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Abstract. Motivated by a real-life situation, we put forward a model and then derive an optimal 
strategy that maximizes the expected real-estate selling price when one of the only two 
remaining buyers has already made an offer but the other one is yet to make. Since the seller is 
not sure whether the other buyer would make a lower or higher offer, and given no recall, the 
seller needs a strategy to decide whether to accept or reject the first-come offer. The herein 
derived optimal seller's strategy, which maximizes the expected selling price, is illustrated under 
several scenarios, such as independent and dependent offers by the two buyers, and for several 
parametric price distributions. 
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1  Introduction 

1.1  The motivating problem 

The following problem has been posited by a real estate brokerage to the authors of this paper. 

The seller of a house – whether on his own or with the help of a real estate agent, or perhaps both 

(cf., e.g., Salant 1991) – sets a list price of the house and requests the sales agent to proceed with 

the sale. We refer to, e.g., Zorn and Larsen (1986), Miceli (1989), Larsen and Park (1989), and 

Jares et al. (2000), and references therein, on how to provide incentives for real estate sales 

agents to act in the best interests of home sellers. 

A number of buyers, some serious and others just curious, view the house, and perhaps even 

make exploratory offers, which the seller can use to revise his reservation price as explained by, 

e.g., Read (1988). After some time, the sales agent tells the seller that the matter has reached the 

stage when there are left only two serious buyers. Naturally, some bargaining would take place. 

Denote the two buyers by the first letters of their (fictional) names, L and H, and we do not 

know, though perhaps attempt to guess, which of the two would be the first to make an offer. Let 

LX  and HX  be the (random) sale prices if the house is to be sold to L or H, respectively. After 
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realizing one of the prices, either LX  or HX  but we do not know which of the two, the seller 

needs to decide whether to accept the first-come offer or reject it and then bargain with the 

remaining buyer. 

The seller is aware of the fact that if he rejects the first-come offer, then the first-come buyer 

would exit the process due to reasons such as buying another house, or simply because of getting 

his ego hurt, as is quite often the case in such situations. Hence, there is no recall, and thus if 

rejected, the buyer exits the process and leaves the seller with only one buyer, whose offered 

price, perhaps after some bargaining, would be accepted as the final selling price. 

The seller wants to have a selling strategy, which needs to be determined prior to acting on the 

first-come offer. The need for such a strategy arises because the seller feels, naturally, that one of 

the two offers is likely to be higher than the other one, but he does not know which of them – the 

higher or the lower – will come first. Hence, accepting or rejecting the first-come offer is a 

crucial step for the seller, and the aim of the present paper is to offer an optimal strategy for the 

seller who wishes to maximize the expected selling price. We call the strategy maximizing. 

Our research of the literature, especially of that concerned with strategies in the real estate 

business (Subsection 1.2 below), has revealed that the above formulated problem does not really 

fit into the models considered so far. Certainly, we have greatly benefited from the literature, but 

the closest solution to our problem has turned out to be related to problems, or puzzles, on the 

theme  "which of the two numbers is larger when only one of them is shown to you?'' Here we 
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mention only two such problems: the two-envelope problem and the secretary problem, with 

more details and references to be provided later in this paper. 

1.2  A glimpse of the real-estate literature 

Optimal strategies for selling assets in general, and thus real estate in particular, have been 

actively studied in the literature (e.g., DeGroot 1970; Albright 1977; Riley and Zeckhauser 1983; 

Rosenfield et al. 1983). Some works assume that the seller receives a sequence of random bids 

arriving in a stochastic manner. Some assume that rejected offers are not lost (recall), and others 

that they are lost (no recall). Some assume that the distribution of offers is known, and others 

that it is not. It is quite often assumed that the bids are independent and identically distributed 

random variables. A number of authors derive stopping-type rules that lead to best strategies for 

selling assets. Rosenfield et al. (1983) provide a list of selling strategies within various 

frameworks. 

  Building upon, and extending, several earlier works (e.g., Stigler 1961; Nelson 1970) on the 

economics of information, Gastwirth (1976) has investigated the problem of consumer search for 

information about price and quality of goods. He explores a sequential procedure as a search 

strategy, which essentially suggests searching until a price below a threshold has been found. 

