1.- Given the set of matrices with dimension $n \times n$ of real elements, prove that the product of lower triangular matrices is another lower triangular matrix.
(Partial Exam, February 2000)
2.- Let A be an $n \times n$ diagonal matrix where all the diagonal elements are different from each other. Prove that any $n \times n$ matrix that commutes with A should be diagonal.
(Final Exam, June 2002)
3.- Let $A, B, X \in M_{n \times n}(\mathbb{R})$ be invertible matrices, compute X in terms of A and B satisfying:

$$
\left(A^{-1} X\right)^{-1}=A\left(B^{-2} A\right)^{-1} .
$$

Also, prove that $\operatorname{sign}(\operatorname{det}(A))=\operatorname{sign}(\operatorname{det}(X))$.
(Exam, October 2014)
4.- Let $A, B \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ be two matrices. Determine and reason whether the following statements are true or false:
(i) $A B=0 \Rightarrow A=0$ or $B=0$.
(ii) $(A+B)^{2}=A^{2}+2 A B+B^{2}$.
(iii) If C is invertible and $A B=C$ then A, B are invertibles.
(Final Exam, January 2016)
5.- Let $A \in M_{n \times n}(\mathbb{R})$ be a square matrix satisfying $A^{2}+A+I d=0$.
(i) Prove that A is invertible.
(ii) Prove that $A^{-1}=-(A+I d)=A^{2}$.
(iii) Compute A^{3} and A^{2013}.
(Exam, October 2013)
6.- Compute the n-th power of the matrix: $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$
7.- Given the matrix:

$$
A=\left(\begin{array}{ccc}
x & x+1 & x+2 \\
x+3 & x+2 & x+1 \\
x+2 & x & x+4
\end{array}\right)
$$

(i) Find x such that $\operatorname{det}(A)=0$.
(ii) Analyze the rank of A depending on the possible values of x.
(Final Exam, July 2015)
8.- Given $A \in M_{n \times n}(\mathbb{R})$ such that $A^{4}=A$. Determine and reason whether the following statements are true or false:
(i) $A^{3}=I d$.
(ii) $A^{34}=A$.
(iii) If A is invertible, then $\operatorname{det}(A)=1$.
(iv) It may happen that $A^{2}=A$.
(Exam, October 2017)
9.- Let $A, B \in M_{n \times m}(\mathbb{R})$ be two matrices. Determine and reason whether the following statements are true or false:
(i) If $\operatorname{rank}(A)=n$ then $m \geq n$.
(ii) If $\operatorname{rank}(A)=1$ then A has all but one null rows.
(iii) If $n=m$ then $\operatorname{rank}\left(A^{2}\right)=\operatorname{rank}(A)$.
(iv) If B is invertible, $\operatorname{rank}\left(A B^{t}\right)=\operatorname{rank}(A)$.
(Final Exam, July 2021)
10.- Let $A, B, C \in M_{6 \times 6}(\mathbb{R})$ be three square matrices such that $-A B A^{t}=C A+A$, $\operatorname{det}(B)=1, A$ is invertible, and C is a diagonal matrix with $c_{i i}=i$. Compute $\operatorname{det}(A)$.
(Final Exam, January 2016)
11.- Compute the following determinants:

$$
\left|\begin{array}{lll}
1 & 0 & 3 \\
2 & 1 & 1 \\
3 & 4 & 5
\end{array}\right|, \quad\left|\begin{array}{llll}
1 & 0 & 2 & 3 \\
1 & 1 & 2 & 4 \\
3 & 0 & 5 & 7 \\
0 & 2 & 1 & 1
\end{array}\right|, \quad\left|\begin{array}{llll}
1 & 12 & 123 & 1234 \\
2 & 23 & 234 & 2341 \\
3 & 34 & 341 & 3412 \\
4 & 41 & 412 & 4123
\end{array}\right| .
$$

12.- Assuming that $\operatorname{det}\left(\begin{array}{ccc}2 & b & 3 \\ a & 0 & 1 \\ 1 & 5 & c\end{array}\right)=5$, compute:
(i) $\operatorname{det}\left(\begin{array}{ccc}2-3 a & b & 0 \\ 2 & b & 3 \\ 5 & 2 b+5 & c+6\end{array}\right)$
(ii) $\operatorname{det}\left(\begin{array}{ccc}b & 5 & 0 \\ 4 & c+2 & 2 \\ a+2 & 2 a+1 & 2 a\end{array}\right)$.
(Final Exam, July 2020)
13.- Considering the matrix $A=\left(\begin{array}{rrrr}a & b & c & d \\ -b & a & d & -c \\ -c & -d & a & b \\ -d & c & -b & a\end{array}\right)$
(i) Compute $A A^{t}$.
(ii) Compute $\operatorname{det}\left(A A^{t}\right)$ and $\operatorname{det}(A)$.
(iii) Analyze the rank of A depending on the possible values of a, b, c, d.
(Final Exam, July 2019)
14.- Given $n \in \mathbb{N}$, the matrix $P_{n} \in \mathcal{M}_{n \times n}(\mathbb{R})$ is defined as:

$$
\left(P_{n}\right)_{i j}=\left\{\begin{array}{l}
0 \text { if } i=j+1 \\
i \text { if } i \neq j+1
\end{array}\right.
$$

