ÁLGEBRA LINEAL I

Práctica 4

Equivalencia de matrices. Sistemas de ecuaciones

(Curso 2019–2020)

1.— Hallar la forma reducida equivalente por filas de la matriz:

$$\begin{pmatrix} 1 & 2 & 1 & 0 \\ 3 & 2 & 1 & 2 \\ 2 & -1 & 2 & 5 \\ 5 & 6 & 3 & 2 \\ 1 & 3 & -1 & -3 \end{pmatrix}$$

- **2.** Obtener mediante transformaciones elementales el rango, la forma canónica B respecto de la equivalencia y matrices no singulares P y Q que cumplan B = PAQ, siendo A la matriz del problema anterior.
- **3.** Dadas las matrices:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 1 & 0 & -1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 1 & 3 & 5 \end{pmatrix}.$$

- (i) Estudiar si A y B son equivalentes por filas. En caso afirmativo dar una matriz P inversible tal que PA = B.
- (ii) Estudiar si A y B son equivalentes por columnas. En caso afirmativo dar una matriz Q inversible tal que AQ = B.
- (iii) Estudiar si A y B son equivalentes. En caso afirmativo dar matrices P,Q inversibles tal que PAQ=B.

(Examen final, enero 2014)

4.— Dadas las matrices:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 1 \\ 1 & 1 & 8 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 & a \\ 1 & 1 & 8 \\ 0 & 0 & b \end{pmatrix}.$$

- (i) Estudiar para que valores de a y b son equivalentes por filas.
- (ii) Estudiar para que valores de a y b son equivalentes.
- (iii) Para a = -5 y b = 0 hallar (si existe) una matriz inversible X tal que XA = B.
- (iv) Para a = -5 y b = 0 hallar (si existe) una matriz inversible X tal que AX = B.

(Examen final, enero 2015)

5.— Dadas las matrices:

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 1 & 2 \\ 1 & 1 & a \\ 2 & a & 4 \end{pmatrix},$$

hallar los valores de a para que sean:

- (i) Equivalentes por filas.
- (ii) Equivalentes por columnas.
- (iii) Equivalentes.
- (iv) Congruentes (para algún valor de a para el cuál sean congruentes, hallar además la matriz de paso).

(Examen final, enero 2013)

6.— Dadas las matrices:

$$A = \begin{pmatrix} 0 & 2 & 3 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 0 & 0 \\ 0 & -13 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

hallar una matriz $X \in M_{3\times 3}(\mathbb{R})$ verificando $XAX^t = B$.

(Examen final, enero 2012)

7.— Sean
$$X = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 1 & 1 \\ 2 & 3 & 2 & 1 \end{pmatrix}$$
 e $Y = \begin{pmatrix} 2 & 2 & 2 & 0 \\ 2 & 0 & 2 & a \\ 1 & -1 & 1 & -2 \end{pmatrix}$.

- (i) Hallar los valores de a para que X e Y sean equivalentes por filas.
- (ii) Hallar los valores de a para que X e Y sean equivalentes por columnas.

(Examen final, julio 2017)

8.– Dadas las matrices
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & a \end{pmatrix}$$
 y $B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

- (i) Estudiar en función de a y b cuando las matrices A y B son congruentes.
- (ii) Para b = 1 y a = 0 hallar una matriz P inversible tal que $P^tAP = B$.

(Examen final, julio 2019)

9.— Obtener mediante transformaciones elementales las inversas de las siguientes matrices:

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ 1 & 1 & 4 \end{pmatrix}, \quad \begin{pmatrix} 2 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 2 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 2 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 2 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & -1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & -1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & -1 & \dots & 0 & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 & -1 \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