Gastwirth (1976) explores the effects of various distributions of prices (with bounded and 

unbounded supports) on the search length, as well as the effects of possible dependencies 

between the prices. Deng et al. (2013) analyze the reservation and asking prices, putting an 
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emphasis – articulated already by Stigler (1961) – on the dispersion of prices and also 

investigating, among other things, the influence of the dispersion on pricing strategies that 

maximize the return from search. 

Naturally, the distribution of prices plays a pivotal role. It has been shown, for example, that the 

upper bound of the distribution support may coincide with the listing price, but it may also 

exceed it. The list price can be determined by the seller himself or with the help of a broker (cf., 

e.g., Salant 1991). The price can also be predicted – with some success – by inflating previous 

house selling prices (e.g., Brint 2009). 

It should be noted that setting the `right' list price is a complex task and plays a pivotal role in 

determining factors such as the time on the market (known as TOM) and the price of the 

property. These effects of the list price have been explored theoretically as well as using 

empirical evidence by Yavas and Yang (1995), Arnold (1999), Anglin et al. (2003), among 

others. In the case of a sequential search with recall, Cheng et al. (2008) have derived a closed 

form formula of the TOM and the price, and they have shown in particular that the two quantities 

follow a nonlinear positive relationship. 

Sirmans et al. (1995) have examined the prices of quickly selling houses. Their model assumes 

that bids are independent and identically distributed random variables. Following Lippman and 

McCall (1976), who suggest and explore a model of job search based on wage amounts, Sirmans 

et al. (1995) use a stopping rule as the seller's strategy: accept the first bid if it is larger than the 

reservation price and reject it otherwise. The authors analyze various quantities such as the 
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optimal reservation price and how it is affected by holding costs and seller's information about 

the distribution of offers. 

  Glower et al. (1998) have studied how seller's motivation influences the selling time, list and 

final prices. In particular, they have investigated five factors that affect the seller's motivation: 1) 

the seller has a moving plan at the date of the price listing, 2) the seller has accepted a new 

employment prior to the time of the listing, 3) the seller has made an offer or bought another 

house at the time of the listing, 4) the sale is atypical, and 5) the seller has set an incorrect price. 

The model of Glower et al. (1998) is without recall, and the number of received offers is not 

limited. 

Related to the `motivational paradigm,' Anglin (2004) has studied optimal strategies for 

households that must sell one house in order to buy another. Arnold (1999) has derived optimal 

asking and reservation prices. The model of Arnold (1999) assumes that the seller faces buyers 

arriving according to the Poisson process with some intensity, and that the asking price, which 

serves as a starting price in the bargaining process, affects the intensity of the arrival of potential 

buyers. Biswas and McHardy (2007) have studied fixed-price and asking-price strategies for 

selling assets in uncertain markets, as well as the determination of associated price discounts. 

Naturally, earlier derived selling strategies as well as those to be explored later in this paper 

hinge on price distributions and other factors. A number of price distributions have been 

proposed in the literature. For example, Horowitz (1992) puts forward a theory of seller's 

behaviour, suggests a distribution of (random) bids, derives optimal list and reservation prices, 
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and explains why there are list prices in the housing market and why bids can sometimes be 

above the corresponding list prices. 

Bid or price distributions can be with finite or infinite supports. In Gastwirth (1976), for 

example, we find uniform, triangular, and normal distributions. We can also argue in favour of 

the lognormal distribution, but Ohnishi et al. (2011) explain why the heavier tailed Pareto 

distribution might be better. In Section 3 below, we shall use some of these distributions to 

illustrate our proposed optimal threshold-type strategies for selling real estate. 

Certainly, we have not attempted to give here a general literature overview on the topic, which is 

vast and spans through numerous journals on real estate, decision theory, economics, operations 

research, management science, and other areas. However, we hope to have provided a glimpse of 

those aspects that have been discussed in the literature and – in one way or another – have 

profoundly influenced our thinking on, and the solution of, the motivating problem formulated 

above. 

The rest of the paper is organized as follows. In Section 2, we put forward a probabilistic model 

that corresponds to our motivating example, and we also formulate natural and practically sound 

assumptions under which we derive a formula for the expected selling price. The formula leads 

to a maximizing seller's strategy in Section 3, where we explore two important cases in detail: 1) 

the (random) prices LX  and HX  are independent, though not necessarily identically distributed, 

and 2) the prices are tied by a dependency relationship. Similarly to the optimal sequential 
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stoping strategies noted earlier, we shall see in Section 3 that in both cases 1) and 2), we also 

arrive at optimal threshold-type strategies: reject the first-come offer if it is below a certain 

threshold and accept it otherwise. Our developed theory provides a constructive definition of the 

threshold, which can thus be calculated or estimated in practice. 

