
– Typeset by GMNI & FoilTEX –

PROGRAMMING IN

C AND FORTRAN

Ferḿın Navarrina, José Paŕıs

GMNI — GROUP OF NUMERICAL METHODS IN ENGINEERING

School of Civil Engineering
Technological Innovation Centre in Building and Civil Engineering (CITEEC)

University of A Coruña

GMNI - Group of Numerical Methods in Engineering

http://caminos.udc.es/gmni

School of Civil Engineering—University of A Coruña

Index

I Program structure

I Variables and constants

IOperators

I Control statements

I Pointers and vectors

I Vector and array allocation

I Functions

I Files. Reading and writing data

I Structures, Union, Fields

School of Civil Engineering—University of A Coruña

Structure of a program (I)

1) Code lines:

Fortran



Formato fijo



Column 1 → (c,d,!) Comment line

Columns 2 to 5 →
Line numbering

Column 6 → Line continuation

Columns 7 to 72 → Space available for instructions

Columns 73 to 80 → Space for additional comments

There is no free format (except in more modern versions of Fortran).

C

{
The format is free.

Sentences are managed and grouped using “;” and “{ }”

School of Civil Engineering—University of A Coruña

Structure of a program (II)

2) Comments:

Fortran 

c, d → In the first column, sets the entire line as a comment.

Letter d is reserved for a compilation option.

! → comments on the line from the position in which it is found

It’s the common way nowadays

cols. 73 a 80 → They are always comments.

C


/*...*/ → It comments on one or more lines as a block

//... → It comments on the line from the current position

Standard in modern version of C and C++

School of Civil Engineering—University of A Coruña

Structure of a program (III)

3) Preprocessor (compilation directives) (Pre-compilation phase):

Fortran



d → Comments with D are disabled.

include ’filename’ → Incorporate external text files

Ex. Header files.

parameter(SYMBOL=value) → Replace the text SYMBOL

by the value before compiling.

School of Civil Engineering—University of A Coruña

Structure of a program (IV)

3) Preprocessor (compilation directives) (Pre-compilation phase):

C

#include <stdio.h> → It incorporates the system library stdio.h

#include "lib.h" → It incorporates a user library named lib

that exists in the current folder

#define SYMBOL → It defines SYMBOL as a parameter

#define SYMBOL value → Replace before compiling
the text SYMBOL by the value

#if It allows to incorporate conditions to the pre-processor

#elif → (It is used, for instance, to work depending on

#endif the existing operating system)

#define FUNC_SYMB(VAR) F(VAR) → It replaces FUNC_SYMB(VAR) by
the function F and it replaces the text VAR
in the expression of the function F

#define ...\ → Ii indicates that the definition continues
.......... in the next line

#ifdef SYMBOL → If SYMBOL is defined then
... ...

School of Civil Engineering—University of A Coruña

Structure of a program (V)

3) Pre-processor (compilation directives) (Pre-compilation phase):

Examples of possible unwanted secondary effects:

#define ACME(X) (X + X)
...

j = ACME(i++); −→ j = (i++ + i++) 6=
{

j = ACME(i);

i++;

#define ACME(X) (X * 2.)
...

u = ACME(a + b); −→ u = (a+ b ∗ 2.)
[
6= u = (a+ b) ∗ 2.

]
v = 1./ACME(a); −→ v = (1./a ∗ 2.)

[
6= u = 1./(a ∗ 2.)

]

School of Civil Engineering—University of A Coruña

Structure of a program (VI)

4) Main program:

Fortran


!234567

program name ! If omitted it is stated by default as: main
...
end

C 
int main(void) /* It does not receive any data and it returns an integer */
{

...
}

ó

C1


int main(argc, **argv) /* It returns an integer control value

and it receives two arguments*/
{

...
}

(1) This option allows to incorporate data into the program that is written directly into the
command line when it is executed. (Ex. gfortran program.f -o program.exe)

School of Civil Engineering—University of A Coruña

Structure of a program (VII)

5) Groups of sentences:

Fortran → It is not possible.

C → They can be defined.

• They are defined by {...}, that contain the set of sentences.

• They allow definitions of local variables that are specific and exclusive to that group of
sentences.

School of Civil Engineering—University of A Coruña

Structure of a program (VIII)

6) Source code readability:

Fortran



Uppercase and lowercase letters are equivalent.

The use of lowercase letters is recommended (in general).

It is recommended to use capital letters to define symbols.
(Ex. PARAMETER (PI=3.1415926535))

It is recommended to use the first letter capitalized for subroutine names.
(Ex. subroutine Product(...))

Line indentation must be done using spaces.

Due to the reduced format available, no spaces are left between operations.

C



Uppercase and lowercase letters are different.
-Except in function names (for compatibility with other languages)
-It is not recommended to use this distinction in practice.

The use of lowercase letters is recommended (in general).

It is recommended to use capital letters to define symbols.
(Ex. #define PI 3.1415926535)

It is recommended to use the first letter capitalized for function names.
(Ex. int Product(...){...})

The indentation of the lines is done using tabs.

It is common practice to leave spaces between operations. (Ex. i = j + k;).

School of Civil Engineering—University of A Coruña

Variables and constants (I)

Variables:

1) Definition of variable:

It is a symbolic name that identifies:
• the memory address where the information associated with that name is saved.

• And the storage space (depending on the type of variable), that is: the value

2) Names for variables:

Fortran



They cannot start with a numeric digit. (0-9)

We can use the characters a-z ≡ A-Z, 0-9, ...,$
Considerations to keep in mind:

- Only the first 31 characters for “internal” names
-Only the first 6 characters for “external” names
-They depend on the compiler and the compilation options

Names cannot correspond to instruction names (do, max, int, ...)
-They should be mnemonic
- ATTENTION: 0 6= O and 1 6= `

C

{
The same criteria as for Fortran apply
It should be noted that, in general, a-z6=A-Z

-Except in external function names (for compatibility)

School of Civil Engineering—University of A Coruña

Variables and constants (II)

2) Names of variables:

Reserved names:

C



auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

asm
fortran

}
→ depending on the implementation

The underlined names were incorporated into the new ANSI standard.

