LINEAR ALGEBRA I
Vector spaces.

Exercises Part III. Chapter 1 and 2

(Academic year 2022-2023)
1.- Let $\mathcal{P}_{1}(\mathbb{R})=\left\{p(x)=a_{0}+a_{1} x \mid a_{0}, a_{1} \in \mathbb{R}\right\}$ be the set of polynomials of degree at most 1 . We define the sum of polynomials as:

$$
p(x)=a_{0}+a_{1} x, \quad q(x)=b_{0}+b_{1} x \Rightarrow p(x)+q(x):=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x
$$

Taking $p(x)=a_{0}+a_{1} x, q(x)=b_{0}+b_{1} x, r(x)=c_{0}+c_{1} x$, prove the following properties:

- associative: $p(x)+(q(x)+r(x))=(p(x)+q(x))+r(x)$.
- commutative: $p(x)+q(x)=q(x)+p(x)$.
- identity element: the identically zero polynomial $p_{0}(x)=0$ satisfying $p(x)+p_{0}(x)=p(x)$.
- inverse element: given any $p(x)=a_{0}+a_{1} x$ the polynomial $-p(x)=-a_{0}-a_{1} x$ satisfies $p(x)+(-p(x))=$ 0 .
2.- In $\mathcal{P}_{1}(\mathbb{R})$ we define the product of a polynomial by a scalar:

$$
p(x)=a_{0}+a_{1} x, \quad \lambda \in \mathbb{R} \Rightarrow \lambda \cdot p(x):=\lambda a_{0}+\lambda a_{1} x .
$$

Taking $p(x)=a_{0}+a_{1} x, q(x)=b_{0}+b_{1} x$ and $\lambda, \mu \in \mathbb{R}$, prove the following properties:
$-1 \cdot p(x)=p(x)$.
$-\mu(\lambda \cdot p(x))=(\mu \lambda) \cdot p(x)$.

- $\lambda \cdot(p(x)+q(x))=\lambda \cdot p(x)+\lambda \cdot q(x)$.
$-(\lambda+\mu) \cdot p(x)=\lambda \cdot p(x)+\mu \cdot p(x)$.
3.- Prove that the subset of polynomials $U=\left\{a_{0}+a_{1} x \in \mathcal{P}_{1}(\mathbb{R}) \mid a_{0}+a_{1}=1\right\}$ is NOT a vector subspace of $\mathcal{P}_{1}(\mathbb{R})$, by giving a vector $p(x) \in U$ and a number λ such that $\lambda \cdot p(x) \notin U$.
4.- Prove that the subset of polynomials $U=\left\{a_{0}+a_{1} x \in \mathcal{P}_{1}(\mathbb{R}) \mid a_{0}+a_{1}=0\right\}$ IS a vector subspace of $\mathcal{P}_{1}(\mathbb{R})$. To this end, given $p(x)=a_{0}+a_{1} x, q(x)=b_{0}+b_{1} x$ such that $p(x), q(x) \in U$, that is, such that $a_{0}+a_{1}=0$ and $b_{0}+b_{1}=0$, verify that $\lambda \cdot p(x)+\mu \cdot q(x) \in U$ for any numbers $\lambda, \mu \in \mathbb{R}$.
5.- Applying the definition determine whether the vectors $(1,0,1),(2,1,1),(0,1,-1)$ are linearly independent.
6.- Write the vector $(2,3)$ as a linear combination of the vectors $(1,0),(0,1)$ and $(1,1)$. Is there a unique way to do it?
7.- Write the vector $(2,3)$ as a linear combination of the vectors $(0,1)$ and $(1,1)$. Is there a unique way to do it?
8.- If $(4,3)_{B}$ are the coordinates of a vector with respect to the basis $B=\{(1,1),(2,-1)\}$, which are the components of this vector as an element of \mathbb{R}^{2} ?
9.- Given the vectors $(1,0,0),(1,1,0)$ find a third vector \vec{u} such that $\{(1,0,0),(1,1,0), \vec{u}\}$ is a basis of \mathbb{R}^{3}.
10.- Give the canonical basis of $\mathcal{M}_{3 \times 2}(\mathbb{R})$.
11.- Given the basis $B=\{(1,1),(2,3)\}$ of \mathbb{R}^{2}, give the change-of-basis matrix $M_{C B}$, where C is the canonical basis.
12.- In a vector space V we have the bases $B_{1}=\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$ and $B_{2}=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$.
(i) If $\vec{v}_{1}=\vec{u}_{1}+\vec{u}_{2}$ and $\vec{v}_{2}=2 \vec{u}_{1}+3 \vec{u}_{2}$, give the change-of-basis matrices $M_{B_{1} B_{2}}$ and $M_{B_{2} B_{1}}$.
(ii) If $\vec{w}=(-1,3)_{B_{2}}$ write the vector \vec{w} as linear combination of \vec{v}_{1} and \vec{v}_{2}.
(iii) Write the coordinates of \vec{w} respect to the basis B_{1}.
13.- In \mathbb{R}^{3} given the subspace $U=\mathcal{L}\{(1,0,1),(1,1,1)\}$, find its parametric and implicit equations with respect to the canonical basis.
14.- In \mathbb{R}^{3}, given the subspace $U=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y-2 z=0\right\}$, find its parametric and implicit equations with respect to the canonical basis.

Solutions.
$\mathbf{3}^{(*)} \cdot p(x)=1, \lambda=2$.
5. They are not linearly independent: $2 \cdot(1,0,1)-1 \cdot(2,1,1)+1 \cdot(0,1,-1)=(0,0,0)$.
$\mathbf{6}^{(*)} \cdot(2,3)=1 \cdot(1,0)+2 \cdot(0,1)+1 \cdot(1,1)$. The solution is not unique.
7. $(2,3)=1 \cdot(0,1)+2 \cdot(1,1)$. The solution is unique.
8. $(10,1)$.
9. $(0,0,1)$. The solution is not unique.
10. $C=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right)\right\}$.
11. $M_{C B}=\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right)$.
12. (i) $M_{B_{1} B_{2}}=\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right)$ and $M_{B_{2} B_{1}}=M_{B_{1} B_{2}}^{-1}=\left(\begin{array}{rr}3 & -2 \\ -1 & 1\end{array}\right)$. (ii) $\vec{w}=-\vec{v}_{1}+3 \vec{v}_{2}$. (iii) $\vec{w}=(5,8)_{B_{1}}$.
$13{ }^{(*)}$. Parametric: $x=a+b, \quad y=b, \quad z=a+b$. Implicit: $x-z=0$.
$14^{(*)}$. Parametric: $x=2 a+b, \quad y=-b, \quad z=a$. Implicit: $x+y-2 z=0$.