2  The model and the main theorem 

As noted earlier, we do not know which of the two, L or H, will buy the house, as the outcome 

depends on factors such as who is going to offer first and at what price, and whether the seller 

accepts or rejects the first-come offer. 

Under this uncertainty, we are interested in maximizing the expected selling price = [ ]X Xμ E  

which naturally depends on a certain seller's strategy. We want to know this strategy. 

We shall next introduce some fairly natural assumptions that will facilitate the tractability of the 

aforementioned maximization problem. 

2.1  Main assumptions 

Let 1O  be the random variable that takes on the two `categorical' values L and H: if 1 =O L , then 

the first-come offer is by the buyer L, but if 1 =O H , then the first-come offer is by H. 
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Next, let 1R  be the random variable of rejecting the first-come offer, that is, 1R  takes on the 

`categorical' value Y (`yes') if the first-come offer is rejected, and on the value N (`no') otherwise. 

  Assumption 2.1  Whether the first-come offer 1O  is made by L or H does not depend on the 

(random) prices LX  and HX .  

From the mathematical point of view, Assumption 2.1 means that the conditional probability 

1[ = | , ]L HO L X XP  is equal to the unconditional probability  

 1[ = ]p O L≡ P  

of the first-come offer by L. Consequently, the probability 1[ = | , ]L HO H X XP  of the first-come 

offer by H given the prices LX  and HX  is equal to the unconditional probability 1[ = ]O HP ; the 

latter is equal to 1 p− . 

Assumption 2.2  The probability of rejecting the first-come offer depends only on the amount 

that the first-come buyer offers.  

Hence, for example, the probability 1 1[ = | = , = , = ]L HR Y X x X y O HP , which can be rewritten 

as 1 11
[ = | = , = , = ]L OR Y X x X y O HP , is equal to  
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 1 1
( ) [ = | = ].Oy R Y X y≡ PS  

We call S  the seller's strategy function, or simply the seller's strategy. Hence, ( )yS  is the 

probability of rejecting the first-come offer of size y irrespectively of whether L or H makes the 

offer. Hence, in particular,  

   • when ( ) = 1yS , then the first-come offer is rejected, and when ( ) = 0yS , then it is accepted. 

(In this sense, we can view S  as a `rejection strategy.')  

Analogous arguments under Assumption 2.2 imply that 1 1[ = | = , = , = ]L HR N X x X y O LP  is 

equal to 1 ( )x−S . 

Finally, we introduce the benchmark expected price (BEP)  

 BEP = [ ] (1 ) [ ],L Hp X p X+ −E E  

which is the expected selling price if we were always to accept the first-come offer. Obviously, 

BEP is a `strategy-less' quantity. In the next subsection we shall look at the difference between 

Xμ  and BEP, where the seller's strategy S  will play a crucial role. 
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2.2  The main theorem 

Depending on the seller's strategy S , the expected selling price Xμ  might be higher or lower 

than the strategy-less BEP. The following theorem specifies the strategy risk parameter (SRP), 

which is the difference between Xμ  and BEP. The proof of the theorem is long and thus 

relegated to Appendix A at the end of this paper. 

Theorem 2.1 The expected selling price Xμ  is the sum of the (strategy-less) benchmark 

expected price BEP and the (strategy-dependent) strategy risk parameter  

 SRP( ) = [ ( ){ [ | ] }] (1 ) [ ( ){ [ | ] }],L H L L H L H Hp X X X X p X X X X− + − −E E E ES S S  

that is, we have the decomposition = BEP SRP( )Xμ + S .  

With the help of Theorem 2.1, we can now aim at deriving a strategy S  that maximizes SRP( )S  

and thus, in turn, Xμ . We shall illustrate this task in detail in Section 3 below. At the moment we 

note, for example, that when the prices LX  and HX  are independent, then Theorem 2.1 gives the 

equation  
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= BEP [ ( )] [ ] (1 ) [ ( )] [ ]X L H H Lp X X p X Xμ + + −E E E ES S  

 [ ( ) ] (1 ) [ ( ) ].L L H Hp X X p X X− − −E ES S  (2.1) 

When LX  and HX  are dependent, and assuming for the sake of concreteness that = 2H LX X  as 

is the case in the two-envelope problem (more details in a moment), we have from Theorem 2.1 

that  

 2= BEP [ ( )] (1 ) [ (2 )],X L L Lp X X p Xμ + − −E ES S  (2.2) 

where 2BEP = (2 ) [ ]Lp X− E , which is called the benchmark base return by McDonnell and 

Abbott (2009). 