10.— Discutir y, en su caso, resolver, en función del parámetro o parámetros correspondientes, los siguientes sistemas de ecuaciones:

$$\begin{cases} ax + y + z = 1 \\ x + ay + z = a \\ x + y + az = a^2 \end{cases}$$

$$\begin{cases} ax + ay = b \\ bx + ay = a \\ abx + aby = 1 \end{cases}$$

11.— Encontrar un sistema de ecuaciones cuya solución sea la siguiente:

$$\begin{cases} x^1 &=& 2\lambda - \mu \\ x^2 &=& \lambda - 2\mu + \delta \\ x^3 &=& -\lambda + \mu - 2\delta \\ x^4 &=& \lambda + 2\delta \end{cases} \qquad (\lambda, \ \mu, \ \delta \in \mathbb{R})$$

12.— Sea la matriz $A=\begin{pmatrix} 3 & 1 & 1 \\ 0 & -2 & -2 \\ 1 & 1 & 1 \end{pmatrix}$. Hallar en cada caso y cuando sea posible, una matriz inversible X verificando:

(a)
$$XA = \begin{pmatrix} 81 & 0 & 17 \\ 31 & 32 & 33 \\ 12 & 0 & 0 \end{pmatrix}$$
.

(b)
$$XA = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
.

(c)
$$XA = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & -1 \\ 7 & 2 & 2 \end{pmatrix}$$
.

(Primer parcial, enero 2007)

13.— Dado $a \in \mathbb{R}$ se definen las matrices:

$$A = \begin{pmatrix} a & 2 \\ 2 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 1 \\ 1 & 5 - a \end{pmatrix}$$

Determinar los valores de a para los cuáles las matrices A y B son congruentes. Para a=4 hallar una matriz P inversible tal que $PAP^t=B$.

(Examen final, enero 2017)

14.— Dar un ejemplo de tres matrices $A, B, C \in M_{3\times 3}(\mathbb{R})$ simétricas, inversibles y no diagonales, de manera que A y B sean congruentes, pero C no sea congruente con A. Justificar la respuesta.

(Examen final, julio 2016)

- **15.** Sean $A, B \in \mathcal{M}_{2\times 2}(\mathbb{R})$, con det(A) = 1 y det(B) = 2. Razonar la veracidad o falsedad de las siguientes afirmaciones:
 - (i) A y B son congruentes.
 - (ii) A y B pueden ser congruentes.
- (iii) A y B pueden ser semejantes.
- (iv) Si A = Id y traza(B) = 0 entonces A y B no son congruentes.

(Examen final, julio 2017)

- **16.** Sean $A, B \in \mathcal{M}_{2\times 2}(\mathbb{R})$ matrices simétricas. Razonar la veracidad o falsedad de las siguientes afirmaciones.
 - (i) Si A y B son congruentes entonces tienen el mismo número de términos positivos y negativos en la diagonal.
 - (ii) Si signo(det(A)) = signo(det(B)) entonces A y B son congruentes.
- (iii) AB BA es una matriz hemisimétrica.
- (iv) AB es una matriz simétrica.

(Examen final, enero 2019)

ÁLGEBRA LINEAL I

Problemas adicionales

Equivalencia de matrices. Sistemas de ecuaciones

(Curso 2019–2020)

I.— Demostrar que las matrices:

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 4 \end{pmatrix} \text{ y } B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 4 \end{pmatrix},$$

son congruentes. Dar una matriz P inversible tal que $B = P^t A P$.

(Examen final, enero 2018)

II.— Se consideran la matrices:

$$A = \begin{pmatrix} 1 & 2 & 0 & 3 \\ 2 & 5 & -1 & 6 \\ -1 & 1 & -3 & -3 \end{pmatrix} \qquad M = \begin{pmatrix} m+1 & 0 & 1 & m \\ 1-m & m & 0 & 1 \\ m-1 & 1 & m & 0 \end{pmatrix}$$

Determinar m para que las matrices A y M sean equivalentes.

(Examen extraordinario, diciembre 2007)

III.— Dados $a, b \in \mathbb{R}$ se definen las matrices:

$$A = \begin{pmatrix} a & 0 & 1 \\ b & 1 & 1 \\ b & 0 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Hallar los valores de a y b para los cuales la matriz A es equivalente por filas a B y equivalente por columnas a C.

