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Abstract. The design of safe grounding systems in electrical installations is essential to assure
the protection of the equipment, the power supply continuity and the security of the persons.
In order to achieve these goals, it is necessary to compute the equivalent electrical resistance of
the system and the potential distribution on the earth surface when a fault condition occurs.
In the last years the authors have developed a numerical formulation based on the BEM for
the analysis of grounding systems embedded in uniform and layered soils. As it is known, in
practical cases the underlying series have a poor rate of convergence and the use of multilayer
soils requires an out of range computational cost. In this paper we present an efficient technique
based on the Aitken δ2-process in order to improve the rate of convergence of the involved series
expansions.

1. Introduction
From the beginnings of the large-scale use of electricity, one of the challenging stated problems
has been to obtain the potential distribution of a grounding system. When a fault condition
occurs, the grounding grid transports and dissipates the electrical currents produced into the
ground, with the aim of ensuring that a person in the vicinity of the grounded installation is
not exposed to a critical electrical shock, while preserving the continuity of the power supply
and the integrity of the equipment. To achieve these goals, the equivalent electrical resistance
of the system must be low enough to assure that fault currents dissipate mainly through the
grounding grid into the earth. Moreover, electrical potential values between close points on the
earth surface that can be connected by a person must be kept under certain maximum safe
limits (step, touch and mesh voltages) [1, 2].

In the last four decades, several methods and procedures for the analysis and design of
grounding grids have been proposed: methods based on the professional experience, on semi-
empirical works, on experimental data obtained from scale model assays and laboratory tests,
and even on intuitive ideas. Unquestionably, these contributions represented an important
improvement in the grounding analysis area, although some problems have been systematically
reported: the large computational costs required in the analysis of real cases, the unrealistic
results obtained when segmentation of conductors is increased, and the uncertainty in the margin
of error [1, 2, 3, 4], among others.

Maxwell’s Electromagnetic Theory constitutes the starting point to obtain the mathematical
equations that govern the dissipation of electrical currents into a soil. Nevertheless, although
these equations are well-known for a long time, their application and resolution for the computing



of grounding grids of large installations in practical cases present serious difficulties. First,
it is obvious that no analytical solutions can be obtained for most of real problems. On
the other hand, the characteristic geometry of grounding systems (a mesh of interconnected
bare conductors with a relatively small ratio diameter/length) makes very difficult the use of
numerical methods. Thus, the use of some widespread numerical techniques commonly applied
for solving boundary value problems in engineering, such as finite elements or finite differences, is
extremely expensive since the discretization of the domain (the ground excluding the electrode)
is required. Consequently, obtaining sufficiently accurate results should imply unacceptable
computing efforts in memory storage and CPU time.

In the last years, the authors have developed a numerical formulation based on the Boundary
Element Method for the analysis of grounding systems. Thus, it is possible to derive specific
computer methods of high accuracy for the analysis of grounding systems embedded in uniform
soils models [5]. Besides, it is possible to explain rigorously the anomalous asymptotic behaviour
of the clasical methods proposed for grounding analyis, and to identify the sources of error [4].
Its implementation in a Computer Aided Design application for grounding systems allows to
analyze real grounding installations in real-time using conventional personal computers. Finally,
this boundary element formulation has been extended for grounding grids embedded in layered
soils [6, 7].

In 2005, the authors proposed a methodology for the analysis of a common and very important
engineering problem in the grounding field: the problem of transferred earth potentials by
grounding grids, that is, the existence of transferred earth potentials in a grounding installation
for metallic stuctures or conductors connected or not connected to the grounding grid [1, 8].
The computer method based on the boundary element methodology for the case of uniform soil
models can be found in [9], while the generalization to layered soil models can be found in [10].