School of Civil Engineering—University of A Coruña

Variables and constants (III)

3) Types of variables (Basic ones):

Fortran 

{
integer*1 (o byte), integer*2, integer*4, integer*8
integer (The most common) (logic for 64 bits CPUs){
real*4, real*8, real*16
real, double precision, quadruple precision{
complex*8, complex*16, complex*32
complex,{
logical*1, logical*2, logical*4, logical*8
logical −→ This is the most advisable approach in practice{
character *(n) text→ It creates an alphanumeric variable of n characters

School of Civil Engineering—University of A Coruña

Variables and constants (IV)

3) Types of variables (Basic ones):

C 

unsigned



char → 1 byte

short (int)→ integer variable ≥ char (Normally 2 bytes)

int → integer variable ≥ short (Normally 4 bytes)

long (int) → integer variable ≥ int (Normally 4 bytes)

long long → integer variable ≥ long (and nothing else, a priori)

char → 1 byte

short (int)→ integer variable ≥ char (Normally 2 bytes)

int → integer variable ≥ short (Normally 4 bytes)

long (int) → integer variable ≥ int (Normally 4 bytes)

long long → integer variable ≥ long (and nothing else, a priori)

float → real en simple precision (but unknown number of bytes)

double → real in double precision (but unknown number of bytes)

long double → real in quadruple precision (but unknown number of bytes)

School of Civil Engineering—University of A Coruña

Variables and constants (V)

3) Types of variables: Local variables (automatic ones) and external ones

Local V.



They are internal variables to a module

The name (memory address) is unknown to other modules

The storage space is unknown to other modules

-Permanent information in main program→ guaranteed value

-Temporary information in other modules→ value not guaranteed
on subsequent calls

External V.


These are variables common to several modules

The name (memory address) is known to other modules

The storage space is:

-Permanent in different modules→ guaranteed value

School of Civil Engineering—University of A Coruña

Variables and constants (VI)

3) Types of variables: Local variables (automatic ones) and external ones

ForTran

All variables are local to modules, except

• Subroutine and function arguments (sent by reference, not by value)

• COMMON blocks

common /name/ vble_1, vble_2, ...

C language

All variables are local to modules or groups ({...}), except

• The ones declared as extern

B The ones declared before: int main(void)

B Those declared within each function as extern (∗)

extern external_variable

(∗) If the functions are all in the same file, it is not necessary to declare them all.

School of Civil Engineering—University of A Coruña

Variables and constants (VII)

Ex. Fortran

!234567 !234567

implicit real*8(a-h,o-z) implicit real*8(a-h,o-z)

common /exponent/ n

n=2 n=2

x=5. x=5.

call calc(x,n,y) call calc(x,y)

print*,y print*,y

call exit(0) call exit(0)

end end
! !
!------------------------- !-------------------------
! !

subroutine calc(a,i,b) subroutine calc(a,b)

implicit real*8(a-h,o-z) implicit real*8(a-h,o-z)

common /exponent/ i

z=a+1. z=a+1.

b=z**i b=z**i

return return

end end

School of Civil Engineering—University of A Coruña

Variables and constants (VIII)

Ex. C language

void main(void)
{

void calc(double, int, double *) /* Prototype of the function */
int n; /* Declaration of variable n */
double x, y; /* Declaration of variables x and y */
n=2;
x=5.;
calc(x,n,&y); /* Call to the function calc */
print("%f",y); /* Printing the result on screen */
exit(0);

}
void calc(double a, int i, double *pb)
{

double z;
z = a + 1.;
*pb = pow(z,i);

}

I The prototype defines the type of function and the variables that are passed.

I A priori, variables modified in the subroutine are sent with & and received with ∗.

School of Civil Engineering—University of A Coruña

Variables and constants (IX)

4) Constants:

Fortran

I Integer:

± [number in decimal form]→ digit between 0 and 9

They are stored in the integer type by default

integer*2
integer*4
integer*8

}
→ Depending on the compilation option

I Real:

±123.4 → REAL (Normally real*4)

±.1234e+3 → REAL (Normally real*4)

±.1234d+3 → DOUBLE PRECISION (Normally real*8)

±.1234q+3 → QUADRUPLE PRECISION (Normally real*16)

It depends on the compilation options

They are saved in the corresponding type or by default (real*4, real*8, real*16)

School of Civil Engineering—University of A Coruña

Variables and constants (X)

4) Constants:

Fortran

I Alphanumeric constants:

They are not variables as such. They are Descriptors.

They contain internally→
{

The memory address of the beginning of the string
The length of the string (number of characters)

’hello, world’

12Hhello, world︸ ︷︷ ︸
}
→ hello, world

12 charact.
↑

Hollerith format

I Logic constants:{
.true.
.false.

School of Civil Engineering—University of A Coruña

Variables and constants (XI)

4) Constants:

C language

I Integer constants: (see the file limits.h in the compiler libraries)

Char:
They are saved as

(
unsigned
signed

)
char
short
int
long

long long


’x’ → unsigned char (1 byte) ’\r’ → carriage return

Saves the ASCII code of x ’\f’ → form feed
’\0’ → null ’\a’ → bell (beep)
’\n’ → newline ’\\’ → backslash
’\t’ → horizontal tab ’\?’ → question mark
’\v’ → vertical tab ’\’’ → single quote
’\b’ → backspace ’\’’’ → double quote

’%%’ → Symbol %
’\o’
’\oo’
’\ooo’

}
→ octal

{
o → 1 octal number
oo → 2 octals numbers
ooo → 3 octal numbers

’\xh’
’\xhh’

}
→ hexadecimal

{
h → 1 hexadec. number
hh → 2 hexadec. numbers

They are saved in
{

unsigned char
signed char

}
depending on the implementation

School of Civil Engineering—University of A Coruña

Variables and constants (XII)

4) Constants:

C language

short, int, long, long long

± [number in decimal form] digits (0-9), first 6= 0, except for the zero.

± 0[number in octal form] digits (0-7), first digit is a 0.

