subspaces

$$
U=\mathcal{L}\{(1,0,1,1),(2,0,1,3),(1,1,1,1)\}, \quad W=\left\{(x, y, z, t) \in \mathbb{R}^{4} \mid x+y+z-t=0, x+y-z+2 t=0\right\} .
$$

(i) Find the parametric and implicit equations of $U \cap W$ with respect to the canonical basis.
(ii) Show that the vectors $B=\{(0,1,0,0),(1,1,0,0),(0,0,1,1),(0,0,0,1)\}$ form a basis of \mathbb{R}^{4}.
(iii) Find the parametric equations of U and the implicit equations of W with respect to the basis B.
(Final exam, January 2017)
4.- Let $\mathcal{P}_{3}(\mathbb{R})$ be the vector space of all polynomials of degree less than or equal to 3 . Consider the following subsets:

$$
U=\left\{p(x) \in \mathcal{P}_{3}(\mathbb{R}) \mid p(1)=1\right\}, \quad V=\left\{p(x) \in \mathcal{P}_{3}(\mathbb{R}) \mid p(1)=0, p^{\prime}(1)=0\right\}
$$

(i) Decide whether U and V are vector subspaces.
(ii) Show that the set $B=\left\{1,(x-1),(x-1)^{2},(x-1)^{3}\right\}$ is a basis of $\mathcal{P}_{3}(\mathbb{R})$.
(iii) Find the implicit equations of V with respect to the basis B.
(Final exam, January 2018)
5.- Let $\mathcal{P}_{2}(\mathbb{R})$ be the vector space of all polynomials of degree less than or equal to 2 . Consider the following subsets:
$U=\left\{p(x) \in \mathcal{P}_{2}(\mathbb{R}) \mid p(1)=0\right\}, \quad V=\left\{p(x) \in \mathcal{P}_{2}(\mathbb{R}) \mid p(1) \cdot p(0)=0\right\}, \quad W=\mathcal{L}\left\{1+x^{2}, 1-x\right\}$
(i) Determine which of the previous set are vector subspaces of $\mathcal{P}_{2}(\mathbb{R})$.
(ii) Find the implicit equations of U and W with respect to the canonical basis.
(iii) Find the parametric and implicit equations of $U \cap W$ with respect to the canonical basis.
(iv) Prove that $B=\left\{1,1+x, 1+x+x^{2}\right\}$ is a basis of $\mathcal{P}_{2}(\mathbb{R})$.
(v) Find the implicit equations of $U \cap W$ with respect to the basis B.
(Final exam, January 2019)
6.- In the vector space \mathbb{R}^{3} we consider the following bases:

- the canonical basis $C=\left\{\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}\right\}=\{(1,0,0),(0,1,0),(0,0,1)\}$.
- $B^{\prime}=\left\{\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}\right\}=\{(0,1,1),(2,0,0),(1,0,1)\}$.
- $B^{\prime \prime}=\left\{\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}\right\}=\{(1,-1,0),(0,0,-1),(1,1,1)\}$.
(a) If $(1,3,2)$ is a vector of \mathbb{R}^{3}, find its coordinates with respect to each of the previous bases.
(b) We denote by $\left(y_{1}, y_{2}, y_{3}\right)$ the coordinates of a vector with respect to the basis B^{\prime}. Consider the subspace defined by the equation:

$$
y_{1}+2 y_{2}-y_{3}=0
$$

Find the parametric and implicit equations of this subspace with respect to each of the given bases.
7.- In the vector space \mathbb{R}^{3} we consider the set of vectors:

$$
B=\{(1,1,1),(0,0,1),(1,0,1)\}
$$

(i) Show that B is a basis of \mathbb{R}^{3}.
(ii) If $x^{\prime}+y^{\prime}+z^{\prime}=0$ is the implicit equation with respect to B of a subspace U, find its parametric equations with respect to the canonical basis.
(iii) If $x+y+z=0$ is the implicit equation of another subspace V with respect to the canonical basis, find the parametric equations of $U \cap W$ with respect to the canonical basis B.
(Final exam, January 2022)
8.- In the vector space of matrices $M_{2 \times 2}(\mathbb{R})$ we consider the following subsets:

$$
U=\mathcal{L}\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
2 & 0 \\
3 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right\} . \quad V=\left\{A \in M_{2 \times 2}(\mathbb{R}) \mid \operatorname{trace}(A)=0, A=A^{t}\right\}
$$

