1.– Given the set of matrices with dimension $n \times n$ of real elements, prove that the product of lower triangular matrices is another lower triangular matrix.

(Partial Exam, February 2000)

2.– Let A be an $n \times n$ diagonal matrix where all the diagonal elements are different from each other. Prove that any $n \times n$ matrix that commutes with A should be diagonal.

(Final Exam, June 2002)

3.– Let $A, B, X \in M_{n \times n}(\mathbb{R})$ be invertible matrices, compute X in terms of A and B satisfying:

$$(A^{-1}X)^{-1} = A(B^{-2}A)^{-1}.$$

Also, prove that sign(det(A)) = sign(det(X)).

(Exam, October 2014)

- 4.- Let $A, B \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ be two matrices. Determine and reason whether the following statements are true or false:
- (i) $AB = 0 \Rightarrow A = 0$ or B = 0.
- (ii) $(A+B)^2 = A^2 + 2AB + B^2$.
- (iii) If C is invertible and AB = C then A, B are invertibles.

(Final Exam, January 2016)

5.- Let $A \in M_{n \times n}(\mathbb{R})$ be a square matrix satisfying $A^2 + A + Id = 0$.

- (i) Prove that A is invertible.
- (ii) Prove that $A^{-1} = -(A + Id) = A^2$.
- (iii) Compute A^3 and A^{2013} .

(Exam, October 2013)

6.– Compute the *n*-th power of the matrix:
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

7.– Given the matrix:

$$A = \begin{pmatrix} x & x+1 & x+2\\ x+3 & x+2 & x+1\\ x+2 & x & x+4 \end{pmatrix}$$

- (i) Find x such that det(A) = 0.
- (ii) Analyze the rank of A depending on the possible values of x.(Final Exam, July 2015)
- 8.- Given $A \in M_{n \times n}(\mathbb{R})$ such that $A^4 = A$. Determine and reason whether the following statements are true or false:
- (i) $A^3 = Id$.
- (ii) $A^{34} = A$.
- (iii) If A is invertible, then det(A) = 1.
- (iv) It may happen that $A^2 = A$.

(Exam, October 2017)

- **9.** Let $A, B \in M_{n \times m}(\mathbb{R})$ be two matrices. Determine and reason whether the following statements are true or false:
- (i) If rank(A) = n then $m \ge n$.
- (ii) If rank(A) = 1 then A has all but one null rows.
- (iii) If n = m then $rank(A^2) = rank(A)$.
- (iv) If B is invertible, $rank(AB^t) = rank(A)$.

(Final Exam, July 2021)

10.- Let $A, B, C \in M_{6\times 6}(\mathbb{R})$ be three square matrices such that $-ABA^t = CA + A$, det(B) = 1, A is invertible, and C is a diagonal matrix with $c_{ii} = i$. Compute det(A).

(Final Exam, January 2016)

11.– Compute the following determinants:

$\begin{vmatrix} 1 & 0 & 3 \\ 2 & 1 & 1 \\ 3 & 4 & 5 \end{vmatrix}, \begin{vmatrix} 1 & 0 & 2 & 3 \\ 1 & 1 & 2 & 4 \\ 3 & 0 & 5 & 7 \\ 0 & 2 & 1 & 1 \end{vmatrix}, \begin{vmatrix} 1 & 12 & 123 & 1234 \\ 2 & 23 & 234 & 2341 \\ 3 & 34 & 341 & 3412 \\ 4 & 41 & 412 & 4123 \end{vmatrix}$

12.- Assuming that $det \begin{pmatrix} 2 & b & 3 \\ a & 0 & 1 \\ 1 & 5 & c \end{pmatrix} = 5$, compute: (i) $det \begin{pmatrix} 2-3a & b & 0 \\ 2 & b & 3 \\ 5 & 2b+5 & c+6 \end{pmatrix}$ (ii) $det \begin{pmatrix} b & 5 & 0 \\ 4 & c+2 & 2 \\ a+2 & 2a+1 & 2a \end{pmatrix}$. (Final Exam, July 2020) (a - b - c - d)

