— Typeset by GMNI & FoilTpX —

PROGRAMMING IN
C AND FORTRAN

Fermin Navarrina, José Paris

GMNI — GROUP OF NUMERICAL METHODS IN ENGINEERING

School of Civil Engineering
Technological Innovation Centre in Building and Civil Engineering (CITEEC)
University of A Coruia

GMNI - Group of Numerical Methods in Engineering
http://caminos.udc.es/gmni

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Index

» Program structure

» Variables and constants

» Operators

» Control statements

» Pointers and vectors

» Vector and array allocation

» Functions

» Files. Reading and writing data

» Structures, Union, Fields

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Structure of a program (I)

1) Code lines:

Formato fijo<
Fortran <

Column 1 — (c,d,!) Comment line

Columns 2 to 5 —

Line numbering

Column 6 — Line continuation

Columns 7 to 72 —> Space available for instructions

Columns 73to 80 — Space for additional comments

{ The format is

Sentences are

\

L There is no free format (except in more modern versions of Fortran).

free.

managed and grouped using “;" and “{ }"

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Structure of a program (lI)

2) Comments:

Fortran . .
c,d — In the first column, sets the entire line as a comment.
Letter d is reserved for a compilation option.
) ! — comments on the line from the position in which it is found
It's the common way nowadays
cols. 73280 — They are always comments.
\
/*...x/ — |t comments on one or more lines as a block
C //... — It comments on the line from the current position

Standard in modern version of C and C++

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Structure of a program (lIl)

3) Preprocessor (compilation directives) (Pre-compilation phase):

(d — Comments with D are disabled.
include ’filename’ — Incorporate external text files
Fortran < Ex. Header files.

parameter (SYMBOL=value) — Replace the text SYMBOL
by the value before compiling.

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Structure of a program (1V)

3) Preprocessor (compilation directives) (Pre-compilation phase):

C
(#include <stdio.h>

#include "l1lib.h"

#define SYMBOL
#define SYMBOL value

#if
#elif
#tendif

#define FUNC_SYMB(VAR) F(VAR)

#define ...\

#ifdef SYMBOL

NS

L4

It incorporates the system library stdio.h

It incorporates a user library named 1ib
that exists in the current folder

It defines SYMBOL as a parameter

Replace before compiling
the text SYMBOL by the value

It allows to incorporate conditions to the pre-processor
(It is used, for instance, to work depending on

the existing operating system)

It replaces FUNC_SYMB(VAR) by

the function F and it replaces the text VAR
in the expression of the function F

li indicates that the definition continues
in the next line

If SYMBOL is defined then

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Structure of a program (V)

3) Pre-processor (compilation directives) (Pre-compilation phase):

Examples of possible unwanted secondary effects:

#define ACME(X) (X + X)

j = ACME(i);
j = ACME(i++); — j=(0G++ + i++)75{ Ji++.
#define ACME(X) (X * 2.)
u = ACME(a + b); — u=(a+bx2.) [7& u:(a—i—b)*Q.}

v = 1./ACME(a); — v =(1./ax2.) [75 uzl./(a*Q.)}

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Structure of a program (VI)

4) Main program:

program name | If omitted it is stated by default as: main
Fortran
end
C
int main(void) /* It does not receive any data and it returns an integer */
{
+
é
(int main(argc, **argv) /* It returns an integer control value
, and it receives two arguments®/
C g 1
\ b

(1) This option allows to incorporate data into the program that is written directly into the
command line when it is executed. (Ex. gfortran program.f -o program.exe)

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Structure of a program (VII)

5) Groups of sentences:

Fortran — It is not possible.

C — They can be defined.

e They are defined by {...}, that contain the set of sentences.

e They allow definitions of local variables that are specific and exclusive to that group of
sentences.

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Structure of a program (VIII)

6) Source code readability:

[Uppercase and lowercase letters are equivalent.

The use of lowercase letters is recommended (in general).

It is recommended to use capital letters to define symbols.
(EX. PARAMETER (PI=3.1415926535))

It is recommended to use the first letter capitalized for subroutine names.
(Ex. subroutine Product(...))

Line indentation must be done using spaces.
| Due to the reduced format available, no spaces are left between operations.

Fortran <

r Uppercase and lowercase letters are different.

-Except in function names (for compatibility with other languages)
-It is not recommended to use this distinction in practice.

The use of lowercase letters is recommended (in general).

It is recommended to use capital letters to define symbols.
C y (Ex. #define PI 3.1415926535)

It is recommended to use the first letter capitalized for function names.
(Ex. int Product(...){...})

The indentation of the lines is done using tabs.

(It is common practice to leave spaces between operations. (Ex. 1 = j + k;).

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Variables and constants (I)

Variables:

1) Definition of variable:

It is a symbolic name that identifies:
e the memory address where the information associated with that name is saved.
e And the storage space (depending on the type of variable), that is: the value

2) Names for variables:

(They cannot start with a numeric digit. (0-9)

We can use the characters a-z = A-Z, 0-9, ...,$
Considerations to keep in mind:
- Only the first 31 characters for “internal” names
Fortran < -Only the first 6 characters for “external” names
-They depend on the compiler and the compilation options
Names cannot correspond to instruction names (do, max, int, ...)
-They should be mnemonic

L - ATTENTION: 0 A2 0and 1 # ¢
(The same criteria as for Fortran apply
C { It should be noted that, in general, a-z#A-Z

-Except in external function names (for compatibility)

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Variables and constants (Il)

2) Names of variables:

Reserved names:

([auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned

& | continue for signed void

default goto sizeof volatile
do if static while

\ ?SrTran } —> depending on the implementation

The underlined names were incorporated into the new ANSI standard.

