Sets and functions.
1.- List the elements of the following sets:

$$
A=\{x \in \mathbb{N} \mid x<10\}, B=\left\{x \in \mathbb{Z} \mid x^{2}<11\right\}, C=\{x \in \mathbb{Q} \mid 2 x \in \mathrm{Z},-2<x \leq 1\} .
$$

2.- For the sets of the previous exercise calculate:

$$
A \cup B, A \cap B, B \cap C, A \cap B \cap C, \mathbb{N} \backslash A
$$

3.- Ket $A=\{1,2,3\}, B=\{3,4,5,7\}$ and consider the correspondences:

$$
\begin{aligned}
& F_{1}=\{(1,3),(2,7)\} \\
& F_{2}=\{(1,3),(2,4),(3,3)\} \\
& F_{3}=\{(1,7),(2,5),(2,4),(3,4)\}
\end{aligned}
$$

Represent each of them using a Venn diagram.
4.- For the previous correspondences indicate the initial set, the final set, the domain and the image set.
5.- For the correspondence F_{3} : What are the images of 2 ? What are the origins of 4 ?.
6.- Which of the correspondences in exercise 3 are functions?
7.- For the functions determined in exercise 6 , indicate if they are injective, surjective and/or bijective.
8.- Given $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined as $f(x)=2 x+3$. Indicate if it is bijective. If so, calculate the inverse function.
9.- Given $g: \mathbb{R} \longrightarrow \mathbb{R}$ and $h: \mathbb{R} \longrightarrow \mathbb{R}$ defined respectively as $g(x)=x+1$ and $h(x)=x^{2}-1$ compute $(g \circ h)$ and $(h \circ g)$.

Solutions.

1. $A=\{1,2,3,4,5,6,7,8,9\}, \quad B=\{-3,-2,-1,0,1,2,3\}, \quad C=\{-3 / 2,-1,-1 / 2,0,1 / 2,1\}$.
2. $A \cup B=\{-3,-2,-1,0,1,2,3,4,5,6,7,8,9\}, \quad A \cap B=\{1,2,3\}, \quad B \cap C=\{-1,0,1\}$.
$A \cap B \cap C=\{1\}, \quad \mathbb{N} \backslash A=\{x \in \mathbb{N} \mid x \geq 10\}$.
3.

4. For all correspondences the initial set is $A=\{1,2,3\}$ and the final set is $B=\{3,4,5,7\}$.
$\operatorname{Dominio}\left(F_{1}\right)=\{1,2\}, \quad$ C.Imagen $\left(F_{1}\right)=\{3,7\}$.
$\operatorname{Dominio}\left(F_{2}\right)=\{1,2,3\}, \quad$ C.Imagen $\left(F_{2}\right)=\{3,4\}$.
$\operatorname{Dominio}\left(F_{3}\right)=\{1,2,3\}, \quad$ C.Imagen $\left(F_{3}\right)=\{4,5,7\}$.
5. The images of the 2 are 4,5 . The origins of the 4 are 2,3 .
6. Only F_{2} is functions.
7. F_{2} is neither injective, nor surjective, nor bijective.
8. It is bijective. $f^{-1}(x)=\frac{x-3}{2}$.
9. $(g \circ h)(x)=x^{2}, \quad(h \circ g)(x)=x^{2}+2 x$.