± 0x[number in hexadecimal form] digits (0-9), letters (a-f) ≡ (A-F)

They are saved in
(

unsigned
signed

) 
char
short
int
long

long long


↓ ↓

depending on the sign the bare minimum
or as indicated or as indicated

constant +
{

u
U

}
→ unsigned Ex. 347U

constant +
{

l
L

}
→ long long Ex. 2598L

 They can be combined (Ex. 0xFUL ≡ 15)

NOTE: Expressions with integer constants are evaluated at compile time (not at runtime)

School of Civil Engineering—University of A Coruña

Variables and constants (XIII)

4) Constants:

C language

I Real: (See the file float.h in the compiler libraries)

float, double, long double{ ±123.4f
±123.4F

}
,
{ ±.1234e+3f
±.1234e+3F

}
 float

±123.4, ±.1234e+3 double (Default option){ ±123.4`
±123.4L

}
,
{ ±.1234e+3`
±.1234e+3L

}
 long double

School of Civil Engineering—University of A Coruña

Variables and constants (XIV)

4) Constants:

C language

I Alphanumeric: (Strings) They are treated as character arrays.
"hello, world" ⇔ "hello," " world"︸ ︷︷ ︸ hello, world

They are concatenated

"" ⇔ empty string

• They consist of a vector of characters of type char with a ’\0’ (null) at the
end.

• They are defined by the vector where they are stored, and their length
ends at the first ’\0’.

• The final ’\0’ is established by agreement.

School of Civil Engineering—University of A Coruña

Variables and constants (XV)

4) Constants:

C language

I Enum: (It allows creating sets of variables with assigned constant values)

enum boolean {NO,YES}; −→
{

NO←→ 0
YES←→ 1

enum escapes {BEL=’\a’, BACKSPACE=’\b’, ..., RETURN=’\r’};

enum meses {JAN=1, FEB, MAR, APR,... DEC}; −→
{

JAN = 1
...

DEC = 12

Values are stored in variables of type int

Declaración:
enum boolean {NO,YES};
enum boolean yesorno, acepted;
...
yesorno = NO; accepted = YES;

enum boolean {NO,YES} yesorno, accepted;
enum {NO,YES} yesorno, accepted;

School of Civil Engineering—University of A Coruña

Variables and constants (XVI)

5) Changes of variable types:

Fortran: They are performed using functions

Funciones:



int(variable)

real(variable)

dble(variable)

float(variable) [disused]

dfloat(variable) [disused]

→ vble.type2 = f(vble.type1)

Ej. i=int(x)
Ej. z=real(j)

C language: It is done using casts (assignments).

Casts:
(type) variable /* It assigns the value of variable to the new variable type. */

/* Applies only to the argument immediately following */

Ej. i = (int) x; // It saves the integer part of x in i
Ej. z = (float) j; // It saves the integer value j in z

School of Civil Engineering—University of A Coruña

Variables and constants (XVII)

6) Variables initialization:

Fortran→



It is not possible except with the instruction data

data vble1,vble2,vble3 /value1, value2, value3/

Ej. data m,n,x,y /10,20,2.5,2.5/

data m/10/, n/20/, x,y /2*2.5/

real v(100)

data v/100*0.0/ ! 100 components of value 0.0

Global variables are initialized once and at the beginning

Are local variables initialized each time? → YES

School of Civil Engineering—University of A Coruña

Variables and constants (XVIII)

6) Variables initialization:

C →



They can be initialized directly when declared:

int i; int i = 3;

int i, j; int i = 3, j = 4;

float pi; float pi = 3.1415926535;

char letter; char letter = ’x’

They are initialized:
{

Once, the permanent or global ones
Each time in each module, the local variables

If they are defined as constants and
they are initialized and cannot be modified afterwards

const int i = 3;

Arrays can also be initialized when declaring them:

char v[5] = { 1 , 2 , 3 , 4 , 5 };

char text[7] = { ’M’,’o’,’n’,’d’,’a’,’y’,’\0’ };

char text[7] = "Monday"; char texto2[5] = "five";

School of Civil Engineering—University of A Coruña

Variables and constants (XIX)

7) Assigning values to variables:

Fortran→
{

Direct assignment to variables. Ex. variable=value
In arrays, component by component. Ex. vector(i)=value

C →



Direct assignment to variables.
i = 3;

i = j = k = 6; ←→

{
k = 6;
j = k;
i = j;

In arrays:
int v[5];
v = { 1 , 2 , 3 , 4 , 5 }; −→ Not correct
int v[5] = { 1 , 2 , 3 , 4 , 5 }; −→ Correct
char text[7];
texto[7] = "Monday"; −→ Not correct
char text[7] = "Monday"; −→ Correct
Attention: An additional character must be reserved for null ’\0’
float x, z;
int y, j, k;
x = y = z = 3.2; ¿¿??
i = j++ = k = 8; ¿¿??

School of Civil Engineering—University of A Coruña

Operators (I)

Operators

Fortran C

Arithmetic Yes Yes

Relational Yes Yes

Logic Yes Yes

Incremental No Yes

Bitwise logical No Yes

Others Concatenation Ternary

School of Civil Engineering—University of A Coruña

Operators (II)

1) Arithmetic operators:

Fortran:

•
{

Unary: - Sign change. Affects one variable.
Binarios: +, -, *, / Basic operations. They affect 2 variables

• They are applied to integer, real, complex

• Priority

{
1) - (unary)
2) *, /
3) +, -

}
→ It can be altered with parentheses.

Ex. a * b + c / -d ←→ (a * b) + (c / (-d))

♦ ¡Attention! The compiler can make decisions. Don’t trust it.

If you want to force a result, it is better to use intermediate variables.

Ex. ¿(a + b) + c = a + (b + c)? if

{
a = -1.
b = +1.
c = 10−24

School of Civil Engineering—University of A Coruña

Operators (III)

1) Arithmetic operators:

C:

• They are the same as in Fortran, plus::

B Modulo division (%): Remainder of the division of one integer by another

B Abbreviations: shortcut operators

•
{

Unary: - Sign change. Affects one variable.
Binary: +, -, *, /, % They affect two variables.

• They are applied to:
{

char, short, int, long, long long
float, double, long double (except modulo division %)

• Priority

{
1) - (unary)
2) *, /, %
3) +, -

}
→ It can be altered with parentheses.

Ex. a * b + c / -d ←→ (a * b) + (c / (-d))

♦ ¡Attention! The compiler can make decisions. Don’t trust it.

If you want to force a result, it is better to use intermediate variables

Ex. ¿(a + b) + c = a + (b + c)? if

{
a = -1.
b = +1.
c = 10−24

School of Civil Engineering—University of A Coruña

Operators (IV)

1) Arithmetic operators:

C:

• Abbreviations:

x op = expression←→ x = x op (expression)

being op one operation→ op ∈ {+, -, *, /, %} (also {<<, >>, &, ̂ , |})

¡Attention ! →
{

Try not to mix variables of different types

Force an appropriate rate change using promotion rules (casts)

Ex.