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Variables and constants (l1l)

3) Types of variables (Basic ones):

Fortran

e N e N N e

integer*1 (o byte), integer*2, integerx4, integerx8
integer (The most common) (logic for 64 bits CPUs)
real*4, real*8, real*16

real, double precision, quadruple precision

complex*8, complex*16, complex*32
complex,

logicalx*1l, logical*2, 1logical*4, logicalx*8
logical — This is the most advisable approach in practice

character *(n) text — It creates an alphanumeric variable of n characters

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Variables and constants (1V)

3) Types of variables (Basic ones):

C
(char — 1 byte

short (int) — integer variable > char (Normally 2 bytes)
short (Normally 4 bytes)
int (Normally 4 bytes)

unsignedq int —> integer variable
long (int) —> integer variable

IV IV IV

| long long — integer variable > long (and nothing else, a priori)

(char — 1 byte
§ | short (int) — integer variable > char (Normally 2 bytes)
 int — integer variable > short (Normally 4 bytes)

long (int) — integer variable > int (Normally 4 bytes)

>
>

| long long — integer variable > long (and nothing else, a priori)

float — real en simple precision (but unknown number of bytes)
double — real in double precision (but unknown number of bytes)

long double —> real in quadruple precision (but unknown number of bytes)

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Variables and constants (V)

3) Types of variables: Local variables (automatic ones) and external ones

They are internal variables to a module
The name (memory address) is unknown to other modules
Local V. ¢ The storage space is unknown to other modules

-Permanent information in main program — guaranteed value

-Temporary information in other modules — value not guaranteed
on subsequent calls

[These are variables common to several modules

The name (memory address) is known to other modules
External V. 4 _
The storage space is:

-Permanent in different modules — guaranteed value

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Variables and constants (VI)

3) Types of variables: Local variables (automatic ones) and external ones

ForTran

All variables are local to modules, except

e Subroutine and function arguments (sent by reference, not by value)
e COMMON blocks

common /name/ vble_1, vble_2,

C language

All variables are local to modules or groups ({...}), except

e [he ones declared as extern

The ones declared before: int main(void)
Those declared within each function as extern ()

extern external_variable

(*) If the functions are all in the same file, it is not necessary to declare them all.

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Variables and constants (VII)

Ex. Fortran

1234567 1234567

implicit real*8(a-h,o0-z) implicit real*8(a-h,o0-z)
common /exponent/ n

n=2 n=2
x=b. x=5.
call calc(x,n,y) call calc(x,y)
printx*,y printx*,y
call exit(0) call exit(0)
end end

! |

o e

! !
subroutine calc(a,i,b) subroutine calc(a,b)
implicit real*8(a-h,o0-z) implicit real*8(a-h,o0-z)

common /exponent/ i

z=a+l. z=a+l.
b=z*x*] b=z*x*]
return return
end end

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Variables and constants (VIII)

Ex. C language

void main(void)

{
void calc(double, int, double *) /* Prototype of the function */
int n; /* Declaration of variable n */
double x, y; /* Declaration of variables and y */
n=2;
x=5.;
calc(x,n,&y); /* Call to the function calc */
print ("%f",y); /* Printing the result on screen */

exit (0);

void calc(double a, int i, double *pb)
double z;
z=a+ 1.;

*pb = pow(z,1i);
+

» The prototype defines the type of function and the variables that are passed.

» A priori, variables modified in the subroutine are sent with & and received with .

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Variables and constants (1X)

4) Constants:

Fortran

» Integer:

+ [number in decimal form| — digit between 0 and 9

They are stored in the integer type by default

integer*2

integer*4 } — Depending on the compilation option

integer*3

» Real:

+123.4 —>
1.1234e4+3 —
1+.1234d+3 —
+.123494+3 —

REAL (Normally real*4)

REAL (Normally real*4)

DOUBLE PRECISION (Normally real*8)
QUADRUPLE PRECISION (Normally real*16)

It depends on the compilation options

They are saved in the corresponding type or by default (real*4, real*8, real*16)

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Variables and constants (X)

4) Constants:

Fortran

» Alphanumeric constants:

They are not variables as such. They are Descriptors.

Th tain int v — The memory address of the beginning of the string
€y contain internaily The length of the string (number of characters)

’hello, world’

— hello, world
12Hhello, world

-~

12 charact.

T

Hollerith format

» Logic constants:

.true.
.false.

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

=

Variables and constants (XI)

4) Constants:

C language
» Integer constants: (see the file 1imits.h in the compiler libraries)
Char: char
unsigned SO
They are saved as (sig%ed) 1101;::8
long long
'x? — unsigned char (1 byte) ‘\r’ — carriage return
Saves the ASCIl code of x ’\f’ — form feed
’\0° — null \a’ — bell (beep)
’\n’ — newline A\ — backslash
’\t’> — horizontal tab '\?7? — question mark
’\v’ — vertical tab P\ — single quote
’\b> — backspace ’\’??> — double quote
Y%%? — Symbol %
’\o’ o — 1 octal number
’\oo’ — octal {00 — 2 octals numbers
’\000’ ooo — 3 octal numbers
’\xh’ hexadecimal h — 1 hexadec. number
’\Xhh’} — hexadecima {hh —> 2 hexadec. numbers

unsigned char

signed char } depending on the implementation

They are saved in {

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Variables and constants (XII)

4) Constants:

C language

short, int, long, long long

+ [number in decimal form] ~~ digits (0-9), first £ 0, except for the zero.
+ O[number in octal form] ~~ digits (0-7), first digit is a 0.
+ Ox[number in hexadecimal form] ~~ digits (0-9), letters (a-f) = (A-F)

char
. unsigned SHomE
They are saved in (o ﬁed) int
g long
long long

depending on the sign the bare minimum
or as indicated or as indicated

constant + { llj } — unsigned Ex. 347U
| They can be combined (Ex. 0xFUL = 15)
constant + { L } — long long Ex. 2598L

NOTE: Expressions with integer constants are evaluated at compile time (not at runtime)

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Variables and constants (XIII)

4) Constants:

C language
» Real: (See the file float.h in the compiler libraries)

float, double, long double

+123.4f +.1234e+3f 1
{ +123.4F }{ +.1234e+3F § ~7 tloat

+123.4, +.1234e+3 ~» double (Default option)

+123.4¢ +.1234e+-3¢
{ +123.4L }{ +.1234e4+3L f 7 tong double

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Variables and constants (XIV)

4) Constants:

C

language

» Alphanumeric: (Strings) They are treated as character arrays.