More generally, when =H LX Xα  for a constant > 1α , then  

 = BEP ( 1) [ ( )] ( 1)(1 ) [ ( )]X L L Lp X X p Xαμ α α α+ − − − −E ES S  (2.3) 

with the benchmark expected price BEP = ( ( 1) ) [ ]Lp Xα α α− − E . Obviously, equation (2.3) 

implies (2.2) by setting = 2α . 
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Now we recall the two-envelope problem. There are two individuals: a host and a player. The 

host randomly chooses an amount LX  of money and places it into one envelope and then places 

twice the amount into another envelope, that is,  

 = 2 .H LX X  

The two envelopes are indistinguishable. The player needs to decide whether to keep the 

received envelope or exchange it into another one. Once a decision has been made, the game is 

over and the host and the player keep the money that they find in their respective envelopes. 

For an optimal strategy in this game, which has greatly influenced our present research, we refer 

to McDonnell and Abbott (2009), and McDonnell et al. (2011). It should be noted that there are 

many ways in which the two-envelope problem can be formulated, and the literature on the topic 

is vast. The assumptions of McDonnell and Abbott (2009) may not conform with all available 

versions of the two-envelope problem, but the framework of the noted paper has played a pivotal 

role in our current research. 

3  The maximizing strategy 

Under various scenarios, in this section we demonstrate how the maximizing strategy MAXS  can 

be derived and how it looks like. The following corollary to Theorem 2.1 provides an explicit 

form of the strategy. 
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Corollary 3.1 Assume that LX  and HX  have densities Lf  and Hf , respectively. Then the 

maximizing strategy function MAX ( )yS  is the indicator ( )A y1  of the set 

MAX= { [0, ) : ( ) > 0}A x x∈ ∞ H , where  

 MAX ( ) = { [ | = ] } ( ) (1 ){ [ | = ] } ( ).H L L L H Hx p X X x x f x p X X x x f x− + − −E EH  

  Proof. By the definition of SRP( )S  given in Theorem 2.1 and using the assumption that the 

random prices LX  and HX  have densities, we easily arrive at the equation  

 MAXSRP( ) = ( ) ( ) .x x dx∫S S H  (3.1) 

Since ( )xS  is always in the interval [0,1], the maximizing strategy MAX ( )xS  must be equal to 1 

when MAX ( ) > 0xH  and 0 when MAX ( ) 0x ≤H . In other words, MAX ( )xS  must be the indicator 

function ( )A x1  of the set A defined in the corollary. This finishes the proof of Corollary 3.1.  

      As we shall see in the following two subsections, the maximizing strategy MAX ( )yS  is often 

a threshold type strategy and takes on the form [0, )( ) = ( )b by y1S , where b is a `threshold' that 

maximizes SRP( )bS . This strategy means rejecting the first-come offer when it is smaller than b 

and accepting the first-come offer when it is equal or larger than b. 

D
ow

nl
oa

de
d 

by
 [

M
ar

tin
 E

go
zc

ue
] 

at
 0

3:
32

 0
1 

D
ec

em
be

r 
20

12
 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 
15 

3.1  When the prices LX  and HX  are independent 

Throughout this subsection we assume that LX  and HX  are independent random variables. In 

this case, the maximizing strategy MAXS  is specified by Corollary 3.1 with the function  

 MAX ( ) = { [ ] } ( ) (1 ){ [ ] } ( ).H L L Hx p X x f x p X x f x− + − −E EH  (3.2) 

We need to find those 0x ≥  for which MAX ( ) > 0xH . The likelihood ratio stochastic dominance 

(e.g., Denuit et al. 2005; Furman and Zitikis 2008) plays a natural role here. Namely, we say that 

HX  is larger (or, rather, not smaller) than LX  in the likelihood ratio sense, written as 

H LR LX X≥ , if  

 ( )( ) = is a non - decreasing function of .
( )

H

L

f xw x x
f x

 (3.3) 