{
xmod += v[i] * v[i]; ←→ xmod = xmod + v[i] * v[i]
v[i] /= xmod; ←→ v[i] = v[i] / xmod

School of Civil Engineering—University of A Coruña

Operators (V)

2) Relational operators:

Fortran:

• {
.gt., .ge., .lt., .le. → Greater than, greater than or equal to, less than, less than or equal to.

.eq., .ne. → Equal, not equal.

•


Only scalars are compared.

If the scalars are of different types, they are promoted to the most complex type
but it is not advisable.

• Ex.

{
if (i.eq.1)

if (x.gt.5) ! If x is real*8→ 5 it is converted to real*8

• They have lower priority than arithmetic operations:

if (x+y.gt.x*y)←→ if ((x+y).gt.(x*y))

In any case, it is better to use parentheses to avoid ambiguity.

School of Civil Engineering—University of A Coruña

Operators (VI)

2) Relational operators:

C:

• These operators are actually numeric:{
>, >=, <, <=
==, != ↓ Increasing priority.

• (x < y) takes the value

{
0 if not true (0≡ FALSE)
1 if it is true (1≡ TRUE)

• Generally,

{
0 ≡ FALSE
1 ≡ TRUE (any non-null value indicates TRUE)

¡Attention! Do not confuse
x = y → It assigns the value of y in x

with
x == y → Returns the value 0 if x is not equal to y

and the value 1 if x is equal to y

• They have higher priority than arithmetic operations (unlike in Fortran)

It is advisable to always use parentheses to avoid conflicts.

Ej. a + b != c;⇐⇒ a + (b != c);→
{

is equal to a if b is equal to c
is equal to a+1 if b 6= c

School of Civil Engineering—University of A Coruña

Operators (VII)

3) Logic operators:

Fortran:

•
{

.and., .or. −→ binary

.not. −→ unary

.eqv., .neqv.

• Truth table:

(a).eqv.(b) is .true. ↔
{
a and b are .true.
a and b are .false.

.neqv. is equivalent to .not..eqv.

.EQV. a .true. a .false.

b .true. .true. .false.

b .false. .false. .true.

.NEQV. a .true. a .false.

b .true. .false. .true.

b .false. .true. .false.

School of Civil Engineering—University of A Coruña

Operators (VIII)

3) Logical operators:

Fortran:

• Priority of operators→


.not. +
.and. ↑
.or. ↓
.eqv.—.neqv. –

• When in doubt, it is recommended to use parentheses

Ej. ¿What does it mean (a.or.b.and.c) or (a.or.(b.and.c))?

School of Civil Engineering—University of A Coruña

Operators (IX)

3) Logic operators:

C:

• They are actually numeric operators{
Binary: &&, ‖ (and y or)
Unary: ! (denial)

Priority→
{

! +
&& l
‖ –

Then ! a && b ←→ (! a) && b

It is recommended to use parentheses to avoid confusion

Doubt: ¿if (! valid)... or if (valid == 0)...?

• Ex.: to check if the (year) is a leap year:

if (((year % 4) == 0 && (year % 100) != 0) ‖ (year % 400) == 0)

or

if ((! (year % 4) && (year % 100)) ‖ ! (year % 400))

School of Civil Engineering—University of A Coruña

Operators (X)

4) Incremental operators:

C:

++, -- −→ is
{

ahead → The increase precedes the operations
behind → The increase follows the operations

¡Attention! x++ = --y + z++; −→


y = y - 1;
x = y + z;
x = x + 1;
z = z + 1;

• Can only be applied to variables.

• Cannot be applied to expressions.

z = (x + y)++; // Not a valid expression.

When in doubt, avoid confusion by using parentheses.

Ex. What do they mean?{
a[i] = i++;
a[i] = ++i;
x = power(++n,n);

School of Civil Engineering—University of A Coruña

Operators (XI)

5) Bitwise Logical operators:

C: 

& bitwise and

| bitwise or
∧ bitwise exclusive or

<< left shift (Shift the bits to the left by the indicated positions)
>> right shift (Shift the bits to the right by the indicated positions)
∼ complement to one (unary)

Ex.: c = n & 0177;→ resets everything except the last 7 bits of n,
that are not modified

↓
(01111111)2

(01111111)2
& (10101001)2

(00101001)2
→


0 “&” 0→ 0
0 “&” 1→ 0
1 “&” 0→ 0
1 “&” 1→ 1

School of Civil Engineering—University of A Coruña

Operators (XII)

5) Operators Bitwise Logical:

Ej.: c = n | MASK;→ sets all bits of n that are 1 in MASK
y no cambia el resto

MASK (01111101)2
n | (10101001)2

(11111101)2
→


0 “|” 0→ 0
0 “|” 1→ 1
1 “|” 0→ 1
1 “|” 1→ 1

c = n ̂ MASK;→ 1 if the bits of n and MASK are different, and 0 if they are the same

MASK (01111101)2
n ∧ (10101001)2

(11010100)2
→


0 “ ̂ ” 0→ 0
0 “ ̂ ” 1→ 1
1 “ ̂ ” 0→ 1
1 “ ̂ ” 1→ 0

x = x << 3; ←→ x = x * 2 3

x = x >> 3; ←→ x = x / 2 3

}
If x is an integer (and the ange is not violated)

0177 = (01111111)2
∼0177 = (10000000)2

c = n & (∼ 0177); → Resets the last 7 bits of n

¡Attention!
x = 1
y = 2

}
↔
{

x && y is 1 (TRUE and TRUE = TRUE)

x & y is 0 (1)10 = (00000001)2
& (2)10 = (00000010)2

}
→ (00000000)2 = (0)10

School of Civil Engineering—University of A Coruña

Operators (XIII)

6) Other operators:

Fortran:

• //→ Strings concatenation

Ex. ’Hello ’//’my friend’

C:

• Ternary −→ e1 ? e2 : e3

Ex. z = (a > b) ? c : d; −→
{

If a > b → z = c

If a ≤ b → z = d

7) Final Suggestions:

• Don’t trust the order.
{

a[i] = i++;
a[i] = ++i;

}
?

