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Convective mixing in porous media is triggered by a Rayleigh–Bénard-type hydrodynamic instability as a
result of an unstable density stratification of fluids. While convective mixing has been studied extensively, the
fundamental behavior of the dissolution flux and its dependence on the system parameters are not yet well
understood. Here, we show that the dissolution flux and the rate of fluid mixing are determined by the mean10

scalar dissipation rate. We use this theoretical result to provide computational evidence that the classical model
of convective mixing in porous media exhibits, in the regime of high Rayleigh number, a dissolution flux that
is constant and independent of the Rayleigh number. Our findings support the universal character of convective
mixing and point to the need for alternative explanations for nonlinear scalings of the dissolution flux with the
Rayleigh number, recently observed experimentally.15

PACS numbers: 47.56.+r, 47.20.Bp, 92.40.K-

Convective mixing in porous media results from the den-
sity increase in an ambient fluid as solute or another fluid dis-
solves into it, leading to a Rayleigh–Bénard-type instability
[1]. This phenomenon has received renewed attention because20

of its role in geologic carbon dioxide (CO2) sequestration in
saline aquifers [2]. When supercritical CO2—which is less
dense than brine—dissolves in brine, the aqueous mixture in-
creases its density, leading to a configuration in which the dis-
solution of CO2 is enhanced by the downward migration of25

dense fingers of CO2-rich groundwater [3, 4], thereby accel-
erating solubility trapping of the injected CO2 and increas-
ing the security of storage [5]. Convective mixing may also
play a role in the dissolution of halites or other soluble low-
permeability rocks overlying groundwater aquifers [6], lead-30

ing to high dissolution rates that can exert a powerful control
on pore-water salinity in deep geologic formations [7]. Re-
cent studies of convective mixing during CO2 storage have
addressed the stability analysis for the onset of convection [8–
11], nonlinear simulation of the convective instability [9, 12–35

15], and experimental systems reproducing the conditions for
convective mixing in a stationary horizontal layer [15–18].

The key dimensionless group in the problem is the Rayleigh
number, Ra, which is a measure of the strength of density-
driven convection relative to diffusion [1]. Experiments and40

high-resolution simulations suggest that, for high Ra, there
exists a period of constant dissolution flux, after the onset of
the instability and before the layer of brine starts to be satu-
rated with dissolved CO2 [12–14]. This constant-flux regime
is crucial because it determines the importance of solubility45

trapping in geologic CO2 sequestration [19].

The fundamental question of how this constant flux de-
pends on Ra has been the subject of recent studies. Based on
an argument of universality of the flow before it is affected by
the boundaries [9, 11, 13, 18], the characteristic length of the50

problem is such that convection balances diffusion over that
lengthscale, so one expects the constant dissolution flux dur-
ing the convection-controlled regime to be independent of Ra;

this is our null hypothesis. In contrast, recent experimental
studies using a fluid system that naturally undergoes convec-55

tion [15, 17] suggest a nonlinear scaling of dissolution flux
with Ra. Thus, it is unclear how to reconcile these results and
whether the origin of the observed nonlinear scaling can be
explained from the classical mathematical model of porous-
media convective mixing.60

Here we investigate, by means of high-resolution numeri-
cal simulation, the scaling behavior of convective mixing for
two model systems that have recently been investigated exper-
imentally: (1) the canonical Rayleigh–Bénard–Darcy model
problem with dissolution from the top boundary and linear de-65

pendence of density on the dissolved concentration [16, 18];
and (2) an analogue model for CO2 sequestration in which
a mixture of two miscible fluids exhibits a nonmonotonic
density–concentration curve such that mixtures with interme-
diate concentrations are denser than either pure fluid [15, 17].70

One of the inherent difficulties for the analysis of the
analogue-fluid model (either from experiments or simula-
tions) is finding a proper definition of the dissolution flux.
While this is trivial for the canonical Rayleigh–Bénard–Darcy
problem—where the dissolution flux can be obtained from the75

cumulative dissolved mass—it is a challenge for the analogue-
fluid problem because there is no net accumulation of solute
in the initial fluid: instead, two initially-segregated fluids mix
through a one-sided instability. Here we resolve this chal-
lenge by deriving the relationship among diffusive flux, decay80

of concentration variance, and mean scalar dissipation rate.
This relationship points to the scalar dissipation rate ε as the
fundamental quantity that controls the evolution of convective
mixing in either model system: any dependence on Ra must
be reflected on ε.85

We provide evidence that the classical mathematical model
for single-phase variable-density flow in porous media under
the Boussinesq approximation supports the null hypothesis
that there is a universal regime in which the flux is constant
and independent of Ra for both the canonical and analogue-90
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fluid systems. Therefore, deviations from this universal scal-
ing must be due to factors not included in the mathematical
model. We test whether they can be attributed to viscosity
variations or to the shape of the density–concentration curve.
We find that the scaling of the dissolution flux is relatively in-95

sensitive to variations in fluid viscosity, but depends strongly
on the position of the maximum in the density–concentration
curve. These findings could help reconcile some of the exper-
imental observations.