To make the following considerations more transparent, we assume that LX  and HX  have same 

supports, say the interval 1 2( , )x x  for some 1 20 <x x≤ ≤ + ∞ . This means that the two densities 

( )Lf x  and ( )Hf x  are (strictly) positive for all 1 2( , )x x x∈  and equal to 0 outside the interval 

1 2( , )x x . 
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Note that assumption (3.3) implies that H Lμ μ≥ , where = [ ]H HXμ E  and = [ ]L LXμ E . To prove 

this fact, we rewrite Hμ  as follows:  

 ( )= ( ) = [ ( )].
( )

H
H L L L

L

f xx f x dx X w X
f x

μ ∫ E  

Consequently, verifying H Lμ μ≥  is equivalent to veifying [ , ( )] 0L LX w X ≥Cov  because 

[ ( )] = ( ) = 1L Hw X f x dx∫E . But by Lehmann (1966) we know that the covariance 

[ , ( )]L LX w XCov  is non-negative because the function w is non-decreasing. For related results 

with possibly non-monotonic weight functions w, we refer to Egozcue et al. (2011), and 

references therein. 

Theorem 3.1 Under the above assumptions on the densities Lf  and Hf , and in particular 

assuming (3.3), we have that 

 MAX ( , )1
( ) = 1 ( )x by yS  (3.4) 

with the threshold = sup{ >  : ( ) > ( )}Lb x v x w xμ , where  

 ( )( ) = .
(1 )( )

H

L

p xv x
p x
μ

μ
−

− −
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In particular, when =  ( )L Hμ μ μ≡ , then MAX ( , )1
( ) = ( )xy yμ1S .  

Proof. The assumptions on the densities Lf  and Hf  imply that the means Lμ  and Hμ  are in the 

interval 1 2( , )x x . Moreover, we already know that L Hμ μ≤ . Keeping in mind that ( )Lf x  and 

( )Hf x  are (strictly) positive for all 1 2( , )x x x∈  and equal to 0 outside the interval 1 2( , )x x , we 

need to specify those 1 2( , )x x x∈  for which MAX ( ) > 0xH . To this end, we consider the cases 

=L Hμ μ  and <L Hμ μ  separately; and there can only be these two cases. 

When =L Hμ μ , in which case we denote the two expectations by μ , we have MAX ( ) > 0xH  if 

and only if <x μ . Hence, the maximizing strategy is MAX ( , )1
( ) = ( )xy yμ1S . This coincides with 

strategy (3.4) because when =L Hμ μ , then ( ) = /(1 ) < 0v x p p− −  and thus the supremum 

sup{ >  : ( ) > ( )}Lx v x w xμ  is calculated over the empty set of x values and thus, by the usually 

agreed definition, the supremum is set to the smallest value of x, which is Lμ μ≡ . 

When <L Hμ μ , then MAX ( ) > 0xH  for all 1( , ]Lx x μ∈  and MAX ( ) < 0xH  for all 2[ , )Hx xμ∈ . 

Hence, it remains to specify those ( , )L Hx μ μ∈  for which MAX ( ) > 0xH . The latter bound is 

equivalent to ( ) > ( )v x w x . The function ( )v x  is decreasing on the interval ( , )L Hμ μ : it starts 

with an infinite value at = Lx μ  and ends with the value 0 at = Hx μ . Since the function ( )w x  is 

non-decreasing by assumption (3.3), we therefore must have a point ( , )L Hb μ μ∈  such that the 

bound ( ) > ( )v x w x  holds for all ( , )Lx bμ∈ , and the opposite bound ( ) ( )v x w x≤  holds for all 
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[ , )Hx b μ∈ . Consequently, MAX ( , )1
( ) = ( )x by y1S  with the threshold b defined in the formulation 

of Theorem 3.1. This concludes the proof of Theorem 3.1.  

3.2  When =H LX Xα  for a constant > 1α  

Here we explore the case when the prices LX  and HX  are tied via the equation =H LX Xα  for 

some constant > 1α . (The classical two-envelope problem corresponds to the case = 2α .) 