• When in doubt, use multiple instructions and use parentheses

School of Civil Engineering—University of A Coruña

Control sentences (I)

Control sentences

Fortran



{
Arithmetic if
Logic if
if — then — else — endif{
do — enddo
do while — enddo

}
Loops

{ goto (unconditional)

C




if
if — else
if — else —if
switch

→ Conditional execution sentences

{
for
while
do — while

}
→ Loops

{
break
continue
goto

}
→ Unconditional execution sentences

School of Civil Engineering—University of A Coruña

Control sentences (II)

1.1) IF – ELSE:

They allow a set of instructions to be executed if the condition is satisfied:

if (exp) if (exp) {
sentence1;;

else
sentence2;

}
Optional

.........;

.........;
} else {

.........;

.........;
}

¡ Attention ! The else is linked to the closest if, thus
if (n > 0)

if (a > b)
z = a;

else
z = b;

 6=


if (n > 0){
if (a > b)
z = a;

} else
z = b;

It is sometimes abbreviated as:

if (exp)←→ if (exp != 0)

Ex. if (error) ←→ if (error != 0)

School of Civil Engineering—University of A Coruña

Control sentences (III)

1.2) IF – ELSE IF:

if (exp1)
.........;

else if (exp2)
.........;

else if (exp3)
.........;

else
.........;

}
Opcional

if (exp1) {
.........;
.........;
}
else if (exp2) {

.........;

.........;
}
else if (exp3) {

.........;

.........;
}
else {

.........;

.........;
}

 Opcional

School of Civil Engineering—University of A Coruña

Control sentences (IV)

1.3) SWITCH

• It allows you to set up a selection of options based on conditions

switch (integer expr.){
case int1:

.......;

.......;
case int2:

.........;

.........;
break;

case :
default :
}
B The sentences case: and default can be placed in any order

B The execution is diverted to the case whose value matches the value of the integer expr.

B Once in the corresponding case, execution continues until the end of the instruction switch

B If no value in the case matches the value of integer expr., it is executed from default onwards.

B In order for each case to execute only its instructions, a break must be placed at the end of them.

B It is recommended not to use it. Instructions that we do not want may be carried out.

School of Civil Engineering—University of A Coruña

Control sentences (V)

2.1) WHILE

• Execute the instructions repeatedly as long as the expression is true.

while (exp)
sentence;

while (exp){
.......;
.......;
}

School of Civil Engineering—University of A Coruña

Control sentences (VI)

2.2) FOR

• Sentence for repeating instructions

Initialization condition instructions
of variables for repeating to be executed
(optional) at the end

↓ ↓ ↓
for (exp1 ; exp2 ; exp3)

sentence;

for (exp1 ; exp2 ; exp3)
sentence; ←→

exp1;
while (exp2) {

sentence;
exp3;
}

B ¡ Attention ! The condition is checked at the beginning, before each iteration.

B ¡ Attention ! In this case, commas ensure the order of evaluation.

Ex.

{
for (i = 0 ; i < n ; i++)

for (i = 0 , j = 0 ; i < n && j < m ; i++, j++)

School of Civil Engineering—University of A Coruña

Control sentences (VII)

2.2) FOR

• Examples:

for (i = 0 ; i < n ; i++)
v[i] = i;

for (i = 0 ; i < n ;){
--i; // The program fails due to access to v[-1]. Incorrect loop
v[i] = i;
}

for (i = n ; i > 0 ;){
¿v[i] = --i;? or ¿v[--i] = i;? → Not clear.
}

for (i = n ; --i >= 0 ;){ → Ends in i=-1.
v[i] = i;
}

for (i = n ; i-- > 0 ;){ → Ends in i=-1.
v[i] = i;
}

School of Civil Engineering—University of A Coruña

Control sentences (VIII)

2.3) DO – WHILE

• Repeat instruction with structure:

do
sentence;

while (exp);
or

do {
sentences;
} while (exp);

The sentences are repeated as long as the condition indicated in exp is met

¡ Attention ! The condition is checked at the end. The loop is executed at least once.

Its use is not very common for the above reason.

School of Civil Engineering—University of A Coruña

Control sentences (IX)

2.4) OTHER CONTROL INSTRUCTIONS

• break; → Breaks and exits the loop that is running.

• continue; → Skips the execution of the remaining statements in that iteration.

But the loop does not end. Skip the statements in that iteration.
Ex.:
for (i = 0 ; i < n ; i++){
if (a[i] < 0)
continue;

// Statements that are executed for terms a[i] possitive
......;
......;
}

• GOTO → Diverts execution to another point in the program.
goto label

sentences;

label:

Should not be used unless absolutely necessary

The sentence goto and the line with label: must be in the same function

Labels should never be placed inside loops

School of Civil Engineering—University of A Coruña

Pointers and vectors (I)

1) PREVIOUS CONSIDERATIONS

• Directions:

int i →


Reserve memory space for an integer

Saves the memory location where the integer is stored

i contains the value stored in that memory space

i = 5; → Store the integer value 5 in the memory space of i

&i → Extract the memory address where the storage of i begins

• Vectors:

int a[10]; →



Reserve memory space for 10 integers of type int
(a[0] , a[1], ... , a[9])

a[i] is the content of the (i + 1)-th
component.

a is the memory address of the first component
of the vector

a⇐⇒ &a[0]
Ex.:

a[3] = 5; → Store the value 5 in the fourth component.
double b[4] = { 1., -2., 7., -5.}; → Declares the vector b and

assigns initial values to it

• We can obtain the direction and define vectors for all types of variables

School of Civil Engineering—University of A Coruña

Pointers and vectors (II)

2) POINTERS

• They are special variables: store memory locations of other types of variables.

int *p; →


Reserves space for the memory address of an integer

p is a pointer variable (or pointer) to an integer int

The integer does not necessarily have to exist !!

p = &i; // Extracts the position in memory of variable i and stores it in p

i = *p; // Search for the value stored in the memory location
that indicates p and saves it in i

Pointers arithmetic

•
{

Increase the memory position: p += 3;
Decrease the memory position: p -= 7;
Substract memory positions: n = p - q;

• It is consistent. (It takes into account the number of memory locations for the variable
type
in question, and advances or retreats as many bytes as each variable type occupies)

• All other operations are prohibited (by logic).

