LINEAR ALGEBRA I
Combinatorics.

Exercises Part I. Chapter 2

(Academic year 2022-2023)
1.- A person has three shirts, four trousers, and six pairs of shoes. In how many different ways can he get dressed if he wears one item of each type?
2.- Consider a Spanish-style "quiniela" (football pool) with 15 matches and three possible bets $1, \mathrm{X}, 2$ on each one. How many ways are there of filling it?
3.- Using the digits $9,7,5,3,1$, how many different three-digit numbers can be formed?
4.- In how many different ways can eight people sit on a row of seats?
5.- In how many different ways can the letters of PARALLELEPIPED be rearranged?
6.- Compute:

$$
\binom{6}{2}, \quad\binom{7}{3}, \quad\binom{222}{0}, \quad\binom{200}{199}
$$

7.- Expand $(x+1)^{7}$.
8.- In how many different ways can a committee of five people be chosen from a group of 20 ?
9.- In a winery there are five different types of bottles. In how many ways can four bottles be chosen?

Solutions.

1. $3 \cdot 4 \cdot 6=72$
2. $V R_{3,15}=3^{15}=14348907$.
3. $V_{5,3}=\frac{5!}{(5-3)!}=5 \cdot 4 \cdot 3=60$.
4. $P_{8}=8!=8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=40320$.
5. $P R_{14 ; 3,3,3,2}=\frac{14!}{3!3!3!2!}=201801600$.
6. $\binom{6}{2}=\frac{6 \cdot 5}{1 \cdot 2}=15$.
$\binom{7}{3}=\frac{7 \cdot 6 \cdot 5}{1 \cdot 2 \cdot 3}=35$.
$\binom{222}{0}=1$.
$\binom{200}{199}=\binom{200}{200-199}=\binom{200}{1}=200$.
7. $(x+1)^{7}=\binom{7}{0} x^{7}+\binom{7}{1} x^{6}+\binom{7}{2} x^{5}+\binom{7}{3} x^{4}+\binom{7}{4} x^{3}+\binom{7}{5} x^{2}+\binom{7}{6} x+\binom{7}{7}=$

$$
=x^{7}+7 x^{6}+21 x^{5}+35 x^{4}+35 x^{3}+21 x^{2}+7 x+1
$$

8. $C_{20,5}=\binom{20}{5}=15504$.
9. $C R_{5,4}=\binom{5+4-1}{4}=70$.