Hence, in particular, ( ) = (1/ ) ( / )H Lf x f xα α  and so, by equation (3.1) and some little algebra, we 

obtain  

 2

1SRP( ) = ( 1) ( ) [ ( ) (1 ) ( )] .L L
xx x pf x p f dxα

α α
− − −∫S S  (3.5) 

The maximizing strategy MAXS  is therefore given by Corollary 3.1 with the function  

 MAX 2

1( ) = ( ) (1 ) ( ),L L
xx pf x p f

α α
− −H  (3.6) 

which in the case = 2α  appears on p. 3316 of McDonnell and Abbott (2009) and also plays an 

important role throughout the paper of McDonnell et al. (2011). 
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We shall next illustrate the maximizing strategy MAXS  in the case of three parametric 

distributions that have been noted by several authors dealing with real estate prices (e.g., 

Gastwirth 1976; Ohnishi et al. 2011). 

3.2.1  Uniform distribution of prices 

We start with the uniform on [ , ]A B  distribution, whose density is  

 [ , ] ( )
( ) = A B

L

x
f x

B A−
1

 

for some parameters 0 < <A B≤ +∞ . 

Theorem 3.2 When LX  is uniform on [ , ]A B , then  

 
2

[ , )
MAX

[ , ]

( ) 1/ (1 ),
( ) =

( ) .
A A

A B

y when A B and p
y

y otherwise
α α α⎧ ≤ ≤ +⎪

⎨
⎪⎩

1
1

S  (3.7) 

Proof. We need to specify those [ , ]x A B∈  for which  

 [ , ] [ , ]2

1( ) ( ) > 0.A B A B
pp x xα αα

−−1 1  

This is equivalent to checking the bound  
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 [ , ] [ , ]2

1 1( 1) ( ) < ( ).A B A Bx x
p α αα

− 1 1  

By considering the cases >A Bα  and A Bα ≤  separately, with the latter case split into two 

subcases 21/(1 )p α≤ +  and 2> 1/(1 )p α+ , we arrive at the strategy MAXS  given by equation 

(3.7). This completes the proof of Theorem 3.2.  

   We shall now decipher Theorem 3.2 in terms of the plain decision-making language. To begin 

with, the parameter ( , )pα  space is the strip (1, ) [0,1]∞ × . Define a subset of the strip:  

 { }2= ( , ) (1, ) [0,1] : / , 1/(1 ) .p B A pα α αΔ ∈ ∞ × ≤ ≤ +  

Recall now that if the size y of a first-come offer is such that MAX ( ) = 1yS , then the offer should 

be rejected, but if MAX ( ) = 0yS , then it should be accepted. Hence, the decision rule:  

•When ( , )pα ∉ Δ , then we always reject the first-come offer, irrespectively of its size y.  

•When ( , )pα ∈ Δ , then we reject the first-come offer of size y if <y Aα  and accept it if 

y Aα≥ .  

To get a better feel for this result, here is a numerical example. Suppose that LX  follows the 

uniform on [300,320] (in thousands) distribution, and let α  be an increase by 5% , that is, 
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= 1.05α . The condition /B Aα ≤  is satisfied, and thus we only need to look into two cases: 

21/ (1 ) = 0.4756p α≤ +  and > 0.4756p . In the latter case, we always reject the first-come 

offer irrespectively of its size. In the former case, that is when the probability p of the first-come 

offer being from the lower distribution L is not large than 0.4756 , we make the following 

decision: if < 315y , then we reject the first-come offer, but if 315y ≥ , then we accept the 

offer. 

3.2.2  Log-normal distribution of prices 

Here we consider the random price LX  that follows the log-normal distribution, whose density is  

 
2

(0, )2

1 (log( ) )( ) = exp{ } ( )
22L
xf x x

x
μ

σσ π ∞
−− 1  

for some parameters ( , )μ ∈ −∞ ∞  and > 0σ . 

Theorem 3.3 When LX  is log-normal, then  

 MAX (0, )( ) = ( )by y1S  

with the threshold  
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2/ log

= exp{ } .
1
pb

p

σ α
αα μ ⎛ ⎞

⎜ ⎟−⎝ ⎠
 (3.8) 

Proof. We check that MAX ( )xH  defined by equation (3.6) is positive if and only if  

 
2 2

2 2

1 (log( ) ) 1 (log( / ) )exp > exp .
2 22 2
x p xp

x x
μ α μ

σ σσ π α σ π
⎧ ⎫ ⎧ ⎫− − −− −⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

 

Canceling out some terms and taking the logarithms of both sides, the above inequality becomes  

 
2 2

2 2

(log( ) ) 1 (log( / ) )> log ,
2 2
x p x

p
μ α μ

σ α σ
⎛ ⎞− − −− −⎜ ⎟
⎝ ⎠

 

which is equivalent to the following one:  

 
2 1 log< exp log

log 2
px

p
σ αμ

α α
⎧ ⎫⎛ ⎞−− +⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
 

 
2/ log

= exp{ } .
1
p

p

σ α
αα μ ⎛ ⎞

⎜ ⎟−⎝ ⎠
 

The right-hand side is the threshold b, thus finishing the proof of Theorem 3.3.  