2

"hello, world" < '"hello," " world" ~~ hello, world
They are concatenated

" & empty string

e They consist of a vector of characters of type char with a ’\0’ (null) at the
end.

® They are defined by the vector where they are stored, and their length
ends at the first ’\0’.

e The final ’\0’ is established by agreement.

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Variables and constants (XV)

4) Constants:

C language

» Enum: (It allows creating sets of variables with assigned constant values)

NO «<—— 0
enum boolean {NO,YES}; — { YVES «— 1
enum escapes {BEL=’\a’, BACKSPACE=’\b’, ..., RETURN=’\r’};
JAN =1
enum meses {JAN=1, FEB, MAR, APR,... DEC}; — :
DEC = 12

Values are stored in variables of type int

Declaracion:

enum boolean {NO,YES};
enum boolean yesorno, acepted;

yesorno = NO; accepted = YES;

enum boolean {NO,YES} yesorno, accepted;
enum {NO,YES} yesorno, accepted;

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Variables and constants (XVI)

5) Changes of variable types:

Fortran: They are performed using functions

(int(variable)
real (variable)
Funciones: { dble(variable) — vble.type2 = f(vble.typel)
float(variable) [disused] Fj. i=int(x)
| dfloat(variable) [disused] Ej. z=real(]j)

C language: It is done using casts (assignments).

Casts;
((type) variable /* It assigns the value of variable to the new variable type. */

/* Applies only to the argument immediately following */

Ej. i = (int) x; // It saves the integer part of x in i
L Ej. z = (float) j; // It saves the integer value j in z

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Variables and constants (XVII)

6) Variables initialization:

(It is not possible except with the instruction data

data vblel,vble2,vble3 /valuel, value2, value3/

Ej. data m,n,x,y /10,20,2.5,2.5/
data m/10/, n/20/, x,y /2%2.5/
real v(100)

data v/100%0.0/ I 100 components of value 0.0

Fortran — ¢

Global variables are initialized once and at the beginning

| Are local variables initialized each time? — YES

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Variables and constants (XVIII)

6) Variables initialization:

(They can be initialized directly when declared:

int 1i; int 1 = 3;
int i, j; int 1 = 3, j = 4;
float pi; float pi = 3.1415926535;

char letter; char letter = ’x’

Once, the permanent or global ones
Each time in each module, the local variables

If they are defined as constants and
they are initialized and cannot be modified afterwards

const int 1 = 3;

They are initialized:{

@)
e

Arrays can also be initialized when declaring them:

char v[5] = {1, 2, 3, 4 , 5 };

char text[7] = { ’M’,’0’,’n’,’d’,’a’,’y’,’\0’ };
| char text[7] = "Monday"; char texto2[5] = "five";

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Variables and constants (XIX)

7) Assigning values to variables:

Eortran —s Direct assignment to variables. Ex. variable=value
ortran In arrays, component by component. Ex. vector(i)=value
(Direct assignment to variables.
1 = 3; k = 6;
i=j=k=6; << j=k;
| . 1=7;
n arrays:
int v[5];
v={1,2,3,4, 5 }; —— Not correct
int v[b] = {1, 2,3, 4, 573}; —— Correct
C — 94 char text[7];
texto[7] = "Monday"; — Not correct
char text[7] = "Monday"; — Correct
Attention: An additional character must be reserved for null >\0’
float x, z:
inty, j, k;
x =y =2z=23.2; i
| 1= j++ =k =8; ji??

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Operators (1)

Operators

Fortran C
Arithmetic Yes Yes
Relational Yes Yes
Logic Yes Yes
Incremental No Yes
Bitwise logical No Yes
Others Concatenation | Ternary

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Operators (1)

1) Arithmetic operators:

Fortran:

Unary: - Sign change. Affects one variable.
Binarios: +, —, *, / Basic operations. They affect 2 variables

e They are applied to integer, real, complex

1) - (unary)
® Priority 2) *, / — It can be altered with parentheses.
3)+, -

Ex. a*xb+c/ -d <«<— (axb) + (c/ (-d))

jAttention! The compiler can make decisions. Don't trust it.

If you want to force a result, it is better to use intermediate variables.

a =-1.
Ex. jCa+b)+c=a+(b+c)? |if b= +1.
c=10"%

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Operators (l11)

1) Arithmetic operators:

C:

® They are the same as in Fortran, plus::

Modulo division (%): Remainder of the division of one integer by another
Abbreviations: shortcut operators

Unary: - Sign change. Affects one variable.
Binary: +, -, *, /, % They affect two variables.

char, short, int, long, long long

- Uiy i applies e float, double, long double (except modulo division %)

1) - (unary)
e Priority 2) x, /, h — It can be altered with parentheses.
3)+, -

Ex. a*xb+c/-d <«— (axb)+ (c/ (-d)
jAttention! The compiler can make decisions. Don't trust it.