Under the assumptions of incompressible fluids and the100

Boussinesq approximation, the governing equations for
variable-density single-phase flow in a porous medium take
the following dimensionless form [9]:

∇ · u = 0,

u = − 1

µ(c)
(∇p− ρ(c)ẑ),

∂tc+∇ ·
(
uc− 1

Ra
∇c
)

= 0,

(1)

in x ∈ [0,W ] and z ∈ [0, 1], where W is a dimensionless105

width. The first equation is the mass conservation equation
for an incompressible fluid, where u is the dimensionless
Darcy velocity. The second equation is Darcy’s law, where
p is the dimensionless pressure with respect to a hydrostatic
datum, ẑ is the unit vector in the direction of gravity, ρ is a di-110

mensionless density difference with respect to the initial fluid,
and µ is a suitably rescaled dimensionless dynamic viscosity.
The third equation is the advection-diffusion transport equa-
tion (ADE) for c(x, z, t), the concentration rescaled between 0
and 1. The Rayleigh number Ra is the key dimensionless pa-115

rameter of the problem:

Ra =
k∆ρmgH

µmφDm
, (2)

where k is the aquifer permeability, φ is the porosity, ∆ρm is
the density difference driving convection, µm is the character-
istic dynamic viscosity, Dm is the diffusion coefficient, and120

H is the height of the domain. In principle, both density and
viscosity can be nonlinear functions of concentration.

In the canonical model, the density has a linear variation
with concentration, so ρ = c. Moreover, the viscosity of the
mixture is assumed to be constant, so µ = 1. The initial condi-125

tion is c = 0 everywhere in the domain. The boundary condi-
tions are as follows: periodic boundary conditions in pressure
and concentration at the lateral boundaries (x = 0, x = W );
no-flow, no-diffusion at the bottom boundary (z = 1); and
no-flow and prescribed concentration (c = c0 = 1) at the top130

boundary (z = 0). Thus, along the top boundary, there is a
dissolution flux from diffusion.

In the analogue-fluid model, the density is a nonlinear, non-
monotonic function of concentration. The function ρ(c) for
the dimensionless density difference takes a value of 0 at135

c = 0, increases to a maximum value ρ = 1 at concentra-
tion c = cm of the densest mixture, and decreases to a nega-
tive value at c = 1. Here, we use the density–concentration

curve ρ(c) for mixtures of propylene-glycol (PG) and water
[17, 20], which we approximate by a polynomial that takes a140

maximum value at cm = 0.26. We also allow variations in
the dynamic viscosity of the mixture, following an exponen-
tial law µ(c) = exp(R(cm − c)), where R = ln(µ0/µ1) is
the viscosity ratio between the heavy and light fluids. The
initial configuration is one in which the two pure fluids are145

segregated by density, with the lighter fluid on top (c = 1
for 0 ≤ z ≤ 0.1) and the denser fluid below (c = 0 for
0.1 < z ≤ 1). As the two fluids mix, initially by diffusion,
a layer of dense fluid forms at the interface, triggering the
convective-mixing instability. The boundary conditions are150

no-flow, no-diffusion at the top and bottom boundaries, and
periodic boundary conditions at the side boundaries.

We consider first the canonical Rayleigh–Bénard–Darcy
model of convective mixing driven by boundary-diffusion.
We derive the evolution equations for the mean concentra-155

tion 〈c〉(t) =
∫

Ω
c(x, z, t) dΩ and the concentration variance

σ2
c (t) =

∫
Ω

[c(x, z, t)− 〈c〉(t)]2 dΩ on the rectangular spa-
tial domain (we have assumed, for expositional simplicity, a
unit-square domain). The equation for the mean concentration
is obtained by integrating the ADE:160

∂t〈c〉 = F, (3)

where F =
∫

Γtop
Ra−1∇c · n dΓ is the integrated diffusive

flux across the top boundary (z = 0). The equation for the
concentration variance is obtained by multiplying the ADE
by c and integrating over the domain. Incorporating the in-165

compressibility constraint, the boundary conditions, and after
some algebraic manipulations, one obtains:

∂tσ
2
c = 2(c0 − 〈c〉)F − 2〈ε〉, (4)

where c0 = 1 is the prescribed concentration at the top bound-
ary, and ε = ∇c · Ra−1∇c is the scalar dissipation rate [21].170

The central role of the scalar dissipation rate has been ex-
ploited recently to explain anomalous fluid mixing in porous
media driven by permeability heterogeneity [22] or viscous-
fingering instabilities [23]. Equation (4) exposes the funda-
mental relationship among mixing rate, dissolution flux and175

mean scalar dissipation rate, and makes it evident that any
Rayleigh-number dependence of the dissolution flux F must
be reflected also in the mean scalar dissipation rate 〈ε〉.