D
ow

nl
oa

de
d 

by
 [

M
ar

tin
 E

go
zc

ue
] 

at
 0

3:
32

 0
1 

D
ec

em
be

r 
20

12
 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 
23 

3.2.3  Pareto distribution of prices 

Our final example deals with the price LX  that follows the Pareto distribution, whose density is  

 10
[ , )0

0

( ) = ( ) ( )L x
xf x x

x x
θθ +

+∞1  

for some parameters 0 > 0x  and > 1θ . Note that the restriction > 1θ  is necessary for the 

finiteness of the first moment of LX , which we need. The preference of the Pareto distribution 

over the lognormal distribution when modeling house prices has been noted by Ohnishi et al. 

(2011). 

Theorem 3.4 When LX  is Pareto, then  

 
1

[ , )0 0
MAX

[ , )0

( ) 1/ (1 ),
( ) =

( )
x x

x

y when p
y

y otherwise.

θ
α α −

+∞

⎧ ≤ +⎪
⎨
⎪⎩

1

1
S  

Proof. We need to know when MAX ( )xH  defined by equation (3.6) is positive. This is equivalent 

to checking the inequality  

 1
[ , ) [ , )0 0

1( ) > ( ).x x
px x

p
θ

αα −
+∞ +∞

−1 1  
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When 0 0[ , )x x xα∈ , then this inequality always holds, but when 0[ , )x xα∈ ∞ , then it holds if and 

only if 1> 1/(1 )p θα −+ . This completes the proof of Theorem 3.4.  

4  Concluding notes 

The real estate business is a fascinating laboratory for testing theories and techniques of decision 

theory, economics, probability, psychology, sociology, and other research areas. It also touches 

upon several problems, or puzzles, that have fascinated amateur and professional scientists. In 

this paper, whose main contribution is an optimal real-estate seller's strategy in the motivating 

problem, we have noted a connection between the motivating problem and the well-known two-

envelope problem, in the form of McDonnell and Abbott (2009), and McDonnell et al. (2011). 

Another closely related problem to developing strategies in the real estate business is the 

secretary problem, as noted and utilized by Mazalov and Saario (2002), who derived an optimal 

threshold-type strategy for setting selling prices under the assumption of the sequential arrival of 

buyers. Mazalov and Saario (2002) assume (for the sake of mathematical simplicity) that the 

prices are uniformly distributed but their ideas can be extended to other distributions as well. 

One can find many fascinating connections between the real estate business and other problems 

or puzzles of decision theory and related areas, but this has not been the main goal of the present 

paper. 
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A  Appendix: Proof of Theorem 2.1 

The proof is based on the rule of total probability and conditioning arguments, and we start out 

with the equation = [ [ | , ]]X L HX X Xμ E E . To calculate the conditional expectation 

[ | = , = ]L HX X x X yE , note that under the condition = , =L HX x X y , the ultimate selling price 

X can only be either x or y. Hence,  

 [ | = , = ] = [ = | = , = ] [ = | = , = ].L H L H L HX X x X y x X x X x X y y X y X x X y+E P P

 (A.1) 

We next calculate the two probabilities on the right-hand side of equation (A.1), and start with 

the first probability. Using the random variable 1O  of `first offer,' we write  

 [ = | = , = ]L HX x X x X yP  
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 1 1= [ = | = , = , = ] [ = | = , = ]L H L HX x X x X y O L O L X x X yP P  

 1 1[ = | = , = , = ] [ = | = , = ].L H L HX x X x X y O H O H X x X y+P P  (A.2) 

Next we employ the random variable 1R  of `rejecting the first offer' and have the equation  

 1[ = | = , = , = ]L HX x X x X y O LP  

 1 1 1 1= [ = | = , = , = , = ] [ = | = , = , = ]L H L HX x X x X y O L R Y R Y X x X y O LP P  

