LINEAR ALGEBRA I
Endomorphisms.
1.- Find the matrix F_{C} associated to the endomorphism $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, f(x, y)=(x+2 y, 2 x+4 y)$ with respect to the canonical basis.
2.- Check that the endomorphism f from the previous exercise satisfies $f(2,-1)=0 \cdot(2,-1)$ and $f(1,2)=5 \cdot(1,2)$.
3.- Find the matrix F_{B} associated to f with respect to the basis $B=\{(2,-1),(1,2)\}$. Check that it is diagonal.
4.- Find the characteristic polynomial of the endomorphism f from Problem 1. Which are its roots?.
5.- Factorize the following polynomials into \mathbb{R} knowing that all of them have at least one integer root:
(i) $x^{2}-5 x+6$.
(ii) $x^{3}-6 x^{2}+12 x-8$.
(iii) $x^{3}+x^{2}-3 x-3$.
(iv) $x^{4}+x^{3}-x^{2}-x$.
(v) $x^{3}-x^{2}+x-1$.
6.- Given the matrix $A=\left(\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 2 \\ 1 & 3 & 2 & 4\end{array}\right)$:
(i) Compute its characteristic polynomial.
(ii) Find its eigenvalues and their algebraic multiplicities.
(iii) Find the geometric multiplicities of its eigenvalues.
(iv) Compute a basis of the characteristic subspace associated to each eigenvalue.
(v) Multiply the matrix A with each one of these eigenvectors. What do you notice?
(vi) Let D be the diagonal matrix whose diagonal is formed by the eigenvalues repeated as many times as their respective multiplicities; let P be the matrix whose columns are the eigenvectors in the same order as the one chosen for the eigenvectors. Check that $A P=P D$. Note that this is equivalent to $P^{-1} A P=D$.

Soluciones.

1. $F_{C}=\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right)$.
2. $F_{B}=\left(\begin{array}{ll}0 & 0 \\ 0 & 5\end{array}\right)$.
3. $P_{f}(\lambda)=\lambda(\lambda-5)=\lambda^{2}-5 \lambda$. Its roots are 0 and 5 .
4.

(i) $x^{2}-5 x+6=(x-2)(x-3)$.
(ii) $x^{3}-6 x^{2}+12 x-8=(x-2)^{3}$.
(iii) $x^{3}+x^{2}-3 x-3=(x+1)(x-\sqrt{3})(x+\sqrt{3})$.
(iv) $x^{4}+x^{3}-x^{2}-x=x(x-1)(x+1)^{2}$.
(v) $x^{3}-x^{2}+x-1=(x-1)\left(x^{2}+1\right)$.
6.
(i) $p_{A}(\lambda)=\lambda^{2}(\lambda-2)(\lambda-5)$.
(ii) $\lambda_{1}=0$ with algebraic $\mathrm{m} .=2 ; \lambda_{2}=2$ with algebraic $\mathrm{m} .=1 ; \lambda_{3}=5$ with algebraic $\mathrm{m} .=1$.
(iii) geometric $\mathrm{m} .(0)=2$, geometric $\mathrm{m} .(2)=$, geometric $\mathrm{m} .(5)=1$.
$(\text { iv })^{(*)} S_{0}=\mathcal{L}\{(2,-2,0,1),(1,-1,1,0)\}, S_{2}=\mathcal{L}\{(-3,-3,1,5)\}, S_{5}=\mathcal{L}\{(0,0,1,2)\}$.
(v) $A\left(\begin{array}{r}2 \\ -2 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)=0 \cdot\left(\begin{array}{r}2 \\ -2 \\ 0 \\ 1\end{array}\right)$,
$A\left(\begin{array}{r}1 \\ -1 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)=0 \cdot\left(\begin{array}{r}1 \\ -1 \\ 1 \\ 0\end{array}\right)$,
$A\left(\begin{array}{r}-3 \\ -3 \\ 1 \\ 5\end{array}\right)=\left(\begin{array}{r}-6 \\ -6 \\ 2 \\ 10\end{array}\right)=2 \cdot\left(\begin{array}{r}-3 \\ -3 \\ 1 \\ 5\end{array}\right)$,
$A\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{r}0 \\ 0 \\ 5 \\ 10\end{array}\right)=5 \cdot\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 2\end{array}\right)$.
Note that the image of each eigenvector is the same vector multiplied by its associated eigenvalue.
$(\mathrm{vi})^{(*)} D=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 5\end{array}\right)$ and $P=\left(\begin{array}{rrrr}2 & 1 & -3 & 0 \\ -2 & -1 & -3 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 5 & 2\end{array}\right)$.
${ }^{(*)}$ The solution is not unique, that is, there are several different correct answers.