If you want to force a result, it is better to use intermediate variables

a=-1.
Ex. jCa+b)+c=a+(b+c)? |if b= +1.
c=10"%

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Operators (1V)

1) Arithmetic operators:

C:

e Abbreviations:

X |opJ= expression <— x = x |op| (expression)

being [op| one operation — [op] € {+, -, *, /, %} (also {<<, >>, &, ", |})

Try not to mix variables of different types

jAttention | — _ _ _
Force an appropriate rate change using promotion rules (casts)

E xmod += v[i] * v[i]; <+— xmod = xmod + v[i] * v]i]
v[i] /= xmod; <— V[i] = Vv[i] / xmod

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Operators (V)

2) Relational operators:

Fortran:

[
{ .gt., .ge., .1t., .1le. — Greater than, greater than or equal to, less than, less than o

.eq., .ne. — Equal, not equal.

Only scalars are compared.

® § If the scalars are of different types, they are promoted to the most complex type
but it is not advisable.

if (i.eq.1)
e Ex. _ o
if (x.gt.5) | If xisreal*8 — 5 it is converted to real*8

e They have lower priority than arithmetic operations:
if (xt+y.gt.x*xy) <— if ((x+y).gt. (x*y))

In any case, it is better to use parentheses to avoid ambiguity.

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Operators (VI)

2) Relational operators:

C:

e These operators are actually numeric:

>, >=, <, <= : .
{__ J Increasing priority.

b

e (x <y) takes the value {(1) :11; ir]EOitSttrrI:Jee ((0155 ?&—SE))

G I 0 = FALSE
@ Lenerally, 1 1 = TRUE (any non-null value indicates TRUE)

jAttention! Do not confuse
X =y — It assigns the value of y in x
with
x ==y — Returns the value 0 if x is not equal to y
and the value 1 if x is equal to y

e They have higher priority than arithmetic operations (unlike in Fortran)
It is advisable to always use parentheses to avoid conflicts.

. . _ . is equal to a if b is equal to ¢
Ejja+b!=c<=a+ (b!=c); _>{isequaltoa+1 if b #£ c

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Operators (VII)

3) Logic operators:

Fortran:

.and., .or. —— binary

e .not. —— unary
.eqv., .neqv.

e Truth table:

a and b are .true.

(a) .eqv.(b) is .true. <> { a and b are .false.

.neqv. Iis equivalent to .not..eqv.

.EQV. a .true. | a .false. .NEQV. a .true. | a .false.
b .true. .true. .false. b .true. .false. .true.
b .false. .false. .true. b .false. .true. .false.

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Operators (VIII)

3) Logical operators:

Fortran:
.not. +
e Priority of operators — .21r1d. I
.eqv.—.neqv. —

e When in doubt, it is recommended to use parentheses

Ej. iWhat does it mean (a.or.b.and.c) or (a.or.(b.and.c))?

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

=

Operators (1X)

3) Logic operators:

C:
e They are actually numeric operators
Binary: &&, || (and y or)
Unary: ! (denial)

! +
Priority — { &&
| -
Then la&& b +— (la) && b

It is recommended to use parentheses to avoid confusion
Doubt: jif (! valid)... or if (valid == 0)...7
e Ex.: to check if the (year) is a leap year:
if (((year % 4) == 0 && (year % 100) !'= 0) || (year % 400) == 0)

or
if ((! (year % 4) && (year % 100)) || ! (year % 400))

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Operators (X)

4) Incremental operators:

C:
o i ahead — The increase precedes the operations
’ 5 behind — The increase follows the operations
y=y -1
_ : _ _ X =y + z;
jAttention! x++ = —-y + z++; — X =% + 1:
z =2z + 1;

e Can only be applied to variables.
e Cannot be applied to expressions.

z = (x + y)++; // Not a valid expression.

When in doubt, avoid confusion by using parentheses.
Ex. What do they mean?
ali] = i++;

ali] = ++i;
x = power (++n,n) ;

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Operators (XI)

5) Bitwise Logical operators:

C:
r & bitwise and
| bitwise or
) A\ bitwise exclusive or

<< left shift (Shift the bits to the left by the indicated positions)
>> right shift (Shift the bits to the right by the indicated positions)

(~ complement to one (unary)
Ex.: c = n & 0177; — resets everything except the last 7 bits of n,

that are not modified

4

(01111111)s

(01111111), 0 “&" 0 — 0
& (10101001); — {g e
(00101001)» 1" 1—1

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Operators (XII)

5) Operators Bitwise Logical:

Ej.: c = n | MASK; — sets all bits of n that are 1 in MASK
y no cambia el resto

MASK (01111101)4 0“I"0—0
n | (10101001); — {g..|,, 0 1
(11111101), 14" 1—1
c = n~ MASK; — 1 if the bits of n and MASK are different, and 0 if they are the same
MASK (01111101)- 07" 00
n A (10101001); — (1) o éji
(11010100), 17710

X = x<< 3; +— x=x%*273
X =x> 3; <+ x=x/2°

0177 = (01111111),
~0177 = (10000000);

c =n& (~ 0177); — Resets the last 7 bits of n

1 x & y is 1 (TRUE and TRUE = TRUE)
2 } A {

x&y is0 8%82 Egggggg%%g }—> (00000000)5 = (0)1¢

} If x is an integer (and the ange is not violated)

jAttention!