• Use of pointers
{

Passing or sending variables to functions
Manage, allocate, ... vectors

School of Civil Engineering—University of A Coruña

Pointers and vectors (III)

2) POINTERS

• Relationship between pointers and vectors

The name of a vector is a pointer that indicates the position of the first component

int a[10], * p;

p = a; (←→ p = &a[0];)

a[i] ←→ *(a+i) // The value of memory address (a) is incremented
by i positions and then its value is obtained with (*)

Attention:


p is a variable pointer. Its value (direction that points out)

can be modified

a is a constant pointer. Its value is already defined
and the space in the memory reserved

The first component of a vector in C is 0
(int v[100]→ {v[0], ...,v[99]})

Ex.:
int a[10], *p;
int i;
p = a;

for (i = 0 ; i < 10 ; i++)
printf("%d\n",a[i]);

}
↔
{
for (i = 0 ; i < 10 ; p++, i++)
printf("%d\n",*p);

School of Civil Engineering—University of A Coruña

Pointers and vectors (IV)

2) POINTERS

I Application examples

int main(void)
{

int sum (int , int *);
int a[10], sa, n;
...
sa = sum(n, a);
...
}

Without loosing the pointer a
↑

for (p = a + n ; p > a ;)
{

s += *(--p);
}

↑

int sum (int n , int *a);
{

int s = 0;
int i;
for (i = 0 ; i < n ; i++)
{

s += a[i];
}
return s;
}

←→

int sum (int n , int *a);
{

int s = 0;
int *p;
for (p = a + n ; a < p ; a++)
{
s += *a;
}
return s;
}

School of Civil Engineering—University of A Coruña

Pointers and vectors (V)

3) STRINGS

char name[5] = "john"︸ ︷︷ ︸;
↑

{’j’, ’o’, ’h’, ’n’, ’\0’};→ ends up with a Null

Attention !! A string is a vector, not a variable

We can not write:
char name[5];
name = "john";

We could write:
char name[5];
name[0] = ’j’;
name[1] = ’o’;
name[2] = ’h’;
name[3] = ’n’;
name[4] = ’\0’;

Or:
char * name;
name = "john";

String manipulation is done through functions

School of Civil Engineering—University of A Coruña

Pointers and vectors (VI)

4) MULTIDIMENSIONAL VECTORS

I int m[N][M];→
{

Reserves space for N ×M integers type int (*)
m is the pointer to a vector of pointers (**)

(*) m[0][0], m[0][1], m[0][2], ..., m[0][M]
m[1][0], m[1][1], m[1][2], ..., m[1][M]
...
m[N][0], m[N][1], m[N][2], ..., m[N][M]

(**) m → Pointer to a vector of pointers (m[0], m[1], ..., m[N])

⇓
m[0]
m[1]

...
m[N]

⇒ m[0][0] m[0][1] m[0][2] ... m[0][M]
⇒ m[1][0] m[1][1] m[1][2] ... m[1][M]

...
⇒ m[N][0] m[N][1] m[N][2] ... m[N][M]

↑
Components of the vector of pointers whose values indicate
where each row of the matrix starts

School of Civil Engineering—University of A Coruña

Pointers and vectors (VII)

4) MULTIDIMENSIONAL VECTORS

¡¡ OJO !!
m[i][j]←→ is an integer: int n; n = m[i][j];

(m[i])←→ int *p;
{
p←→ &m[i][0];
p←→ m[i];

m←→ int (*p)[M];
{
p←→ &m[i];
p←→ m;

Luego: m ←→ &m[0] m[0]←→ &m[0][0]
m + 1←→ &m[1] m[1]←→ &m[1][0]

The compiler translates

m[i][j] ←→ *(m[i] + j) ←→ *(*(m+i) + j)

I The rows are stored internally one after another, although this does not necessarily have to
be the case.

School of Civil Engineering—University of A Coruña

Arrays allocation (I)

1) STATIC ALLOCATION

I Reserves memory space in a static and immutable manner for a program

I It is reserved at the same time as the array is declared

I The system reserves a portion of memory to store the contents of the array and saves the
address of the first component of the array in the pointer that locates it.

I The memory space is reserved from the part of memory called STACK. Its existence is
guaranteed when the program starts up.

I In current systems, this STACK memory is small in size, and it is not recommended to
allocate large arrays in this way.

FORTRAN:

Ex.: real *8 v
dimension v(100)

C:

Ex.: double v[100];

School of Civil Engineering—University of A Coruña

Arrays allocation (II)

2) DYNAMIC ALLOCATION

I It allows to allocate memory space dynamically at runtime.

I Memory reservation is performed during execution and availability is not guaranteed.

FORTRAN

In the header of the main program, it is necessary to declare the variables
as “dynamically allocatable.”

implicit real*8(a-h,o-z)
allocatable v(:,:) ! Indicates that the array v is dynamically

! allocated and will have two indices
! (row and column, for instance)

Later in the program, memory is allocated dynamically as:

allocate(v(nx,ny), STAT=ist) ! It allocates nx*ny components for v
! ist=0 means correct allocation

I This procedure is only applicable for dynamic dimensioning in the main program

I The use of dynamic sizing in subroutines is more complex.

I The release of allocated memory is performed as follows: deallocate(v)

School of Civil Engineering—University of A Coruña

Arrays allocation (III)

2) DYNAMIC ALLOCATION

C LANGUAGE

This is done by creating a pointer variable of the type corresponding
to the data to be stored

double * pv;

Later in the program, memory is allocated dynamically as:

pv = (double *) malloc(n * sizeof(double));

reserves n x (bytes of a double) and stores the location in the pointer

sizeof(type); returns the number of bytes occupied by the specified variable type

I This procedure is only applicable for dynamic dimensioning in the main program

I To free up memory once it is no longer in use:

free(pv);

School of Civil Engineering—University of A Coruña

Arrays allocation (IV)

2) DYNAMIC ALLOCATION

C language

I The use of dynamic allocation in functions is more complex since copies of variable values
(including pointers) are sent and received, and the malloc instruction modifies the value of
the pointer.

I The solution consists of sending the pointer of the pointer that will represent the vector.