In this paper we turn our attention to a problem which appears in the analysis of grounding
grids in multilayer soils, related with the out-of-range computational requirements in some
practical cases due to the poor rate of convergence of the series that appear when the method
of images is applied to represent the different layers of soil. This topic should become the
bottleneck of the whole computer method. In this work we propose the use of an efficient
and mathematically well-founded extrapolation technique in order to accelerate the rate of
convergence of the involved series expansions. This proposal will be presented in the framework
of a general numerical approach based on the method of images to represent the layered soil
model.

2. Mathematical model
The Maxwell’s Electromagnetic Theory is the general framework to analyze the phenomena of
the electrical current dissipation into the soil through a grounding grid. Thus, restricting the
study to obtain the electrokinetic steady-state response and neglecting the inner resistivity of
the conductors (so, potential is constant on the surface of the grounding electrode), the set of
equations which governs the phenomena is given by

div(σσσσσσσσσσσσσσ) = 0, σσσσσσσσσσσσσσ = −γγγγγγγγγγγγγγ grad(V ) in E; σσσσσσσσσσσσσσtnnnnnnnnnnnnnnE = 0 in ΓE ; V = VΓ in Γ; V → 0, if |xxxxxxxxxxxxxx| → ∞ (1)

being E the earth, γγγγγγγγγγγγγγ its conductivity tensor, ΓE the earth surface, nnnnnnnnnnnnnnE its normal exterior unit
field and Γ the surface of the grounded electrode [5]. Therefore, solutions of (1) are potential
V and current density σσσσσσσσσσσσσσ at an arbitrary point xxxxxxxxxxxxxx when the electrode attains a voltage VΓ (the
Ground Potential Rise, or GPR) with respect to remote earth. The safety and design parameters
of a grounding system can be then easily obtained from known values of V on ΓE and σσσσσσσσσσσσσσ on Γ
[5, 7].

In many of the methods proposed for grounding analysis, the most common soil model
considered is the homogeneous and isotropic one, where conductivity γγγγγγγγγγγγγγ is substituted by an



apparent scalar conductivity γ [1, 5]. Obviously, this model is valid if the soil is “essentially”
uniform in all directions in the surroundings of the grounding grid. In order to take into account
variations of the soil conductivity, particularly in depth, other models have been proposed [11].
Thus, the “layered soil models” consist in asuming the soil stratified in a number of layers, defined
by an appropriate thickness and an apparent scalar conductivity that must be experimentally
obtained. In fact, it is widely accepted that two-layer and three-layer soil models should be
sufficient to obtain good and safe designs of grounding systems in most practical cases [1, 12, 13].

In the hypothesis of a stratified soil model formed by C layers with different conductivities,
the problem (1) can be written in terms of the following Neumann exterior problem

div(σσσσσσσσσσσσσσc) = 0, σσσσσσσσσσσσσσc = −γc gradgradgradgradgradgradgradgradgradgradgradgradgradgrad(Vc) in Ec, 1 ≤ c ≤ C;
σσσσσσσσσσσσσσt

1nnnnnnnnnnnnnnE = 0 in ΓE ; Vb = VΓ in Γ; Vc → 0 if |xxxxxxxxxxxxxx| → ∞, 1 ≤ c ≤ C;
Vc = Vc+1, 1 ≤ c ≤ C − 1; σσσσσσσσσσσσσσt

cnnnnnnnnnnnnnnc = σσσσσσσσσσσσσσt
c+1nnnnnnnnnnnnnnc in Γc, 1 ≤ c ≤ C − 1; (2)

being b the layer in which the grounded electrode is buried, Ec each one of the soil layers, γc its
scalar conductivity, Vc the potential at an arbitrary point in the layer Ec, σσσσσσσσσσσσσσc its corresponding
current density, Γc the interface between layers Ec and Ec+1, and nnnnnnnnnnnnnnc the normal field to Γc [7].
In this paper we restrict our analysis of the acceleration of convergence to two-layer soil models
(C = 2), although it is straightforward to extend the analysis to other layered soil models.