13.– Considering the matrix
$$A = \begin{pmatrix} a & b & c & d \\ -b & a & d & -c \\ -c & -d & a & b \\ -d & c & -b & a \end{pmatrix}$$

- (i) Compute AA^t .
- (ii) Compute $det(AA^t)$ and det(A).
- (iii) Analyze the rank of A depending on the possible values of a, b, c, d.(Final Exam, July 2019)

14.– Given $n \in \mathbb{N}$, the matrix $P_n \in \mathcal{M}_{n \times n}(\mathbb{R})$ is defined as:

$$(P_n)_{ij} = \begin{cases} 0 \text{ if } i = j+1\\\\i \text{ if } i \neq j+1 \end{cases}$$

- (i) Write explicitly the matrix P_4 .
- (ii) Find the determinant of P_4 .
- (iii) Find the general expression of det(P_n).(Final Exam, January 2019)

15.– Given $n \in \mathbb{N}$, the matrix $A_n \in \mathcal{M}_{n \times n}(\mathbb{R})$ is defined as:

$$a_{ij} = i - 2j, \qquad i, j = 1, 2, \dots, n.$$

- (i) Write explicitly the matrix A_4 .
- (ii) Compute $det(A_4)$.
- (iii) For n ≥ 2, compute trace(A_n), det(A_n) and rank(A_n).
 (Final Exam, January 2018)

16.– Given $n \in \mathbb{N}$, the matrix $P_n \in \mathcal{M}_{n \times n}(\mathbb{R})$ is defined as:

$$(P_n)_{ij} = \begin{cases} i \text{ if } j \le n+1-i \\ \\ 0 \text{ if } j > n+1-i \end{cases}$$

- (i) Write explicitly the matrix P_5 and find its determinant.
- (ii) For each $n \ge 2$, find $det(P_n)$ and $trace(P_n)$.

(Final Exam, January 2021)

17.– Given $n \in \mathbb{N}$, the matrix $P_n \in \mathcal{M}_{n \times n}(\mathbb{R})$ is defined as:

$$(P_n)_{ij} = \begin{cases} 2 \text{ if } i > j \\\\ 1 \text{ if } i \le j \end{cases}$$

- (i) Write explicitly the matrix P_4 .
- (ii) Compute the determinat of P_4 .
- (iii) For each $n \ge 2$, find $det(P_n)$, $trace(P_n)$ and $det(P_n^{2020})$. (Exam, January 2020)

I.– Given the set of matrices with dimension $n \times n$ of real elements, prove that if $AA^T = \Omega$, then $A = \Omega$.

(Exam, February 2000)

II.– Compute the *n*-th power of the following matrices:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 2 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & b \\ c & 0 & 0 \end{pmatrix}, \quad D = \begin{pmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{pmatrix}.$$

- **III.** For the following families of nonsingular matrices $\mathcal{M}_{n \times n}(K)$, determine if they verify the following conditions: (a) given a family's matrix, its inverse also belongs to the family; (b) given two matrices of the family, their product also belongs to the family.
 - (1) the regular symmetrical matrices,
 - (2) the regular matrices commuting with a given matrix $A \in \mathcal{M}_{n \times n}(K)$,
 - (3) the orthogonal matrices.

IV.– Let A be a column matrix $n \times 1$ such that $A^{t}A = 1$ and $B = Id_{n} - 2AA^{t}$. Prove that:

- a) B is symmetric.
- b) $B^{-1} = B^t$.

(Exam, January 2008)

V.– Given $n \in \mathbb{N}$, the matrix $A_n \in \mathcal{M}_{n \times n}(\mathbb{R})$ is defined as:

$$a_{ij} = \begin{cases} 0 \text{ if } i = j \\ i \text{ if } i \neq j \end{cases}$$

- (i) Write explicitly the matrix A_4 .
- (ii) Calculate $det(A_4)$.
- (iii) Given $n \ge 2$, find $trace(A_n)$, $det(A_n)$ and $rank(A_n)$. (Final Exam, July 2018)
- **VI.** Let X be a square matrix of dimensions $n \times n$ and real elements. Let k be an even number. Prove that if $X^k = -Id$, then n is also an even number.