(Examen final, julio 2012)

IV.— Dada la matriz:

$$B = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & -1 \\ 0 & a & b \end{pmatrix}$$

- (a) Hallar todos los valores de a, b para los cuáles B diagonaliza por congruencia.
- (b) Hallar todos los valores de a,b para los cuáles B es congruente en ${\rm I\!R}$ con:

$$\begin{pmatrix}
-2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & -4
\end{pmatrix}$$

(c) Hallar todos los valores de a, b para los cuáles B es congruente en \mathbb{R} con la identidad (Examen final, enero 2011)

V.– Dado $k \in \mathbb{R}$, se consideran las matrices:

$$A = \begin{pmatrix} k & 1 \\ k & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & k \\ k & 4 \end{pmatrix}.$$

Explicar de manera razonada si cada una de las siguientes afirmaciones son falsas o verdaderas.

- i) Si k = 1 son congruentes.
- ii) Para k=2 son equivalentes por filas.
- iii) Para k = 2 son equivalentes por columnas.

(Primer parcial, enero 2009)

VI.— Sean las matrices real es:

$$A = \begin{pmatrix} -1 & 2 \\ 2 & 1 \\ 3 & -1 \end{pmatrix}; \qquad B = \begin{pmatrix} -1 & -3 \\ 1 & 2 \\ 1 & 1 \end{pmatrix};$$

¿Es posible encontrar una matriz $X \in M_{2\times 2}(\mathbb{R})$ tal que AX = B?. ¿Y una matriz $Y \in M_{3\times 3}(\mathbb{R})$ tal que YA = B?. Razona las respuestas.

VII.— Dados $a, b \in \mathbb{R}$, obtener mediante transformaciones elementales y cuando sea posible, la inversa de la matriz:

$$\begin{pmatrix} a & 0 & 0 & \cdots & 0 & 0 \\ -b & a & 0 & \cdots & 0 & 0 \\ 0 & -b & a & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a & 0 \\ 0 & 0 & 0 & \cdots & -b & a \end{pmatrix}$$

VIII.— Obtener la forma canónica de la siguiente matriz respecto de la congruencia sobre el cuerpo IR y sobre el cuerpo C, así como las matrices de paso:

$$\begin{pmatrix}
6 & 2 & 0 \\
2 & 2 & -2 \\
0 & -2 & 3
\end{pmatrix}$$

IX.— Sean $A, B \in M_{2\times 2}(\mathbb{R})$ dos matrices con el mismo determinante y la misma traza. ¿Es posible que A y B no sean equivalentes?. ¿Y si además son simétricas?. Razona las respuestas.

(Primer parcial, enero 2010)

X.— Dadas las matrices:

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}, \quad C = \begin{pmatrix} 8 & 0 \\ 0 & 0 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

- (i) Estudiar que parejas de matrices son equivalentes.
- (ii) Estudiar que parejas de matrices son semejantes.
- (iii) Estudiar que parejas de matrices son congruentes, dando para cada una de ellas la correspondiente matriz de paso por congruencia.

(Examen de julio de 2015)

XI.— Discutir y, en su caso, resolver, en función de los parámetros correspondientes, el sistema de ecuaciones:

$$\begin{cases} ax + 2z = 2\\ 5x + 2y = 1\\ x - 2y + bz = 3 \end{cases}$$

XII.— Sean $A, B \in \mathcal{M}_{2\times 2}(\mathbb{R})$. Razonar la veracidad o falsedad de las siguientes afirmaciones.

- (i) Si $det(A) \neq 0$ y además A y B son equivalentes por filas entonces también son equivalentes por columnas.
- (ii) Si det(A) = det(B) = 0 entonces A y B son equivalentes.
- (iii) $(A+B)(A-B) = A^2 B^2$.
- (iv) Si A y B son congruentes entonces signo(traza(A)) = signo(traza(B)).

(Examen de julio de 2019)