(i) Write explicitly the matrix P_{4}.
(ii) Find the determinant of P_{4}.
(iii) Find the general expression of $\operatorname{det}\left(P_{n}\right)$.
(Final Exam, January 2019)
15.- Given $n \in \mathbb{N}$, the matrix $A_{n} \in \mathcal{M}_{n \times n}(\mathbb{R})$ is defined as:

$$
a_{i j}=i-2 j, \quad i, j=1,2, \ldots, n
$$

(i) Write explicitly the matrix A_{4}.
(ii) Compute $\operatorname{det}\left(A_{4}\right)$.
(iii) For $n \geq 2$, compute $\operatorname{trace}\left(A_{n}\right), \operatorname{det}\left(A_{n}\right)$ and $\operatorname{rank}\left(A_{n}\right)$.
(Final Exam, January 2018)
16.- Given $n \in \mathbb{N}$, the matrix $P_{n} \in \mathcal{M}_{n \times n}(\mathbb{R})$ is defined as:

$$
\left(P_{n}\right)_{i j}=\left\{\begin{array}{l}
i \text { if } j \leq n+1-i \\
0 \text { if } j>n+1-i
\end{array}\right.
$$

(i) Write explicitly the matrix P_{5} and find its determinant.
(ii) For each $n \geq 2$, find $\operatorname{det}\left(P_{n}\right)$ and $\operatorname{trace}\left(P_{n}\right)$.
(Final Exam, January 2021)
17.- Given $n \in \mathbb{N}$, the matrix $P_{n} \in \mathcal{M}_{n \times n}(\mathbb{R})$ is defined as:

$$
\left(P_{n}\right)_{i j}=\left\{\begin{array}{l}
2 \text { if } i>j \\
1 \text { if } i \leq j
\end{array}\right.
$$

(i) Write explicitly the matrix P_{4}.
(ii) Compute the determinat of P_{4}.
(iii) For each $n \geq 2$, find $\operatorname{det}\left(P_{n}\right)$, $\operatorname{trace}\left(P_{n}\right)$ and $\operatorname{det}\left(P_{n}^{2020}\right)$. (Exam, January 2020)

LINEAR ALGEBRA I
Matrices and determinants
I.- Given the set of matrices with dimension $n \times n$ of real elements, prove that if $A A^{T}=\Omega$, then $A=\Omega$.
(Exam, February 2000)
II.- Compute the n-th power of the following matrices:

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
2 & 0 & 1
\end{array}\right), \quad B=\left(\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right), \quad C=\left(\begin{array}{ccc}
0 & a & 0 \\
0 & 0 & b \\
c & 0 & 0
\end{array}\right), \quad D=\left(\begin{array}{ccc}
a^{2} & a b & a c \\
a b & b^{2} & b c \\
a c & b c & c^{2}
\end{array}\right) .
$$

III.- For the following families of nonsingular matrices $\mathcal{M}_{n \times n}(K)$, determine if they verify the following conditions: (a) given a family's matrix, its inverse also belongs to the family; (b) given two matrices of the family, their product also belongs to the family.
(1) the regular symmetrical matrices,
(2) the regular matrices commuting with a given matrix $A \in \mathcal{M}_{n \times n}(K)$,
(3) the orthogonal matrices.
IV. - Let A be a column matrix $n \times 1$ such that $A^{t} A=1$ and $B=I d_{n}-2 A A^{t}$. Prove that:
a) B is symmetric.
b) $B^{-1}=B^{t}$.
(Exam, January 2008)
V.- Given $n \in \mathbb{N}$, the matrix $A_{n} \in \mathcal{M}_{n \times n}(\mathbb{R})$ is defined as:

$$
a_{i j}=\left\{\begin{array}{r}
0 \text { if } i=j \\
i \text { if } i \neq j
\end{array}\right.
$$