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Operators (XIII)

6) Other operators:

Fortran:

e // — Strings concatenation
Ex. ’Hello ’//’my friend’

C:
e Ternary —— e1?ey: €3

c _ ¢ o b) 7 4 Ifa>b — =z
x. z=(a ? C : ;. — fa<b - 2

7) Final Suggestions:

e Don't trust the order. { :EH

1++; 5
++1; '

e When in doubt, use multiple instructions and use parentheses

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Control sentences (1)

Control sentences

Fortran <

Logic if

If — then — else — endif
do — enddo

do while — enddo }

({ Arithmetic if

Loops

| { goto (unconditional)

((if

if — else
if — else —if
switch

— Conditional execution sentences

for
< while — Loops
| do — while

(break

{ continue — Unconditional execution sentences
goto

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Control sentences (II)

1.1) IF — ELSE:

They allow a set of instructions to be executed if the condition is satisfied:

if (exp) if (exp)
sentencel; .. .

i Attention ! The else is linked to the closest if, thus

if (n>0)) (if (n > 0){
if (a>b) if (a>b)
zZ = a; > £ 4 z = a;
else } else
z = b;) L z = bj;

It is sometimes abbreviated as:
if (exp) «—if (exp!=0)

Ex. if (error) <+— if (error != 0)

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Control sentences (ll1)

1.2) IF — ELSE IF:

..........

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Control sentences (1V)

1.3) SWITCH

e It allows you to set up a selection of options based on conditions

switch (integer expr.){
case intl:

case :
default :

}

The sentences case: and default can be placed in any order

The execution is diverted to the case whose value matches the value of the integer expr.

Once in the corresponding case, execution continues until the end of the instruction switch

If no value in the case matches the value of integer expr., it is executed from default onwards.
In order for each case to execute only its instructions, a break must be placed at the end of them.

It is recommended not to use it. Instructions that we do not want may be carried out.

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Control sentences (V)

2.1) WHILE

e Execute the instructions repeatedly as long as the expression is true.

while (exp){
while (exp) ... ;
sentence, L X

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Control sentences (VI)

2.2) FOR

e Sentence for repeating instructions

Initialization condition instructions
of variables for repeating to be executed
(optional) at the end
1 J J
for (expl ; exp? ; exp3)
sentence,
expl;
_ _ while (exp2) {
for (etxpl ,' exp2 ; exp3) PN E
sentence; exp3:

}

i Attention ! The condition is checked at the beginning, before each iteration.
i Attention ! In this case, commas ensure the order of evaluation.

for (i =0 ; i<n ; i++)
X,
for (i =0, j=0;1i<né&&j<m,; it+t, j++)

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Control sentences (VII)

2.2) FOR
e Examples:
for (i =0 ; i <n ; i++)
vIi] = i;
for (i =0; i< n;){
—il g // The program fails due to access to v[-1]. Incorrect loop
vii] = i;
for (i=mn; i>0 ;) {
iv[il = --1;?7 or v[--i] = 1;7 — Not clear.
for (i =n; --i >= 0 ;) { — Ends in i=-1.
vii] = i;
}
for (i =n; i-- > 0 ;) { — Ends in i=-1.
vii] = i;

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Control sentences (VIII)

2.3) DO — WHILE

e Repeat instruction with structure:

do do {
sentence; or sentences,
while (exp); } while ((exp);

The sentences are repeated as long as the condition indicated in exp is met
i Attention ! The condition is checked at the end. The loop is executed at least once.

Its use is not very common for the above reason.

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Control sentences (1X)

2.4) OTHER CONTROL INSTRUCTIONS

® break; — Breaks and exits the loop that is running.
e continue; —> Skips the execution of the remaining statements in that iteration.

But the loop does not end. Skip the statements in that iteration.

Ex.:
for (1 =0 ; 1<
if (ali]l < 0)
continue;
// Statements that are executed for terms a[i] possitive

n ; i++){

e GOTO — Diverts execution to another point in the program.

goto label
sentences;
label:

Should not be used unless absolutely necessary
The sentence goto and the line with label: must be in the same function
Labels should never be placed inside loops

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Pointers and vectors (1)

1) PREVIOUS CONSIDERATIONS

® Directions: Reserve memory space for an integer
int i — Saves the memory location where the integer is stored
i contains the value stored in that memory space

i = 5; — Store the integer value 5 in the memory space of i

&1 — Extract the memory address where the storage of i begins

e Vectors:
[Reserve memory space for 10 integers of type int

(a[0] , a[1], ... , a[9])
a[i] is the content of the (i + 1)-th
int al[10]; — <« component.

a is the memory address of the first component
of the vector

a <——> &al0]

\

Ex.:
a[3] = 5; — Store the value 5 in the fourth component.
double b[4] = { 1., -2., 7., -5.}; — Declares the vector b and
assigns initial values to it

e We can obtain the direction and define vectors for all types of variables

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Pointers and vectors (Il)

2) POINTERS

e They are special variables: store memory locations of other types of variables.

Reserves space for the memory address of an integer
int *p; — p is a pointer variable (or pointer) to an integer int
The integer does not necessarily have to exist !!
p = &i; // Extracts the position in memory of variable i and stores it in p
i = *p; // Search for the value stored in the memory location
that indicates p and saves it in i

Pointers arithmetic

Increase the memory position: p += 3;
e { Decrease the memory position: p -= 7;
Substract memory positions: n=p-4dg;
e It is consistent. (It takes into account the number of memory locations for the variable

type
in question, and advances or retreats as many bytes as each variable type occupies)

e All other operations are prohibited (by logic).