On the other hand, if it is assumed that the earth surface ΓE and the interfaces Γc

between layers are horizontal (this hypothesis seems sound if we take into account the levelling
and regularization processes performed in the surroundings of the substation site during the
construction process of the electrical installation), then the application of the “method of
images” and Green’s Identity [7] yields the following integral expression for potential Vc(xxxxxxxxxxxxxxc)
at an arbitrary point xxxxxxxxxxxxxxc ∈ Ec

Vc(xcxcxcxcxcxcxcxcxcxcxcxcxcxc) =
1

4πγb

∫ ∫
ξξξξξξξξξξξξξξ∈Γ
kbc(xxxxxxxxxxxxxxc, ξξξξξξξξξξξξξξ)σ(ξξξξξξξξξξξξξξ)dΓ, ∀xxxxxxxxxxxxxxc ∈ Ec, (3)

where σ(ξξξξξξξξξξξξξξ) is the unknown leakage current density at any point ξξξξξξξξξξξξξξ of the electrode surface Γ ⊂ Eb

(σ = σσσσσσσσσσσσσσtnnnnnnnnnnnnnn, where nnnnnnnnnnnnnn is the normal exterior unit field to Γ), and kbc(xxxxxxxxxxxxxxc, ξξξξξξξξξξξξξξ) is the integral kernel
formed by series of infinite terms corresponding to the resultant images obtained when Neumann
exterior problem is transformed into a Dirichlet one [5, 7, 14]. Depending on the type of soil
model considered (see the Appendix of reference [10], for example), these series can have a finite
number of terms (e.g., for uniform soil models C = 1) or an infinite number of terms (e.g., the
two-layer soil model C = 2).

At this point, it is important to remark that computing the potential distribution is only
required on the earth surface ΓE [1, 7]. So c = 1, it will be used in this paper from now on:

V1(x1x1x1x1x1x1x1x1x1x1x1x1x1x1) =
1

4πγb

∫ ∫
ξξξξξξξξξξξξξξ∈Γ
kb1(xxxxxxxxxxxxxx1, ξξξξξξξξξξξξξξ)σ(ξξξξξξξξξξξξξξ)dΓ, ∀xxxxxxxxxxxxxx1 ∈ ΓE , (4)

As it is known, weakly singular integral kernels depend on the inverse of the distances from
the point xxxxxxxxxxxxxx1 to the point ξξξξξξξξξξξξξξ and to all its images with respect to the earth surface and to the
interphases between layers; they also depend on the thickness and a ratio between conductivities
of the layers [15, 16].

In the case of a two-layer model, this ratio is given by κ:

κ =
γ1 − γ2

γ1 + γ2
(5)

and the singular kernels can be written in a general form

kb1(xxxxxxxxxxxxxx1, ξξξξξξξξξξξξξξ) =
∞∑

n=0

k
[n]
b1 (xxxxxxxxxxxxxx1, ξξξξξξξξξξξξξξ), k

[n]
b1 (xxxxxxxxxxxxxx1, ξξξξξξξξξξξξξξ) =

ψn(κ)
r(xxxxxxxxxxxxxx1, ξξξξξξξξξξξξξξn)

, (6)



where ψn(κ) is a weighting coefficient that only depends on the ratio κ given by (5), and r(xxxxxxxxxxxxxx1, ξξξξξξξξξξξξξξn)
is the Euclidean distance between the points xxxxxxxxxxxxxx1 and ξξξξξξξξξξξξξξn, being ξξξξξξξξξξξξξξ0 the point ξξξξξξξξξξξξξξ on the electrode
surface (ξξξξξξξξξξξξξξ0 = ξξξξξξξξξξξξξξ), and being ξξξξξξξξξξξξξξn (n 6= 0) the images of ξξξξξξξξξξξξξξ with respect to the earth surface and
to the interfaces between layers. The explicit expressions of these kernels can be found in the
Appendix of the reference [10].