(i) Write explicitly the matrix A_{4}.
(ii) Calculate $\operatorname{det}\left(A_{4}\right)$.
(iii) Given $n \geq 2$, find $\operatorname{trace}\left(A_{n}\right)$, $\operatorname{det}\left(A_{n}\right)$ and $\operatorname{rank}\left(A_{n}\right)$.
(Final Exam, July 2018)
VI.- Let X be a square matrix of dimensions $n \times n$ and real elements. Let k be an even number. Prove that if $X^{k}=-I d$, then n is also an even number.
VII.- Given the matrix A with dimension $m \times n$ with $m, n>1$,

$$
A=\left(\begin{array}{ccccc}
1 & 2 & \ldots & n-1 & n \\
n+1 & n+2 & \ldots & 2 n-1 & 2 n \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
(m-1) n+1 & (m-1) n+2 & \ldots & m n-1 & m n
\end{array}\right)
$$

write $a_{i j}$ in terms of i and j. Compute its rank.
(Final Exam, September 2005)

$$
\begin{aligned}
& \text { VIII.- If } A=\left(\begin{array}{lll}
a & b & c \\
p & q & r \\
u & v & w
\end{array}\right) \text { and } \operatorname{det}(A)=3, \text { compute } \operatorname{det}\left(2 C^{-1}\right) \text { where } C= \\
& \left(\begin{array}{ccc}
2 p & -a+u & 3 u \\
2 q & -b+v & 3 v \\
2 r & -c+w & 3 w
\end{array}\right)
\end{aligned}
$$

(Final Exam, January 2014)

IX .- Compute the following determinant:

$$
\left|\begin{array}{ccccc}
0 & x_{1} & x_{2} & \ldots & x_{n} \\
x_{1} & 1 & 0 & \ldots & 0 \\
x_{2} & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_{n} & 0 & 0 & \ldots & 1
\end{array}\right|
$$

Find the real values of $x_{1}, x_{2}, \ldots, x_{n}$ such that is null.
(Final Exam, 2011)
X.- Given $n \in \mathbb{N}$ and $a, b \in \mathbb{R}$, we consider the matrix $A \in M_{n \times n}(\mathbb{R})$:

$$
A=\left(\begin{array}{cccccc}
a+b & a & a & \ldots & a & a \\
a & a+b & a & \ldots & a & a \\
a & a & a+b & \ldots & a & a \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
a & a & a & \ldots & a+b & a \\
a & a & a & \ldots & a & a+b
\end{array}\right)
$$

(i) Find $\operatorname{det}(A)$ in terms of a, b, n.
(ii) Find $\operatorname{rank}(A)$ in terms of a, b, n.
(Exam, October 2014)
XI.- Compute the following determinant for $n \geq 2$

$$
A_{n}=\left|\begin{array}{ccccc}
x_{1}+y_{1} & x_{1}+y_{2} & x_{1}+y_{3} & \cdots & x_{1}+y_{n} \\
x_{2}+y_{1} & x_{2}+y_{2} & x_{2}+y_{3} & \cdots & x_{2}+y_{n} \\
x_{3}+y_{1} & x_{3}+y_{2} & x_{3}+y_{3} & \cdots & x_{3}+y_{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_{n}+y_{1} & x_{n}+y_{2} & x_{n}+y_{3} & \cdots & x_{n}+y_{n}
\end{array}\right|
$$

(Exam, February 2003)

XII.- Compute the following determinant:

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & x & x^{2} & 1 \\
x & x^{2} & 1 & 1 \\
x^{2} & 1 & 1 & x \\
1 & 1 & x & x^{2}
\end{array}\right)
$$

Find the real values of x such that $\operatorname{det}(A)=0$.
(Final Exam, 2011)
XIII.- Given $n \in \mathbb{N}$, the matrix $P_{n} \in \mathcal{M}_{n \times n}(\mathbb{R})$ is defined as:

$$
\left(P_{n}\right)_{i j}=\left\{\begin{array}{c}
i \text { si } i \leq j \\
1 \text { si } i>j
\end{array}\right.
$$

(i) Write explicitly the matrix P_{4} and find its determinant.
(ii) For any $n \geq 2$, find $\operatorname{det}\left(P_{n}\right)$, $\operatorname{trace}\left(P_{n}\right)$ and $\operatorname{det}\left(P_{n}^{-1}\right)$.
(Exam, January 2022)
XIV.- Given $n>2, A \in M_{n \times n}(\mathbb{R})$ an invertible matrix, and $\operatorname{adj}(A)$ its adjoint matrix. Prove that:
(a) $\operatorname{det}(\operatorname{adj}(A))=\operatorname{det}(A)^{n-1}$.
(b) $\operatorname{adj}(\operatorname{adj}(A))=\operatorname{det}(A)^{n-2} \cdot A$.
(Exam, January 2010)
XV.- Let $A, B \in \mathcal{M}_{2 \times 2}(\mathbb{R})$. Determine and reason whether the following statements are true or false:
(i) If $\operatorname{rank}(A)=1$ then $\operatorname{rank}(A B) \leq 1$.
(ii) If $\operatorname{rank}(A)=\operatorname{rank}(B)$ then $\operatorname{rank}(A B)=\operatorname{rank}(A)$.
(iii) $\operatorname{rank}(A)+\operatorname{rank}(B)=\operatorname{rank}(A+B)$.
(iv) $\operatorname{rank}(A)+\operatorname{rank}(B)>\operatorname{rank}(A+B)$.
(Final Exam, January 2017)