Passing or sending variables to functions

. .
Use of pointers Manage, allocate, ... vectors

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Pointers and vectors (l11)

2) POINTERS

e Relationship between pointers and vectors

The name of a vector is a pointer that indicates the position of the first component
int al[10], * p;

p = a; (+<— p = &al0];)

ali] <+— =x(ati) // The value of memory address (a) is incremented
by ¢ positions and then its value is obtained with (*)

p is a variable pointer. Its value (direction that points out)
_ can be modified
Attention: , : : :
a is a constant pointer. lts value is already defined

and the space in the memory reserved
The first component of a vector in Cis 0

(int v[100] — {v[0], ...,v[99]1})
Ex.:
int a[10], *p;
int 1i;
p = 2a;
for (i =0 ; i < 10 ; i++) (_)for(i=0;i<10;p++,i++)
printf ("%d\n",alil); printf ("%d\n",*p);

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Pointers and vectors (1V)

2) POINTERS

» Application examples

}nt main(void) Without loosing the pointer a

/l\

int sum (int , int *); for (p=a+n;p>a;)

int a[10], sa, n;

o o e += x(—-— .
sa = sum(n, a); ! S (==p);
, . 4
int sum (int n , int *a); int sum (int n , int *a);
int s = 0; int s = 0;
int 1; int *p;
for (1 =0 ; 1<n ; i++) for (p=a+n; a<p; att)
{ o
s += alil; S += *a;
return s; return s;

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Pointers and vectors (V)

3) STRINGS
char name[5] = "john";
hT/
{’j’, ’0’, ’h’, ’n’, ’\0’}; — ends up with a Null
Attention !l A string is a vector, not a variable

We can not write:
char name[5];
name = "john";

We could write:
char namel[5];

name[0] = ’j’;
name[1] = ’0’;
name[2] = ’h’;
name[3] = ’n’;
name[4] = ’\0’;

Or:
char * name;
name = "john";
String manipulation is done through functions

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Pointers and vectors (VI)

4) MULTIDIMENSIONAL VECTORS

, . Reserves space for N X M integers type int (*)
» int m[N][M]; — { m is the pointer to a vector of pointers (**)

(*) m[0I1[0], m[01[1], m[0][2], ..., m[0][M]
m[1][0], m[1][1], m([1][2], ..., m[1] [M]

m[N][0], m[N1[1], mIN][2], ..., m[N][M]

(**) m | — Pointer to a vector of pointers (m[0], m[1], ..., m[N])
U
m|0] | = | m[OJ[O] | m[O]J[1] | m[OJ[2] | ... [m[O] [M]
m|l] | = [m[1]J[0] | m[1](1] | m[1][2] | ... | m[1][M]
m[N] | = [mINIT0] | mINJTi] | mINTT2] | . | m[N]M]
/]\

Components of the vector of pointers whose values indicate
where each row of the matrix starts

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Pointers and vectors (VII)

4) MULTIDIMENSIONAL VECTORS

ij OJO Il
m[i] [j] <— is an integer: int n; n = m[i] [j];
(mli]) «— int *p; { & 7 ffgif]f{ foas
m < int (*xp) [M]; g (_)E; I%I?[l];
Luego: m < &m[O0] m[0] <— &m[0] [O]
m+ 1 <— &m[1] m[1] +— &m[1] [0]

The compiler translates
mfi] [j] <«— *(m[i]l + j) <+— *(Gx(m+i) + j)

» The rows are stored internally one after another, although this does not necessarily have to
be the case.

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Arrays allocation (1)

1) STATIC ALLOCATION

P Reserves memory space in a static and immutable manner for a program
P It is reserved at the same time as the array is declared

» The system reserves a portion of memory to store the contents of the array and saves the
address of the first component of the array in the pointer that locates it.

» The memory space is reserved from the part of memory called STACK. Its existence is
guaranteed when the program starts up.

» In current systems, this STACK memory is small in size, and it is not recommended to
allocate large arrays in this way.

FORTRAN:

Ex.: real *8 v
dimension v(100)

C:
Ex.: double v[100];

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Arrays allocation (1)

2) DYNAMIC ALLOCATION

P It allows to allocate memory space dynamically at runtime.

» Memory reservation is performed during execution and availability is not guaranteed.

FORTRAN

In the header of the main program, it is necessary to declare the variables
as ‘dynamically allocatable.”

implicit real*8(a-h,o-z)

allocatable v(:,:) ! Indicates that the array v is dynamically
' allocated and will have two indices
I (row and column, for instance)

Later in the program, memory is allocated dynamically as:

allocate(v(nx,ny), STAT=ist) ! It allocates nx*ny components for v
I ist=0 means correct allocation

» This procedure is only applicable for dynamic dimensioning in the main program

» The use of dynamic sizing in subroutines is more complex.

» The release of allocated memory is performed as follows: deallocate(v)

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Arrays allocation (111)

2) DYNAMIC ALLOCATION

C LANGUAGE

This is done by creating a pointer variable of the type corresponding
to the data to be stored

double * pv;
Later in the program, memory is allocated dynamically as:
pv = (double *) malloc(n * sizeof (double));
reserves n x (bytes of a double) and stores the location in the pointer

sizeof (type); returns the number of bytes occupied by the specified variable type
» This procedure is only applicable for dynamic dimensioning in the main program
» To free up memory once it is no longer in use:

free(pv) ;

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Arrays allocation (1V)

2) DYNAMIC ALLOCATION

C language

» The use of dynamic allocation in functions is more complex since copies of variable values
(including pointers) are sent and received, and the malloc instruction modifies the value of

the pointer.

» The solution consists of sending the pointer of the pointer that will represent the vector.

(#include <stdio.h>
#include <stdlib.h>

void main(void)

{

void dyndim(int, double *x*);
double ** v;

int n;

scanf ("%d" ,&n) ;

dyndim(n,v) ;

}

void dyndim(int n, double ** v)

(*v) = (doublex*) malloc(n*sizeof (double));

()

(#include <stdio.h>
#include <stdlib.h>

void main(void)

{

void dyndim(int, double *x*);
double * v;

int n;

scanf ("%d",&n) ;

dyndim(n,&v) ;
}

void dyndim(int n, double ** v)

(*v) = (double*) malloc(n*sizeof (double));

C }

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Functions (1)

1) GENERAL DESCRIPTION

» Functions are subprograms responsible for performing the operations of an algorithm or part
of it. Conveniently linked and defined, they form a computer program

System functions: these are functions specific to the compiler that are found in the system
libraries. (<stdio.h>, <stdlib.h>, <math.h>)