If one substitutes (6) in (4), it is clear that potential value at a point xxxxxxxxxxxxxx1 ∈ ΓE can be computed
by adding the contribution of each image

V1(x1x1x1x1x1x1x1x1x1x1x1x1x1x1) =
∞∑

n=0

V
[n]
1 (x1x1x1x1x1x1x1x1x1x1x1x1x1x1) (7)

where V [n]
1 (x1x1x1x1x1x1x1x1x1x1x1x1x1x1) is the potential contribution due to image n:

V
[n]
1 (x1x1x1x1x1x1x1x1x1x1x1x1x1x1) =

1
4πγb

∫ ∫
ξξξξξξξξξξξξξξ∈Γ
k

[n]
b1 (xxxxxxxxxxxxxx1, ξξξξξξξξξξξξξξ)σ(ξξξξξξξξξξξξξξ)dΓ, (8)

Different computer methods have been proposed in the literature for computing these
potential contributions (8) [1, 2]. More specifically, in the last years the authors have proposed
an efficient and well-founded numerical methodology based on the Boundary Element Method:
with this approach it is possible to compute and design real grounding systems in the case of
uniform and two-layer soil models [4, 5, 6, 7, 17], as well as analyze grounding related problems
such as earth transferred potentials [9, 10].

In the next section we will deal with the problem of the rate of convergence of the infinite
series involved in the integral kernels, and after analyzing the evolution of the error in the
computation of potential, we will propose a method for accelerate the convergence of these
series.

3. Convergence acceleration techniques of the series
In the case of layered soil models (and in particular for the 2-layer one), the series (6) involved
in the calculus of potential (4) have a poor rate of convergence particularly when the ratio κ
—given by (5)— is close to +1 or -1; i.e., when important differences between the electrical
properties of the two layers of soil exist, which are usually the most interesting cases. It is
important to remark that the increase in the computing cost by the use of multilayer soil models
is justified when conductivities drastically vary, since two-layer models (or in general multilayer
models) produce results noticeably different from those obtained by using a uniform soil model.

On the other hand, it is advisable to remind that in practice the computation of the potential
distribution on the earth surface is usually the bottleneck of the complete process of grounding
analysis, since it is necessary to compute the potential in an extremely high number of points on
the earth surface in order to obtain high-quality results and to compute the safety parameters
of the grounding grid: e.g., for a substation site of an approximated area of 40.000 m2 it should
be necessary to compute the value of potential in approximately 50.000 points by using formula
(4). Consequently, it is very important to compute the potential accurately and low-costly from
a computational point of view.

In this section, we present the techniques developed by the authors to increase the rate of
convergence of the series: The starting point in the derivation of our proposal consists in studying
the bound of the absolute error in the computing of potential values on the ground surface.

First of all, we will analyze a particular case which is common knowledge: the computing
of potential for a punctual current source. This case will serve us to present a technique for
accelerate the convergence of the infinite series involved in the integral kernels. Next we present
the extension of the methodology to a general case of a grounding mesh.



Figure 1. Scheme of a punctual source of current with intensity I buried to a depth d in a
two-layer soil formed by an upper layer with a thickness h and conductivity γ1, and a lower layer
with conductivity γ2.

Let consider a punctual source of current with intensity I buried to a depth d in a two-layer
soil formed by an upper layer with a thickness h and conductivity γ1, and a lower layer with
conductivity γ2 (Figure 1).

The potential V1 on the ground surface is given by the following two expressions depending
on the position of the source [15, 16, 18]: If it is placed in the upper layer then d < h, and
potential is given by

V1(r) =
I

2πdγ1

1√
r̃2 + 1

+
I

2πdγ1

∞∑
n=1

κn√
r̃2 + (2nh̃− 1)2

+
I

2πdγ1

∞∑
n=1

κn√
r̃2 + (2nh̃+ 1)2

(9)

being r̃ = r/d and h̃ = h/d. If the punctual source is in the lower layer then d > h, and potential
is given by

V1(r) =
I

2πdγ2

∞∑
n=0

(1− κ)κn√
r̃2 + (2nh̃+ 1)2

(10)

In this paper, we have restricted our analysis to the case d > h, i.e. when the source is buried
in the lower layer, but the study can be straightforwardly extended to the other case d < h.