The link to the scalar dissipation rate is particularly useful
to characterize the time evolution in the analogue-fluid model.180

In this case, there is no proper dissolution flux but, rather, a
convection-dominated mixing of the two initial miscible flu-
ids. Since all boundaries are no-flux boundaries, the mean
concentration 〈c〉 is constant, and the concentration variance
equation reduces to:185

∂tσ
2
c = −2〈ε〉. (5)

Analyzing 〈ε〉 provides a fundamentally new way to charac-
terize the macroscopic evolution of convective mixing, and a
rigorous way to quantify any dependence on Ra.
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FIG. 1. a, Snapshot of the concentration c at dimensionless time t =
1 from a simulation of the analogue-fluid system with Ra = 10, 000
and constant viscosity (R = 0). A computational grid of 512×1536
cells was used, and only a small window of the simulation domain
is shown. b, Corresponding snapshot of the scalar dissipation rate ε,
for the same simulation as that in figure a. Here, dark color corre-
sponds to high values of ε, and indicates regions of active mixing. c,
Snapshot of a surrogate of the scalar dissipation rate ε = ∇c ·Dm∇c
(obtained from light intensity) from a laboratory experiment with a
PG–water system in a Hele-Shaw cell, illustrating that mixing is pri-
marily confined to narrow layers along the edges of the horizontal
interface and the density-driven fingers.

We perform high-resolution computer simulations of the190

governing equations (1), for both the canonical model
and the analogue-fluid model. We employ the so-called
streamfunction–vorticity formulation, in which the equation
for the streamfunction and the ADE transport equation are
solved sequentially at each time step [24]. We solve the195

streamfunction equation using a spectral method [9, 25], and
the concentration equation using a sixth-order compact finite
difference discretization and a third-order Runge-Kutta time-
stepping scheme [24]. We trigger the density-driven instabil-
ity by introducing a small perturbation on the concentration200

at the boundary (for the canonical system) or the horizontal
initial interface (for the analogue-fluid system), as it is com-
monly done [9, 14, 15].

The results of a typical simulation are shown in Fig. 1.
The morphology of the convective instability is well known205

[9, 15, 17, 18]: after an onset period in which a diffusion
layer builds up between the two fluids, the layer develops a
one-sided instability in which downward-moving protrusions
grow exponentially, eventually developing into blob-like fin-
gers with thin necks at the roots of the fingers; these fingers210

then interact, merging into each other, and coarsening in such
a way that well-developed fingers then attract newly formed
fingers (Fig. 1a). A snapshot of the simulated scalar dissi-
pation rate ε illustrates that the regions where the fluids are
actively mixing coincide with the edges of the density-driven215

fingers (Fig. 1b). This behavior is supported qualitatively by
laboratory experiments with a PG–water system in an Hele-
Shaw cell (Fig. 1c).

In Fig. 2 we plot the time evolution of the mean scalar dis-
sipation rate for both the canonical Rayleigh–Bénard–Darcy220

model and the analogue-fluid model, and for different values
of Ra. For each case, there is a regime of constant rate of

scalar dissipation. That period extends, roughly, from dimen-
sionless time t = 1 to t = 6, which is about twice the time
that it takes for the fingers to reach the bottom of the domain,225

indeed highlighting the convective nature of the dissolution
process. It is interesting that the scalar dissipation rate for
the boundary-driven dissolution case is approximately twice
as large as that for the analogue-fluid model, in analogy with
the diffusive flux for one-dimensional diffusion from a one-230

sided boundary problem vs. two-sided diffusion from an ini-
tial sharp discontinuity.