#include <stdio.h>
#include <stdlib.h>

void main(void)
{
void dyndim(int, double **);
double ** v;
int n;

scanf("%d",&n);

dyndim(n,v);
}
void dyndim(int n, double ** v)
{
(*v) = (double*) malloc(n*sizeof(double));
}



#include <stdio.h>
#include <stdlib.h>

void main(void)
{
void dyndim(int, double **);
double * v;
int n;

scanf("%d",&n);

dyndim(n,&v);
}
void dyndim(int n, double ** v)
{
(*v) = (double*) malloc(n*sizeof(double));
}

School of Civil Engineering—University of A Coruña

Functions (I)

1) GENERAL DESCRIPTION

I Functions are subprograms responsible for performing the operations of an algorithm or part
of it. Conveniently linked and defined, they form a computer program

System functions: these are functions specific to the compiler that are found in the system
libraries. (<stdio.h>, <stdlib.h>, <math.h>)

Native functions: these are functions developed by the user

I Definition:

return type function name(variables declaration, if needed)
{

Declarations;
Sentences;
}

I Parts:

• return type: type of value returned by the function upon completion (int, float, int *,
...)

• Function name: name that identifies the function (Attention: a-z ≡ A-Z)

• variables declaration: set of types and associated variables that the function receives

School of Civil Engineering—University of A Coruña

Functions (II)

1) GENERAL DESCRIPTION

Ex.:

int power(int base, int n) // Raise the base to the exponent n
{
int i, p = 1;

for (i = 1; i <= n; ++i)
p = p * base;

return p; // Returns the value of p as the return value
}

This function takes two arguments of type integer (base and n)

And returns an integer argument (in this case with the value of p)

School of Civil Engineering—University of A Coruña

Functions (III)

2) VARIABLES DECLARATION

I Parameters are received and sent from the source function in the order indicated.

I Parameters are passed from the source function by value (in Fortran, by reference)..

I The function receives copies of the values from the source function as parameters.

I If they are modified in the function, they are not modified in the source function

3) PROTOTYPES OF FUNCTIONS

I Before calling a function, a prototype of that function must be specified
in the source function. They are defined in the header, before the
main function or in external header files (*.h)

I Prototypes have the same structure as function definitions but without
variable names. They only indicate types (both return types and parameter types).

Ex.:
int power(int , int); // The arguments must be two int variables

// and the return value is other int

School of Civil Engineering—University of A Coruña

Functions (IV)

4) FUNCTIONS CALLS

I The definition of the parameters only includes the names of the variables (without the types)

I The value of the return type is stored in a variable of the appropriate type
(except in the case of functions with a void return type)

#include <stdio.h>

int power(int , int); // Prototype of functions

void main(void)
{
int i, j = 2, k = -3;

for (i = 0; i < 10; ++i)
printf("%d %d %d"\n, i, power(2,i), power(-3,i));

}
int power(int base, int n)
{
int i, p = 1;

for (i = 1; i <= n; ++i)
p = p * base;

return p;
}

School of Civil Engineering—University of A Coruña

Functions (V)

5) FUNCTIONS AND RECURSIVITY

I A function is said to be recursive when it calls itself to develop
a specific algorithm

I The statements in the function contain a call to the function itself.

I It is not at all recommended for scientific calculations.

I Attention ! The memory space (stack) required for execution increases dangerously

and it cannot be avoided with this technique.

Normal function



int factorial(int n)
{
int i, f;
for (i = 1, f = 1; i <= n; i++)
f *= i;

return(f);
}

Recursive function


int Rfactorial(int n)
{
return(n < 2 ? 1 : n * Rfactorial(n-1));
}

School of Civil Engineering—University of A Coruña

Functions (VI)

5) MATHEMATICAL FUNCTIONS

I They are introduced by incorporating the prototypes of the system libraries:

#define <stdlib.h>

#define <math.h>

abs(i), labs(l), fabs(d),

exp(f), log(d), log10(d),

pow(x,y), sqrt(d),

srand(iseed), −→ rand(),

cos(d), sin(d), tan(d),

acos(d), asin(d), atan(d), atan2(s,c),

cosh(d), sinh(d), tanh(d),

I In some cases, the GNU compiler may require the compilation option

-lm (−`m)

for mathematical functions to take effect.

School of Civil Engineering—University of A Coruña

Use of files in C (I)

1) ACCESS TO FILES

I Files opening:

This is done using the fopen command as follows:

fp = fopen ("name", "opening mode")

where:

fp ppointer to a file (FILE *)
"name" complete name of the file to be opened (and its complete file route if needed)

"mode"


"r"→ Open for reading (“read only”)
"w"→ Open for writting (“write”)
"a"→ Append to the existing file (“append”)
"b"→ Reading or writting in binary (“binary”)

I Files closing:
• This is done using the fclose command as follows:

fclose(fp);

Ej.: FILE *fp;
...
fp = fopen("results.txt","w");
...
fclose(fp);

School of Civil Engineering—University of A Coruña

Reading and writing data (I)

1) GENERAL CONSIDERATIONS

I Data reading and writing is performed using system functions
whose prototypes are found in the header file (header):

#include <stdio.h>

For this reason, it is necessary to include these files in the programs in order to use these
functions.

School of Civil Engineering—University of A Coruña

Reading and writing data (II)

2) STANDARD OUTPUT (STDOUT)

I Writing to the standard output (by default, the screen):

int printf("format", variables[if applicable]);

The “format” indicates the text to be written
If you want to print the value of variables, indicate their type in the “format” preceded by %
It returns an int indicating the number of elements written correctly

Fill with zeros
(optional)

Precission digits
(if applicable)

↑ ↗
%-020.10`� → type of data to print

↓ ↘ ↘
Justification
on the left

Total #
Digits

long type (`), short (h) or nothing in other cases

�→


d Integer in decimal form
f Fixed-point real number
e Real number and scientific notation
g The shortest between f and e


u
o
x

Decimal
Octal
Hexadecimal

}
unsigned

c int as char
s string until NULL

(pointer to a vector of chars)
%%→ prints the symbol %

School of Civil Engineering—University of A Coruña

Reading and writing data (III)

3) STANDARD INPUT (STDIN)

I Reading data in the standard input (by default, the keyboard):

int scanf("format",pointers to variables[if applicable]);

The format is similar to the used in printf

It returns an int indicating the number of elements read correctly
(although sometimes is omitted)

OJO!:

The long format is indicated as ld

The double format is indicated as lf

The long double format is indicated as LF

Pointers to the variables are sent to the function.

School of Civil Engineering—University of A Coruña

Reading and writing data (IV)

4) READING AND WRITING IN STRINGS

I They allow you to perform the same operations as with STDIN and STDOUT,
but on character strings.

Writing (prototype of the function)

int sprintf(string (char *),"format",variables[if applicable]);

It writes the data to the character string whose pointer is indicated.
It returns the number of correctly written elements.