Figure 2 shows the potential computed for two different types of 2-layer soil models:
κ = +0.998 (corresponds to γ1 = 10−2 S/m and γ2 = 10−5 S/m) and κ = −0.998 (corresponds to
γ1 = 10−5 S/m and γ2 = 10−2 S/m), for the geometric values: h̃ = h/d = 0.25 (e.g., corresponds
to d = 1 m and h = 0.25 m) and r̃ = 1 (a point on the earth surface to a distance d over the
vertical of the punctual source). The value of intensity I has been chosen I = 2πdγ2 in order to
represent directly the sum of the series in all graphics.

Now, let be εN the absolute error produced in the calculus of the potential by computing N
terms of the series (i.e., by using the first N images): εN = |V1 − V N

1 |, being V1 the exact value
and V N

1 the approximation by computing N terms of the series. In the case of potential (9),
this absolute error is bounded by

εN <

∣∣∣∣∣∣ I

πdγ1

(1− κ)κN√
r̃2 + (2Nh̃− 1)2

∣∣∣∣∣∣ ; if d < h (11)
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Figure 2. Potential on earth surface produced by a punctual current source buried to a depth
d in a 2-layer soil of thickness of the upper layer h (d > h): Results depending on the number
of images computed for a κ = +0.998 (up) and for a κ = −0.998 (down) for a ratio r̃ = 1 and
h̃ = 0.25. It is also shown the values of the potential computed by using the proposed formula
(14) based on the Aitken acceleration.

and consequently, for a large number of images N , the logarithm of εN is essentially linearly-
dependent with N . In the case of potential (10), the error εN is bounded by

εN <

∣∣∣∣∣∣ I

2πdγ2

κN√
r̃2 + (2Nh̃+ 1)2

∣∣∣∣∣∣ ; if d > h (12)

and consequently, for a large number of images N , the logarithm of εN is again essentially
linearly-dependent withN . Figure 3 shows the evolution of the absolute error in the computation
of potential for the same previous two cases: κ = +0.998 and κ = −0.998. The linear dependency
of the log-error is clear when the number of images N increases as predicted by formulae (11)
and (12).
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Figure 3. Absolute error εN in the potential computing on earth surface produced by a
punctual current source buried to a depth d in a 2-layer soil of thickness of the upper layer
h (d > h): Results depending on the number of images computed for a κ = +0.998 (up) and for
a κ = −0.998 (down) for a ratio r̃ = 1 and h̃ = 0.25. It is also shown the bound of the absolute
error predicted by expressions (11) and (12).

As we can observe from expressions (11) and (12), the bound of the absolute error (in
logarithmic scale) is linear with N . Both are very important results. If the potential is computed
by using two different numbers of terms of the series (namely N1, N2), the Richardson’s deferred
approach to the limit [19] allows to conclude that εN2 = εN1κ

(N2−N1), that is, a geometric
convergence is achieved since |κ| < 1. This expression should be used to obtain extrapolated
values for the electrical potential, although it is possible to obtain better results by using the
Aitken acceleration.

Due to this geometric convergence, the Aitken’s δ2-process [19] can be used to accelerate the
convergence of the series and to obtain an enhanced value of potential (V E). Thus, by using the
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Figure 4. Number of images (left-scale) and relative error (right-scale) versus the number of
images necessary for potential improved values by using the Aitken acceleration (14) on earth
surface produced by a punctual current source buried to a depth d in a 2-layer soil of thickness
of the upper layer h (d > h) computed for a κ = +0.998 (up) and κ = −0.998 (down) for a ratio
r̃ = 1 and h̃ = 0.25.

computed values of the potential with three different numbers of terms of the series, namely N1,
N2 and N3 (satisfying N1 < N2 < N3 and N3 −N2 = N2 −N1), the Aitken’s process leads to

log
(
εN3

εN2

)
= log

(
εN2

εN1

)
(13)

From this expression, it is straightforward to deduce a formula for computing an enhanced
or extrapolated value of potential (V E):

V E =
V N1V N3 − V N2V N2

V N1 + V N3 − 2V N2
(14)



being V N1 , V N2 and V N3 the computed values of the potential obtained by using N1, N2 and
N3 images.