(i) Prove that V is a vector subspace of $M_{2 \times 2}(\mathbb{R})$.
(ii) Prove that U and V are complementary subspaces.
(iii) Find the projection of $I d$ onto U along V.
(Final exam, January 2014)
9.- In the vector space \mathbb{R}^{3} consider the vector subspaces:

$$
U=\mathcal{L}\{(1,0,1),(2,0,1),(0,0,1)\}, \quad V=\mathcal{L}\{(1,1,0),(1,2,3)\}
$$

(i) Find the implicit equations of U and V with respect to the canonical basis.
(ii) Prove that the vectors of $B=\{(0,0,1),(1,2,1),(1,3,1)\}$ form a basis of \mathbb{R}^{3}.
(iii) Find the implicit and parametric equations of $U \cap V$ with respect to the basis B.
(iv) Are U and V complementary subspaces?
(v) Give the parametric equations of a subspace complementary to V with respect to the canonical basis.

(Exam, December 2014)

10.- In the vector space \mathbb{R}^{4}, given a real number a we consider the following subspaces:

$$
U=\mathcal{L}\{(1, a, 0,1),(2,2, a, 0),(1,1,0, a)\}, \quad V=\left\{(x, y, z, t) \in \mathbb{R}^{4} \mid x-y=0, \quad x-z=0\right\}
$$

(i) Find the dimensions of $U, V, U+V$ and $U \cap V$ in terms of a.
(ii) For $a=1$ find the parametric and implicit equations of $U \cap V$.
(iii) For $a=0$ prove that the subspaces U and V are complementary. Compute the projection of $(1,2,1,1)$ onto U along V.
(Final exam, july 2016)
11.- Let $\mathcal{P}_{4}(\mathbb{R})$ be the vector space of all polynomials of degree less than or equal to 4 . Consider the subsets:

$$
\begin{aligned}
U & =\left\{p(x) \in \mathcal{P}_{4}(\mathbb{R}) \mid p(-1)+p^{\prime}(0)=0\right\} \\
V & =\left\{p(x) \in \mathcal{P}_{4}(\mathbb{R}) \mid p^{\prime \prime}(0)=0\right\}
\end{aligned}
$$

(i) Prove that they are vector subspaces.
(ii) Find the parametric and implicit equations of $U, V, U+V, U \cap V$ with respect to the canonical basis.
(iii) Are they complementary subspaces?

Notation $p^{\prime}(x), p^{\prime \prime}(x)$ denote respectively the first and second derivatives of the polynomial $p(x)$.
12.- In \mathbb{R}^{4} consider the vector subspaces:

$$
\begin{aligned}
& U=\mathcal{L}\{(b, b, 1,1),(1,0,1,1),(1,1,1,1)\} \\
& V=\mathcal{L}\{(0,0,1,1),(0, a, 1,1),(0,0,0,1)\}
\end{aligned}
$$

(a) Find the dimension of $U \cap V$ in terms of a and b.
(c) For $a=1$ and $b=0$ write the implicit equations of $U \cap V$ with respect to the canonical basis.
(Final exam, June 2008)
13.- In the vector space $\mathcal{M}_{2 \times 2}(\mathbb{R})$ we consider the subsets:

$$
\begin{aligned}
& U=\left\{A \in \mathcal{M}_{2 \times 2}(\mathbb{R}) \mid \operatorname{rank}(A)<2\right\}, \quad V=\left\{A \in \mathcal{M}_{2 \times 2}(\mathbb{R}) \left\lvert\, \operatorname{trace}\left(A \cdot\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right)=0\right.\right\} \\
& W=\mathcal{L}\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right\}
\end{aligned}
$$