Reading (prototype of the function)

int sscanf(string (char *),"format",pointers to variables[if
applicable]);

It reads the data from the character string whose pointer is indicated and stores the values
in the variables

School of Civil Engineering—University of A Coruña

Reading and writing data (V)

5) READING AND WRITING OF CHAR

I Allow reading and writing bytes (char) in the STDIN and STDOUT respectively

Writing

int putchar(int) // Ex.: c2 = putchar(c);

It prints the character stored in a variable of type int to STDOUT

It returns the same character if there are no errors, or EOF (End Of File) if the are errors

EOF← CTRL + Z in Windows OS

EOF← CTRL + D in Unix/Linux OS

Reading

int getchar() Ex.: c = getchar();

It reads the data from STDIN byte by byte (char by char).

Each time it runs, it reads one byte and positions itself to read the next one.

The byte read is returned as an int

School of Civil Engineering—University of A Coruña

Reading and writing data (VI)

6) READING AND WRITING IN FILES

I They allow you to perform the same operations as printf and scanf,
but on files (text or binary).

Writing

int fprintf(FILE * ,"format",variables[if applicable]);

It writes the data to the file whose pointer (FILE *) is indicated.
It returns the number of correctly written elements.

Reading

int fscanf(FILE *,"format",pointers to variables[if applicable]);

It reads the data from the file of pointer (FILE *) is indicated and stores the values in the
variables

School of Civil Engineering—University of A Coruña

Reading and writing data (VII)

7) READING AND WRITING OF CHAR IN FILES

I It allows reading and writing bytes (char) in or from files

Writing

int putc(int, FILE *) // Ex.: c2 = putc(c , fp);

It prints the character stored in the variable of type int in the file pointed to by the pointer
fp

It returns the same character if there are no errors, or EOF (End Of File) if there are errors

EOF← CTRL + Z in Windows OS

EOF← CTRL + D in Unix/Linux OS

Reading

int getc(FILE *) Ex.: c = getc(fp);

Reads the data from the file whose pointer is indicated byte by byte (char by char).

Each time it runs, it reads one byte and positions itself to read the next one.

School of Civil Engineering—University of A Coruña

Reading and writing data (VII)

The byte read is returned as an int

School of Civil Engineering—University of A Coruña

Use of the command line (I)

1) USE OF THE COMMAND-LINE

I Programs in C language are usually of the following type:

int main(void)
{
...

}

I However, the C language offers the possibility for the user to enter data into
a program on the same command line from which the execution is launched.

Ej.:

$> factorial 5

$> copy archive1.f archive2.f

$> gcc hello.c -o hello

School of Civil Engineering—University of A Coruña

Use of the command line (II)

1) USE OF THE COMMAND-LINE

I To use the command line, the programs are of the type:

int main(int argc, char * argv[])
{
...
}

donde:

• argc: contains the number of arguments separated by spaces entered on the command
line.

• argv[]: is a vector (pointer) of strings (pointers) that stores the texts of the arguments
indicated in the command line..
argv has as many string-type components (vector of chars) as indicated by argc.
argv[0] is the pointer to the string where the name of the program being executed is
stored.

argv −→ argv[0] −→ g c c \ 0

argv[1] −→ p r o g r a m . c \ 0

argv[2] −→ - O 2 \ 0
...

...

argv[argc-1] −→ p r o g r a m . e x e \ 0

School of Civil Engineering—University of A Coruña

Use of the command line (III)

1) USE OF THE COMMAND-LINE

Important considerations:

I The components of argv are of type string (char vector)

I If you want to use command-line data as numerical values, you need to use functions to
transform them.

For example, sscanf() reading of strings or atoi(): “ascii to integer”

I Given that argv is a vector (pointer) of pointers to strings it can be also used as:

int main(int argc, char ** argv)
{
...
}

In this case,

*(argv+0) ⇐⇒ argv[0]
*(argv+1) ⇐⇒ argv[1]
*(argv+2) ⇐⇒ argv[2]

... ...

School of Civil Engineering—University of A Coruña

Structures (I)

STRUCTURES

They are special variables that are internally composed of other variables of any type

struct structure name{variable1; variable2; ...};

I Structures declaration:

struct { // Creates the structure coordinates
float x; // with two float (x and y)
float y;

} coordinates;

struct COORDINATES { // Creates the type of structure named
float x; // COORDINATES with two float
float y;

}

struct COORDINATES coordinates;
↑ ↑
tag structure

School of Civil Engineering—University of A Coruña

Structures (II)

STRUCTURES

I Members of the structures:

• They are managed as: structure name.variable name

Ex.:
{
coordinates.x
coordinates.y

I Pointers:

struct COORDINATES coordinates;

struct COORDINATES *c;

c = &coordinates;

(*c).x↔ c->x↔ coordinates.x

(*c).y↔ c->y↔ coordinates.y

School of Civil Engineering—University of A Coruña

Union (I)

UNION

I They work the same as structures

I But there is only one of its members (the one we want) in each case.

I The union variable can store variables of different types

Ex.:
union {

int i;
float x;

} union example

→
union example.i can save an integer
union example.x can save a real

and tehy occupy the same memory space position !!!
(although its size can be different)

School of Civil Engineering—University of A Coruña

Fields and types definition (I)

FIELDS

unsigned bits : 3; // bits is an unsigned variable of 3 bits

TYPEDEF
typedef int (*pf)();

pf function; → function is a pointer
to a function that it returns an integer{

typedef int Length;

Length len, maxlen; → len and maxlen are int{
typedef char * String;

String line[MX]; → line[MX] is a string{
typedef struct COORDINATES Point;

Point p; → is a structure of type COORDINATES

School of Civil Engineering—University of A Coruña

PROGRAMMING IN C AND FORTRAN

I Bibliography:

• The C programming Language, B.W. Kernighan, D.M. Ritchie, 2nd Edition,
Prentice Hall Software Series, Upper Saddle River, NJ, USA, 1978

• Fortran 77 for engineers and scientists with an introduction to Fortran 90,
Larry Nyhoff y Sandford Leestma, Prentice Hall, Upper Saddle River, NJ, USA, 1996

• Aprenda Fortran 8.0 como si estuviera en primero, Javier Garćıa de Jalón,
Franciso de Aśıs de Ribera, E.T.S. Ingenieros Industriales, Universidad Politécnica
de Madrid, 2005

School of Civil Engineering—University of A Coruña