 1 1 1 1[ = | = , = , = , = ] [ = | = , = , = ].L H L HX x X x X y O L R N R N X x X y O L+ P P  

Observe that the first probability on the right-hand side of the above equation is equal to 0 

whereas the last probability is equal to 1. Hence,  

 1 1 1[ = | = , = , = ] = [ = | = , = , = ].L H L HX x X x X y O L R N X x X y O LP P  (A.3) 

Analogously,  

 1 1 1[ = | = , = , = ] = [ = | = , = , = ].L H L HX x X x X y O H R Y X x X y O HP P  (A.4) 

Using equations (A.3) and (A.4) on the right-hand side of equation (A.2), we have that  
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 [ = | = , = ]L HX x X x X yP  

 1 1 1= [ = | = , = , = ] [ = | = , = ]L H L HR N X x X y O L O L X x X yP P  

 1 1 1[ = | = , = , = ] [ = | = , = ].L H L HR Y X x X y O H O H X x X y+P P  (A.5) 

Analogously, or simply by making the two notational changes x y↔  and L H↔  in the above 

equation, we obtain  

 [ = | = , = ]L HX y X x X yP  

 1 1 1= [ = | = , = , = ] [ = | = , = ]L H L HR N X x X y O H O H X x X yP P  

 1 1 1[ = | = , = , = ] [ = | = , = ].L H L HR Y X x X y O L O L X x X y+P P  (A.6) 

Using equations (A.5) and (A.6) on the right-hand side of equation (A.1), we have  

 [ | = , = ]L HX X x X yE  

 1 1 1= [ = | = , = , = ] [ = | = , = ]L H L Hx R N X x X y O L O L X x X yP P  

 1 1 1[ = | = , = , = ] [ = | = , = ]L H L Hx R Y X x X y O H O H X x X y+ P P  
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 1 1 1[ = | = , = , = ] [ = | = , = ]L H L Hy R N X x X y O H O H X x X y+ P P  

 1 1 1[ = | = , = , = ] [ = | = , = ].L H L Hy R Y X x X y O L O L X x X y+ P P  (A.7) 

By Assumption 2.1, the probability 1[ = | = , = ]L HO L X x X yP  does not depend on x and y, and 

is equal to p. In view of this, equation (A.7) becomes  

 1 1[ | = , = ] = [ = | = , = , = ]L H L HX X x X y px R N X x X y O LE P  

 1 1(1 ) [ = | = , = , = ]L Hp x R Y X x X y O H+ − P  

 1 1(1 ) [ = | = , = , = ]L Hp y R N X x X y O H+ − P  

 1 1[ = | = , = , = ].L Hp y R Y X x X y O L+ P  (A.8) 

By Assumption 2.1, the probability 1 1[ = | = , = , = ]L HR Y X x X y O HP  is equal to ( )yS , and 

thus the probability 1 1[ = | = , = , = ]L HR N X x X y O LP  is equal to 1 ( )x−S . Analogous formulas 

for the other two probabilities on the right-hand side of equation (A.8) are valid. Hence, from 

equation (A.8) we have that [ | = , = ]L HX X x X yE  is equal to  

 ( )(1 ( )) (1 )( )) ( ( ) (1 )(1 ( )) ,x p x p y y p x p y− + − + + − −S S S  
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and so we have arrived at the equation  

 ( )[ | , ] = ( (1 ( )) (1 ) ( )L H L L HX X X X p X p X− + −E S S  

 ( )( ( ) (1 )(1 ( )) .H L HX p X p X+ + − −S S  (A.9) 

Using equation (A.9), we obtain from = [ [ | , ]]X L HX X Xμ E E  that = BEP SRP( )Xμ + S  with the 

strategy risk parameter  

 [ ]SRP( ) = ( )( ( ) (1 ) ( ))H L L HX X p X p X− − −ES S S  

 = [( ) ( )] (1 ) [( ) ( )].H L L H L Hp X X X p X X X− − − −E ES S  (A.10) 

We next apply the equations [ ( )] = [ [ | ] ( )]H L H L LX X X X XE E ES S  and 

[ ( )] = [ [ | ] ( )]L H L H HX X X X XE E ES S  on the right-hand side of equation (A.10) and arrive at the 

expression of SRP( )S  given in the formulation of the theorem. This completes the proof of 

Theorem 2.1. 
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