1.– Given the function f:

$$f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2, \quad f(x,y) = (x+2y, x-y)$$

check that it is a linear map by verifying that the identity

$$f(a(x, y) + b(x', y')) = af(x, y) + bf(x', y')$$

holds for any a, b, x, y, x', y'.

2.– Given the function f:

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, \quad f(x,y) = (x+2y,2)$$

check that it is NOT a linear map, by finding a vector (x, y) and a number a such that $f(a(x, y)) \neq af(x, y)$.

- **3.** Let $f: U \longrightarrow V$ be a linear map, $B_1 = \{\vec{u}_1, \vec{u}_2\}$ a basis of U and $B_2 = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ a basis of V. If $f(\vec{u}_1) = \vec{v}_1 + \vec{v}_2 \vec{v}_3$ and $f(\vec{u}_2) = 2\vec{v}_1 + \vec{v}_3$, write the associated matrix $F_{B_2B_1}$ with respect to the bases B_1 of U and B_2 of V.
- 4.— Which is the image of the vector $\vec{w} = 5\vec{u}_1 3\vec{u}_2$ by the function from the previous problem?
- **5.** Under the conditions of Problem 3 we consider the new bases $B'_1 = \{\vec{u}'_1, \vec{u}'_2\}$ and $B'_2 = \{\vec{v}'_1, \vec{v}'_2, \vec{v}'_3\}$, with:

$$\vec{u}_1' = \vec{u}_1 + \vec{u}_2, \quad \vec{u}_2' = \vec{u}_1 + 2\vec{u}_2 \\ \vec{v}_1' = \vec{v}_2, \quad \vec{v}_2' = \vec{v}_3, \quad \vec{v}_3' = \vec{v}_1 + \vec{v}_2 + \vec{v}_3$$

Find the matrix $F_{B'_2B'_1}$ with respect to the bases B'_1 of U and B'_2 of V.

- **6.** Given the linear map $f : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ defined as f(x, y, z) = (x + y + z, 2x y, 3x + z) find the implicit equations of the kernel and a basis of the image.
- **7.** Given the linear maps $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $g : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ and $h = g \circ f$, defined as f(x, y) = (x + y, 2x + y), g(x, y) = (3x y, x y), find the matrices associated to f, g and h with respect to the canonical basis of \mathbb{R}^2 .

Solutions.

 $2^{(*)} \cdot (x, y) = (0, 0) \text{ and } a = 0. \ f(0 \cdot (0, 0)) = (0, 2) \text{ but } 0 \cdot f(0, 0) = (0, 0).$ 3. $F_{B_2B_1} = \begin{pmatrix} 1 & 2 \\ 1 & 0 \\ -1 & 1 \end{pmatrix}.$ 4. $f(\vec{w}) = -\vec{v}_1 + 5\vec{v}_2 - 8\vec{v}_3.$

5.
$$F_{B'_{2}B'_{1}} = \begin{pmatrix} -2 & -4 \\ -3 & -4 \\ 3 & 5 \end{pmatrix}$$
.
6^(*). $ker(f) = \{(x, y, z) \in \mathbb{R}^{3} | x + y + z = 0, 2x - y = 0\}$ and $Im(f) = \mathcal{L}\{(1, 2, 3), (1, -1, 0)\}$.
7. $F_{C} = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$, $G_{C} = \begin{pmatrix} 3 & -1 \\ 1 & -1 \end{pmatrix}$, $H_{C} = \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix}$.

 $^{(\ast)}$ The solution is not unique, that is, there are several different correct answers.