1.— List the elements of the following sets:

 $A = \{x \in \mathbb{N} | x < 10\}, B = \{x \in \mathbb{Z} | x^2 < 11\}, C = \{x \in \mathbb{Q} | 2x \in \mathbb{Z}, -2 < x \le 1\}.$

2.- For the sets of the previous exercise calculate:

 $A \cup B, A \cap B, B \cap C, A \cap B \cap C, \mathbb{N} \setminus A$

3.- Ket $A = \{1, 2, 3\}, B = \{3, 4, 5, 7\}$ and consider the correspondences:

$$\begin{split} F_1 &= \{(1,3), (2,7)\} \\ F_2 &= \{(1,3), (2,4), (3,3)\} \\ F_3 &= \{(1,7), (2,5), (2,4), (3,4)\} \end{split}$$

Represent each of them using a Venn diagram.

4.- For the previous correspondences indicate the initial set, the final set, the domain and the image set.

5.— For the correspondence F_3 : What are the images of 2? What are the origins of 4?.

- 6.– Which of the correspondences in exercise 3 are functions?
- 7.- For the functions determined in exercise 6, indicate if they are injective, surjective and/or bijective.
- **8.** Given $f : \mathbb{R} \longrightarrow \mathbb{R}$ defined as f(x) = 2x + 3. Indicate if it is bijective. If so, calculate the inverse function.
- **9.** Given $g : \mathbb{R} \longrightarrow \mathbb{R}$ and $h : \mathbb{R} \longrightarrow \mathbb{R}$ defined respectively as g(x) = x + 1 and $h(x) = x^2 1$ compute $(g \circ h)$ and $(h \circ g)$.

Solutions.

1. $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, B = \{-3, -2, -1, 0, 1, 2, 3\}, C = \{-3/2, -1, -1/2, 0, 1/2, 1\}.$ **2.** $A \cup B = \{-3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, A \cap B = \{1, 2, 3\}, B \cap C = \{-1, 0, 1\}.$ $A \cap B \cap C = \{1\}, \mathbb{N} \setminus A = \{x \in \mathbb{N} | x \ge 10\}.$

4. For all correspondences the initial set is $A = \{1, 2, 3\}$ and the final set is $B = \{3, 4, 5, 7\}$.

- $Dominio(F_1) = \{1, 2\}, \quad C.Imagen(F_1) = \{3, 7\}.$
- $Dominio(F_2) = \{1, 2, 3\}, \quad C.Imagen(F_2) = \{3, 4\}.$
- $Dominio(F_3) = \{1, 2, 3\}, \quad C.Imagen(F_3) = \{4, 5, 7\}.$
- 5. The images of the 2 are 4, 5. The origins of the 4 are 2, 3.
- **6.** Only F_2 is functions.
- **7.** F_2 is neither injective, nor surjective, nor bijective.
- 8. It is bijective. $f^{-1}(x) = \frac{x-3}{2}$.
- **9.** $(g \circ h)(x) = x^2$, $(h \circ g)(x) = x^2 + 2x$.