VII.– Given the matrix A with dimension $m \times n$ with m, n > 1,

$$A = \begin{pmatrix} 1 & 2 & \dots & n-1 & n \\ n+1 & n+2 & \dots & 2n-1 & 2n \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ (m-1)n+1 & (m-1)n+2 & \dots & mn-1 & mn \end{pmatrix}$$

write a_{ij} in terms of *i* and *j*. Compute its rank.

(Final Exam, September 2005)

VIII.- If
$$A = \begin{pmatrix} a & b & c \\ p & q & r \\ u & v & w \end{pmatrix}$$
 and $det(A) = 3$, compute $det(2C^{-1})$ where $C = \begin{pmatrix} 2p & -a+u & 3u \\ 2q & -b+v & 3v \\ 2r & -c+w & 3w \end{pmatrix}$.
(Final Exam, January 2014)

 \mathbf{IX} .— Compute the following determinant:

	0	x_1	x_2	• • •	x_n
1:	x_1	1	0		0
1	x_2	0	1		0
	÷	÷	÷	·	:
1	r_n	0	0		1

Find the real values of x_1, x_2, \ldots, x_n such that is null. (Final Exam, 2011)

X.– Given $n \in \mathbb{N}$ and $a, b \in \mathbb{R}$, we consider the matrix $A \in M_{n \times n}(\mathbb{R})$:

	a + b	a	a	•••	a	a
A =	a	a + b	a	• • •	a	a
	a	a	a + b	• • •	a	a
	$ \begin{pmatrix} a+b\\a\\\\\vdots\\\\\vdots \end{pmatrix} $	÷	÷	·	÷	:
	a	a			a + b	
	a	a	a		a	a+b/

- (i) Find det(A) in terms of a, b, n.
- (ii) Find rank(A) in terms of a, b, n.

(Exam, October 2014)

XI.– Compute the following determinant for $n \ge 2$

$$A_{n} = \begin{vmatrix} x_{1} + y_{1} & x_{1} + y_{2} & x_{1} + y_{3} & \cdots & x_{1} + y_{n} \\ x_{2} + y_{1} & x_{2} + y_{2} & x_{2} + y_{3} & \cdots & x_{2} + y_{n} \\ x_{3} + y_{1} & x_{3} + y_{2} & x_{3} + y_{3} & \cdots & x_{3} + y_{n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{n} + y_{1} & x_{n} + y_{2} & x_{n} + y_{3} & \cdots & x_{n} + y_{n} \end{vmatrix}$$

(Exam, February 2003)

XII.– Compute the following determinant:

$$det \begin{pmatrix} 1 & x & x^2 & 1 \\ x & x^2 & 1 & 1 \\ x^2 & 1 & 1 & x \\ 1 & 1 & x & x^2 \end{pmatrix}$$

Find the real values of x such that det(A) = 0.

(Final Exam, 2011)

XIII. Given $n \in \mathbb{N}$, the matrix $P_n \in \mathcal{M}_{n \times n}(\mathbb{R})$ is defined as:

$$(P_n)_{ij} = \begin{cases} i \text{ si } i \leq j \\ 1 \text{ si } i > j \end{cases}$$

- (i) Write explicitly the matrix P_4 and find its determinant.
- (ii) For any $n \ge 2$, find $det(P_n)$, $trace(P_n)$ and $det(P_n^{-1})$. (Exam, January 2022)
- **XIV.** Given n > 2, $A \in M_{n \times n}(\mathbb{R})$ an invertible matrix, and adj(A) its adjoint matrix. Prove that:
 - (a) $det(adj(A)) = det(A)^{n-1}$.
 - (b) adj(adj(A)) = det(A)^{n−2} · A.
 (Exam, January 2010)
- **XV.** Let $A, B \in \mathcal{M}_{2 \times 2}(\mathbb{R})$. Determine and reason whether the following statements are true or false:
 - (i) If rank(A) = 1 then $rank(AB) \le 1$.
 - (ii) If rank(A) = rank(B) then rank(AB) = rank(A).
 - (iii) rank(A) + rank(B) = rank(A + B).
 - (iv) rank(A) + rank(B) > rank(A+B).

(Final Exam, January 2017)