We compute the time-averaged mean scalar dissipation
rate, 〈ε〉, during the time period of constant dissolution flux
(t ∈ [1, 6] for the canonical model and t ∈ [2, 8] for235

the analogue-fluid model). For simulations with high Ra
(> 5000), the scalar dissipation rate appears to be indepen-
dent of Ra (Fig. 2, inset). Given the fluctuations of the
mean scalar dissipation rate over time, one cannot reject the
null hypothesis that the dissolution flux is independent of240

the Rayleigh number. Indeed, we fit a power law to 〈ε〉
obtained from the high-resolution simulations as a function
of Ra. This yields a best fit (with 95% confidence bounds)
〈ε〉 ≈ (0.0120 ± 0.0013)Ra+0.031±0.012 for the canonical
model, and 〈ε〉 ≈ (0.0072 ± 0.0012)Ra−0.017±0.017 for the245

analogue-fluid model. These results provide conclusive evi-
dence that the classical Darcy–Boussinesq model of convec-
tive mixing predicts a regime in which the dissolution flux
and subsequent mixing is constant and, in the range of high
Ra, independent of the Rayleigh number.250

However, recent experimental studies using analogue flu-
ids, like methanol–ethylene glycol and water (MEG–water)
[15] and propylene glycol and water (PG–water) [17], report
a scaling of the form F ∼ Ra−1/5. Here, we explore the
possibility that this nonlinear scaling be due to the viscosity255

contrast between the fluids or to the shape of the density–
concentration curve.

To investigate the effect of viscosity contrast between the
pure fluids, we perform simulations of the analogue-fluid
model with a range of values of the log-viscosity ratio R,260

from −2 to 2. A positive value of R means that the lighter
fluid is less viscous, which is the case for the PG–water sys-
tem (water is less dense and less viscous). The time-averaged
scalar dissipation rate exhibits a weak dependence on the vis-
cosity contrast, such that there is a natural ordering in which265

the mixing rate is larger for lower values of R. For a fixed
value of R, there is no clear dependence of 〈ε〉 on Ra (Fig. 3).

To investigate the effect of the shape of the density–
concentration curve, we perform simulations using a simple
parameterization of the density curve. It is assumed to be a270

continuous piecewise linear function with the same endpoints
as that of the PG–water system, ρ(0) = 0 and ρ(1) = −3.6,
connected with the point at which the density is maximum,
ρ(cm) = 1. We then study the influence of cm, which we vary
between 0.1 and 0.8, and find that the mixing rate exhibits275

a strong monotonic dependence on the position of the maxi-
mum density: larger values of cm lead to larger mixing rates
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FIG. 2. Time evolution of the mean scalar dissipation rate 〈ε〉 from
simulations of both the canonical Rayleigh–Bénard–Darcy model
(dashed lines) and the analogue-fluid model (solid lines). We report
results for different Rayleigh numbers varying from Ra = 5000 to
30, 000, and constant viscosity (R = 0). All cases exhibit a period
of constant rate of scalar dissipation. For each model, all the curves
seem to collapse, suggesting weak or no dependence on Ra. Inset:
Time-averaged scalar dissipation rate for the canonical model (cir-
cles) and the analogue-fluid model (squares). For each Ra, the small
dots denote the entire time series of 〈ε〉 (t ∈ [1, 6] for the canonical
model and t ∈ [2, 8] for the analogue-fluid model, at time intervals
of δt = 0.1). The shaded areas indicate the spread of one standard
deviation with respect to the average. We indicate, with a line, the
best power-law fit over all simulations for each case. The best fit is
virtually independent of Ra.

(Fig. 4).
In summary, we have shown that in the problem of

dissolution-driven convection in porous media, any depen-280

dence of the dissolution flux on the Rayleigh number must
translate into a dependence of the scalar dissipation rate on Ra
as well. This observation is essential to interpret the sim-
ulations of an analogue fluid-mixture model in which sev-
eral recent experiments are based. Our high-resolution sim-285

ulations of convective mixing show that the classical Darcy–
Boussinesq equations of variable-density flow in porous me-
dia lead to mean scalar dissipation rates that are indepen-
dent of Ra. Therefore, nonlinear scalings of dissolution flux
with Ra must be explained by effects that are not present in the290

traditional Darcy–Boussinesq model equations of convective
mixing. Here, we have analyzed the effects of viscosity vari-
ations and the shape of the density curve. While the predicted
mixing rates depend only weakly on the viscosity contrast be-
tween the pure fluids, they depend strongly on the shape of295

the density–concentration curve and, in particular, on the po-
sition of the maximum of the curve. These effects, along with
others not investigated here such as volume change on mixing
[26], could help reconcile the Rayleigh-number dependence
observed experimentally [15, 17].300
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FIG. 3. Impact of viscosity variations on the time-averaged mean
scalar dissipation rate 〈ε〉. All simulations are for the analogue-fluid
system with different values of log-viscosity ratio (R = −2 to 2).
For each value of R, we plot 〈ε〉 as a function of Ra.
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FIG. 4. Impact of the shape of the density–concentration curve on
the time-averaged mean scalar dissipation rate 〈ε〉. We fix the value
of the Rayleigh number (Ra = 20, 000) and use constant viscosity
(R = 0), and run simulations for different piecewise-linear density
curves, parameterized by the concentration cm at which the curve
takes its maximum value (see inset).
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