(i) Decide which of the previous subsets are subspaces of $\mathcal{M}_{2 \times 2}(\mathbb{R})$.
(ii) Find the parametric and implicit equations of V with respect to the canonical basis.
(iii) Find the parametric and implicit equations of $V \cap W$ with respect to the canonical basis.
(iv) Prove that $B=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\}$ is a basis of $\mathcal{M}_{2 \times 2}(\mathbb{R})$.
(v) Find the implicit equations of V with respect to the basis B.
(Final exam, July 2019)
14.- Let V be a real vector space and U_{1}, U_{2}, U_{3} three vector subspaces of V. Determine and justify whether the following statements are true or false.
(a) $\left(U_{1}+U_{2}\right) \cap\left(U_{1}+U_{3}\right) \subset U_{1}+\left(U_{2} \cap U_{3}\right)$.
(b) $U_{1}+\left(U_{2} \cap U_{3}\right) \subset\left(U_{1}+U_{2}\right) \cap\left(U_{1}+U_{3}\right)$.
(First partial exam, January 2009)
15.- Let $\mathcal{P}_{2}(\mathbb{R})$ be the vector space of all polynomials of degree less than or equal to 2 . Consider the subsets:

$$
U=\left\{p(x) \in \mathcal{P}_{2}(\mathbb{R}) \mid p^{\prime}(1)=p(0)\right\}, \quad V=\mathcal{L}\left\{1+x^{2}\right\}
$$

(i) Prove that U is a subspace of $\mathcal{P}_{2}(\mathbb{R})$.
(ii) Prove that U and V are complementary subspaces.
(iii) Calculate the polynomial that is the projection of $q(x)=(x-1)^{2}$ onto V along U.
(Final exam, January 2022)
16.- Assume that the vector space V has a generating system made up of 2018 vectors. Determine and justify whether the following statements are true or false.
(i) V has a set of 2018 linearly independent vectors.
(ii) $\operatorname{dim}(V) \geq 2018$.
(iii) $\operatorname{dim}(V) \leq 2018$.
(iv) Any set of 2019 vectors of V is linearly independent.
(Final exam, July 2018)

LINEAR ALGEBRA I
Vector spaces
I. - In the vector space $\mathcal{M}_{2 \times 2}(\mathbb{R})$ we consider the subspaces:

$$
\begin{aligned}
U & =\mathcal{L}\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\right\} \\
V & =\left\{A \in \mathcal{M}_{2 \times 2}(\mathbb{R}) \mid A=-A^{t}\right\} .
\end{aligned}
$$

(i) Find the parametric and implicit equations of U and $U+V$ with respect to the canonical basis.
(ii) Are U and V complementary subspaces?
(iii) Prove that the following subset

$$
B=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
2 & 1
\end{array}\right)\right\}
$$

is a basis of $\mathcal{M}_{2 \times 2}(\mathbb{R})$.
(iv) Find the parametric and implicit equations of U with respect to the basis B.
(Final exam, January 2016)
II.- Let V be a vector space. Given three vector spaces A, B, C, determine and justify whether the following statements are true or false.$(A+B) \cap C \neq(A \cap C)+(B \cap C)$.$(A+B) \cap C \subset(A \cap C)+(B \cap C)$.$(A+B) \cap C \supset(A \cap C)+(B \cap C)$.$(A+B) \cap C=(A \cap C)+(B \cap C)$.
(First partial exam, January 2007)
III.- Let $V=\{f: \mathbb{R} \longrightarrow \mathbb{R} \mid f$ continuous $\}$ be the vector space of all real continuous functions.

Consider the subspace

$$
W=\mathcal{L}\left\{\sin ^{2}(x / 2), \cos (x), \cos \left(\frac{\pi}{2}-x\right), 2\right\}
$$

(i) Prove that the vectors in $B=\{\sin (x), \cos (x), 1\}$ are linearly independent.
(ii) Prove that B is a basis of W.
(iii) Given $a \in \mathbb{R}$, prove that $\sin (x+a) \in W$.
(iv) Obtain the coordinates of $\sin (x+a)$ with respect to the basis B.
IV.- Let $\mathcal{M}_{n \times n}(\mathbb{R})$ be the vector space of real square matrices of order $n \times n$.
(a) Given a matrix $A \in \mathcal{M}_{n \times n}(\mathbb{R})$, prove that the set