Native functions: these are functions developed by the user
» Definition:
return_type function_name(variables_declaration, if needed)

Declarations;
Sentences;

}
» Parts:

e return_type: type of value returned by the function upon completion (int, float, int *,

e Function_name: name that identifies the function (Attention: a-z = A-Z)
e variables_declaration: set of types and associated variables that the function receives

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Functions (1)

1) GENERAL DESCRIPTION

Ex.:

int power(int base, int n) // Raise the base to the exponent n

{

int i, p = 1;

for (i = 1; i <= n; ++1i)
p = p * base;

return p; // Returns the value of p as the return value

}

This function takes two arguments of type integer (base and n)

And returns an integer argument (in this case with the value of p)

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Functions (I11)

2) VARIABLES DECLARATION

P Parameters are received and sent from the source function in the order indicated.
» Parameters are passed from the source function by value (in Fortran, by reference)..

» The function receives copies of the values from the source function as parameters.

» |f they are modified in the function, they are not modified in the source function

3) PROTOTYPES OF FUNCTIONS

» Before calling a function, a prototype of that function must be specified
in the source function. They are defined in the header, before the
main function or in external header files (*.h)

» Prototypes have the same structure as function definitions but without
variable names. They only indicate types (both return types and parameter types).

Ex.:

int power(int , int); // The arguments must be two int variables
// and the return value is other int

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Functions (1V)

4) FUNCTIONS CALLS

» The definition of the parameters only includes the names of the variables (without the types)

» The value of the return type is stored in a variable of the appropriate type
(except in the case of functions with a void return type)

#include <stdio.h>

int power(int , int); // Prototype of functions
void main(void)

{

int i, j = 2, k = -3;

for (i = 0; i < 10; ++i)
printf ("%d %d %d"\n, i, power(2,i), power(-3,i));
}

int power(int base, int n)

L.
int i, p = 1;
for (i = 1; i <= n; ++i)
p = p * base;
return p;

}

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Functions (V)

5) FUNCTIONS AND RECURSIVITY

» A function is said to be recursive when it calls itself to develop
a specific algorithm

» The statements in the function contain a call to the function itself.

» It is not at all recommended for scientific calculations.

» Attention | The memory space (stack) required for execution increases dangerously
and it cannot be avoided with this technique.

(int factorial(int n)

{

int i, f;
Normal function ¢ for (i =1, f =1; i <= n; i++)
f x= 3i;

return(f) ;
|}

(int Rfactorial(int n)

Recursive function < return(n < 2 ? 1 : n * Rfactorial(n-1));

L}

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Functions (VI)

5) MATHEMATICAL FUNCTIONS

» They are introduced by incorporating the prototypes of the system libraries:

#define <stdlib.h>
#define <math.h>

abs (i), labs(1l), fabs(d),

exp(f), log(d), logl10(d),

pow(x,y), sqrt(d),

srand(iseed), — rand (),

cos(d), sin(d), tan(d),

acos(d), asin(d), atan(d), atan2(s,c),
cosh(d), sinh(d), tanh(d),

» In some cases, the GNU compiler may require the compilation option
-1m (—¢fm)

for mathematical functions to take effect.

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Use of files in C (1)

1) ACCESS TO FILES

» Files opening:
This is done using the fopen command as follows:

fp = fopen ("name", "opening mode")

where:
fp ppointer to a file (FILE *)
"name" complete name of the file to be opened (and its complete file route if needed)
"r" — Open for reading (“read only”)
"mode" "w" — Open for writting (“write”)

"a" — Append to the existing file (“append”)
"b" — Reading or writting in binary (“binary”)

» Files closing:

e This is done using the fclose command as follows:
fclose(fp);

Ej.: FILE *fp;
fp = fopen("results.txt","w");

fclose(fp);

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Reading and writing data (1)

1) GENERAL CONSIDERATIONS

» Data reading and writing is performed using system functions
whose prototypes are found in the header file (header):

#include <stdio.h>

For this reason, it is necessary to include these files in the programs in order to use these
functions.

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Reading and writing data (I1)

2) STANDARD OUTPUT (STDOUT)

» Writing to the standard output (by default, the screen):
int printf("format", variables[if applicable]);

The “format” indicates the text to be written
If you want to print the value of variables, indicate their type in the “format” preceded by %
It returns an int indicating the number of elements written correctly

Fill with zeros Precission digits
(optional) (if applicable)

T e
%-020.10/X — type of data to print

PN N

Justification Total # 1long type (£), short (h) or nothing in other cases
on the left Digits

(U Decimal
d Integer in decimal form ¢! Octal unsigned
X s f Fixed-point real number) X Hexadecimal
e Real number and scientific notation C int as char
g The shortest between f and e S string until NULL
| (pointer to a vector of chars)

%% — prints the symbol %

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Reading and writing data (111)

3) STANDARD INPUT (STDIN)

» Reading data in the standard input (by default, the keyboard):

int scanf("format",pointers to variables[if applicable]);

The format is similar to the used in printf

It returns an int indicating the number of elements read correctly
(although sometimes is omitted)

OJO!:

The long format is indicated as 1d
The double format is indicated as 1f
The long double format is indicated as LF

Pointers to the variables are sent to the function.

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Reading and writing data (1V)

4) READING AND WRITING IN STRINGS

» They allow you to perform the same operations as with STDIN and STDOUT,
but on character strings.

Writing (prototype of the function)
int sprintf(string (char *),"format",variables[if applicable]);

It writes the data to the character string whose pointer is indicated.
It returns the number of correctly written elements.

