LINEAR ALGEBRA I

Linear maps.

1.- Given the function f :

$$
f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, \quad f(x, y)=(x+2 y, x-y)
$$

check that it is a linear map by verifying that the identity

$$
f\left(a(x, y)+b\left(x^{\prime}, y^{\prime}\right)\right)=a f(x, y)+b f\left(x^{\prime}, y^{\prime}\right)
$$

holds for any $a, b, x, y, x^{\prime}, y^{\prime}$.
2.- Given the function f :

$$
f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, \quad f(x, y)=(x+2 y, 2)
$$

check that it is NOT a linear map, by finding a vector (x, y) and a number a such that $f(a(x, y)) \neq$ $a f(x, y)$.
3.- Let $f: U \longrightarrow V$ be a linear map, $B_{1}=\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$ a basis of U and $B_{2}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ a basis of V. If $f\left(\vec{u}_{1}\right)=\vec{v}_{1}+\vec{v}_{2}-\vec{v}_{3}$ and $f\left(\vec{u}_{2}\right)=2 \vec{v}_{1}+\vec{v}_{3}$, write the associated matrix $F_{B_{2} B_{1}}$ with respect to the bases B_{1} of U and B_{2} of V.
4.- Which is the image of the vector $\vec{w}=5 \vec{u}_{1}-3 \vec{u}_{2}$ by the function from the previous problem?
5.- Under the conditions of Problem 3 we consider the new bases $B_{1}^{\prime}=\left\{\vec{u}_{1}^{\prime}, \vec{u}_{2}^{\prime}\right\}$ and $B_{2}^{\prime}=\left\{\vec{v}_{1}^{\prime}, \vec{v}_{2}^{\prime}, \vec{v}_{3}^{\prime}\right\}$, with:

$$
\begin{aligned}
& \vec{u}_{1}^{\prime}=\vec{u}_{1}+\vec{u}_{2}, \quad \vec{u}_{2}^{\prime}=\vec{u}_{1}+2 \vec{u}_{2} \\
& \vec{v}_{1}^{\prime}=\vec{v}_{2}, \quad \vec{v}_{2}^{\prime}=\vec{v}_{3}, \quad \vec{v}_{3}^{\prime}=\vec{v}_{1}+\vec{v}_{2}+\vec{v}_{3}
\end{aligned}
$$

Find the matrix $F_{B_{2}^{\prime} B_{1}^{\prime}}$ with respect to the bases B_{1}^{\prime} of U and B_{2}^{\prime} of V.
6.- Given the linear map $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ defined as $f(x, y, z)=(x+y+z, 2 x-y, 3 x+z)$ find the implicit equations of the kernel and a basis of the image.
7.- Given the linear maps $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, g: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ and $h=g \circ f$, defined as $f(x, y)=(x+y, 2 x+y)$, $g(x, y)=(3 x-y, x-y)$, find the matrices associated to f, g and h with respect to the canonical basis of \mathbb{R}^{2}.

Solutions.
$\mathbf{2}^{(*)} \cdot(x, y)=(0,0)$ and $a=0 . f(0 \cdot(0,0))=(0,2)$ but $0 \cdot f(0,0)=(0,0)$.
3. $F_{B_{2} B_{1}}=\left(\begin{array}{rr}1 & 2 \\ 1 & 0 \\ -1 & 1\end{array}\right)$.
4. $f(\vec{w})=-\vec{v}_{1}+5 \vec{v}_{2}-8 \vec{v}_{3}$.
5. $F_{B_{2}^{\prime} B_{1}^{\prime}}=\left(\begin{array}{rr}-2 & -4 \\ -3 & -4 \\ 3 & 5\end{array}\right)$.
$\mathbf{6}^{(*)} . \operatorname{ker}(f)=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=0,2 x-y=0\right\}$ and $\operatorname{Im}(f)=\mathcal{L}\{(1,2,3),(1,-1,0)\}$.
7. $F_{C}=\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right), \quad G_{C}=\left(\begin{array}{ll}3 & -1 \\ 1 & -1\end{array}\right), \quad H_{C}=\left(\begin{array}{rr}1 & 2 \\ -1 & 0\end{array}\right)$.
${ }^{(*)}$ The solution is not unique, that is, there are several different correct answers.