$$
S=\left\{B \in \mathcal{M}_{n \times n}(\mathbb{R}): A B=\Omega\right\}
$$

is a subspace of $\mathcal{M}_{n \times n}(\mathbb{R})$.
(b) If $n=2$ and A has the form

$$
\left(\begin{array}{ll}
\alpha & 1 \\
\beta & 1
\end{array}\right)
$$

where α, β are real numbers, determine in terms of α, β the dimension and a basis of S and the implicit equations of a complementary subspace of S.
V.- Let \mathcal{S}_{3} be the vector space of real symmetric matrices of order 3. Decide which of the following subsets are subspaces. For each one of them, find a basis and its parametric and implicit equations with respect to the canonical basis and with respect to the basis
$B^{\prime}=\left\{\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1\end{array}\right)\right\}$
(a) Regular matrices.
(b) Matrices with zero trace.
(c) Matrices whose first two rows are equal.
VI.- Let V be the vector space of real continous funcions defined on $[0,1]$. Consider the following subsets:

$$
\begin{aligned}
U_{1} & =\left\{f \in V: \int_{0}^{1} f(x) d x=0\right\} \\
U_{2} & =\{f \in V: f \text { is constant }\}
\end{aligned}
$$

(a) Prove that U_{1} and U_{2} are subspaces of V.
(b) Study if U_{1} and U_{2} are complementary subspaces of V.
(c) Find (if it exists) the projection of $h(x)=1+2 x$ onto U_{1} along U_{2}.
(Final exam, September 2002)
VII.- In \mathbb{R}^{3} and for each $a \in \mathbb{R}$, consider the vector subspaces

$$
U=\mathcal{L}\{(a, 1,0),(0, a, 1),(1,0,-1)\}, \quad V=\mathcal{L}\{(a, 0,-1),(a-1,0,2 a)\} .
$$

(a) Find the dimension of $U, V, U+V$ and $U \cap V$ in terms of the values of a.
(b) Find the values of a such that U and V are complementary subspaces.
(c) For the values of a for which it is possible, compute the associated matrix with respect to the canonical basis of the projection map onto U along V.
(d) For $a=0$, is it possible to decompose $(1,1,1)$ as the sum of a vector in U and another in V ?. If this decompositions exits, is it unique?
(First partial exam, January 2009)
VIII.- In $\mathcal{M}_{2 \times 2}(\mathbb{R})$ and for a fixed $k \in \mathbb{R}$ we consider the following subspaces:

$$
U=\mathcal{L}\left\{\left(\begin{array}{ll}
1 & 1 \\
0 & k
\end{array}\right),\left(\begin{array}{ll}
k & 0 \\
k & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right)\right\}, \quad V=\mathcal{L}\left\{\left(\begin{array}{ll}
k & 0 \\
0 & 2
\end{array}\right),\left(\begin{array}{cc}
1 & k-1 \\
0 & 2
\end{array}\right)\right\}
$$

(i) Calculate in terms of k : $\quad \operatorname{dim}(U), \operatorname{dim}(V), \operatorname{dim}(U \cap V)$ and $\operatorname{dim}(U+V)$.
(ii) For $k=2$, find the parametric and implicit equations of $U+V$ with respect to the canonical basis.
IX.- Consider the subspaces U and W of \mathbb{R}^{3} sucht that U is generated by the vectors $(1,0,1),(0,1,1),(1,1,2)$ and the implicit equation of W is $x-y+2 z=0$. Obtain
(a) Basis of $U, W, U+W$ and $U \cap W$.
(b) The implicit equations of $U \cap W$.
(c) A basis of a subspace H complementary of $U \cap W$.
(d) The projection of $(2,3,5)$ onto $U \cap W$ along H.
(Final exam, June 2006)
X.- In the vector space \mathbb{R}^{3}, given two real values $a, b \in R$, we define the following subspaces:

$$
U=\mathcal{L}\{(1, a, 1),(b, 1, a)\}, \quad V=\mathcal{L}\{(0,1,1),(a-1,1, b)\} .
$$

(a) Find the dimension of $U \cap V$ in terms of a and b.
(b) Find the values of a and b for which the subspaces are complementary.
(d) For $a=b=0$ calculate the parametric and implicit equations of $U \cap V$.
(Final exam, September 2008)