Reading (prototype of the function)

int sscanf(string (char *),"format",pointers to variables[if
applicable]) ;

It reads the data from the character string whose pointer is indicated and stores the values
in the variables

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Reading and writing data (V)

5) READING AND WRITING OF CHAR

» Allow reading and writing bytes (char) in the STDIN and STDOUT respectively

Writing
int putchar(int) // Ex.: c2 = putchar(c);

It prints the character stored in a variable of type int to STDOUT

It returns the same character if there are no errors, or EOF (End Of File) if the are errors
EOF <~ CTRL + Z in Windows OS

EOF <~ CTRL + D in Unix/Linux OS

Reading
int getchar() Ex.: c¢ = getchar();

It reads the data from STDIN byte by byte (char by char).
Each time it runs, it reads one byte and positions itself to read the next one.
The byte read is returned as an int

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Reading and writing data (VI)

6) READING AND WRITING IN FILES

» They allow you to perform the same operations as printf and scanf,
but on files (text or binary).

Writing
int fprintf(FILE * ,"format",variables[if applicable]);

It writes the data to the file whose pointer (FILE *) is indicated.
It returns the number of correctly written elements.

Reading
int fscanf(FILE *,"format",pointers to variables[if applicable]);

It reads the data from the file of pointer (FILE *) is indicated and stores the values in the
variables

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Reading and writing data (VII)

7) READING AND WRITING OF CHAR IN FILES

» It allows reading and writing bytes (char) in or from files
Writing
int putc(int, FILE *) // Ex.: c2 = putc(c , fp);
It prints the character stored in the variable of type int in the file pointed to by the pointer
fp
It returns the same character if there are no errors, or EQF (End Of File) if there are errors

EOF «— CTRL + Z in Windows OS
EOF < CTRL + D in Unix/Linux OS

Reading
int getc(FILE *) Ex.: c = getc(fp);

Reads the data from the file whose pointer is indicated byte by byte (char by char).
Each time it runs, it reads one byte and positions itself to read the next one.

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Reading and writing data (VII)

The byte read is returned as an int

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Use of the command line (1)

1) USE OF THE COMMAND-LINE

» Programs in C language are usually of the following type:

int main(void)

{
}

» However, the C language offers the possibility for the user to enter data into
a program on the same command line from which the execution is launched.

Ej.:
$> factorial 5
$> copy archivel.f archive2.f

$> gcc hello.c -o hello

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Use of the command line (II)

1) USE OF THE COMMAND-LINE

» To use the command line, the programs are of the type:

int main(int argc, char * argv[])

{

}
donde:

e argc: contains the number of arguments separated by spaces entered on the command
line.

e argv[]: is a vector (pointer) of strings (pointers) that stores the texts of the arguments
indicated in the command line..
argv has as many string-type components (vector of chars) as indicated by argc.
argv [0] is the pointer to the string where the name of the program being executed is

stored.
[argv | — argv [0] — [glclc]\ O]
argv[1] — [plrjojgfrfalm].[c]\ O]
argv2] | — [[0[2[\ 0]
argvlargc-1] | — [p[rJoJg]rJalm].Je[xJe]\ O]

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Use of the command line (I11)

1) USE OF THE COMMAND-LINE

Important considerations:

» The components of argv are of type string (char vector)

» If you want to use command-line data as numerical values, you need to use functions to
transform them.

For example, sscanf () reading of strings or atoi(): “ascii to integer”
» Given that argv is a vector (pointer) of pointers to strings it can be also used as:

int main(int argc, char ** argv)

{
) o

In this case,

x(argv+0) <— argv[0]
*(argv+l) <= argvl[i]
*x(argv+2) <= argvl[2]

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Structures (1)

STRUCTURES

They are special variables that are internally composed of other variables of any type

struct structure_name{variablel; variable2; .. .};
» Structures declaration:

struct { // Creates the structure coordinates
float x; // with two float (x and y)
float y;
} coordinates;

struct COORDINATES { // Creates the type of structure named
float x; // COORDINATES with two float

float y;

}

struct COORDINATES coordinates;
T T

tag structure

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Structures (I1)

STRUCTURES

» Members of the structures:

e They are managed as: structure_name.variable_name

coordinates.x
Ex.: :
coordinates.y

» Pointers:
struct COORDINATES coordinates;
struct COORDINATES *c;
c = &coordinates;
(*c) .x <> c—>X <> coordinates.x

(¥c) .y <> c—>y <> coordinates.y

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Union (1)

UNION

» They work the same as structures
» But there is only one of its members (the one we want) in each case.

» The union variable can store variables of different types

Ex.:
union {
int 1i;
float x; —
} union_example

([union_example.i can save an integer

union_example.x can save a real

and tehy occupy the same memory space position !!!
| (although its size can be different)

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

Fields and types definition (1)

FIELDS
unsigned bits : 3; // bits is an unsigned variable of 3 bits
TYPEDEF
(typedef int (*pf) O);
\ pf function; — function is a pointer
\ to a function that it returns an integer
(typedef int Length;
<L Length len, maxlen; — len and maxlen are int
(typedef char * String;
<L String line[MX]; — line[MX] is a string
(typedef struct COORDINATES Point;
<L Point p; — is a structure of type COORDINATES

% ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

PROGRAMMING IN C AND FORTRAN

» Bibliography:

e The C programming Language, B.W. Kernighan, D.M. Ritchie, 2" Edition,
Prentice Hall Software Series, Upper Saddle River, NJ, USA, 1978

e Fortran 77 for engineers and scientists with an introduction to Fortran 90,
Larry Nyhoff y Sandford Leestma, Prentice Hall, Upper Saddle River, NJ, USA, 1996

e Aprenda Fortran 8.0 como si estuviera en primero, Javier Garcia de Jaldn,
Franciso de Asis de Ribera, E.T.S. Ingenieros Industriales, Universidad Politécnica
de Madrid, 2005

ScHOOL OF Ci1vVIiL ENGINEERING— UNIVERSITY OF A CORUNA