This formula is very simple and easy to use: for a given point on the ground surface, three
values of the potential (10) should be computed by using N1, N2 and N3 number of terms of
the series (satisfying N3 − N2 = N2 − N1) and then it is computed the enhanced value V E by
using the Aitken’s δ2 acceleration process given by (14).

As it can be seen, the figure 2 show the potential values and the extrapolated potential ones
versus the number of images. It is important to remark the good quality of the enhanced values
obtained by using the Aitken process computing with a few number of images, specially in the
case of κ = −0.998. As it is obvious from expressions (9) and (10), values of κ < 0 always lead
to alternate series which convergence can be amazingly accelerated by using formula (14): It is
important to remind that negative values of κ use to be the most interesting cases in practice
in the grounding substation design since they correspond to an upper layer less conductive than
the lower layer (γ1 < γ2), e.g., gravel in the upper layer and clayey ground in the lower one.

Figures 4 show the number of images necessary to compute the potential if no extrapolation
is used (number of computed images, N , in the left hand-side vertical axis) versus the number of
images if Aitken-extrapolation is used (in the horizontal axis). It is also represented the relative
error in the potential value (in the right hand-side vertical axis): e.g., in the case κ = −0.998, 10
images by using Aitken-formula are equivalent to compute N = 1000 images if no extrapolation
is used and the relative error produced is less than 5·10−4 (or 20 images using the Aitken process
produce the same result in the evaluation of potential as the computing of N = 1631 images if
no extrapolation is used, and the relative error is less than 6 · 10−5).

In order to conclude this study, we have performed this analysis of acceleration of convergence
by computing the potential in different points on the earth surface, and for different values of
the thickness of the upper layer and conductivities of the layers. We have obtained the same
improvement in the convergence of the series, and no significant difference has been observed:
in fact, we have shown that the ratio of acceleration (i.e., the quotient between the number of
terms required without using an acceleration process and the number of terms if Aitken process
is applied) depends esentially on the tolerance on the relative error fixed as target, and not of
the point where potential value is computed.

The techniques presented in the previous section to accelerate the convergence of the series
can be applied to the different methods proposed in the bibliography for computing potential
in the case of layered soil models based on the method of images. The authors have applied the
Aitken δ2-process to the Boundary Element numerical approach for grounding analysis derived
in the last years for uniform and layered soil models [4, 5, 6, 7, 9, 10, 14]. In the analysis of real
cases, the authors have obtained speed-up factors about 200 in the analysis of a total surface
greater than 20000 m2, computing the potential in almost 22000 points. Obviously the use of
this acceleration of the convergence of the series allows to perform an accurate analysis of the
grounding system in a layered soil model in real-time.

4. Conclusions
In this paper, the mathematical model of the physical phenomenon of the electrical current
dissipation through a grounding grid into a stratified soil has been revisited. Furthermore,
it has been presented a general methodology for the acceleration of the convergence of the
series involved in the computing of potential in grounding analysis of layered soils, which is
frequently the larger bottleneck in the computational cost of the computer earthing methods.
The methodology for accelerating the convergence is based on the Aitken δ2-process, being the
starting point of its derivation the study of the potential produced by punctual current source.

This acceleration technique can be extended for computing the potential produced for a
mesh of electrodes and vertical rods of a grounding grid. Its feasibility has been demonstrated



by applying the proposed methodology to the analysis of a grounding system with a two-layer
soil model. The improvement in the rate of convergence is spectacular, reducing two-orders of
magnitude the CPU time in the analysis of a real earthing grid in a two layer soil model.

In our opinion, the use of acceleration techniques as the proposed in this paper opens the
door to the use of layered models with more than two layers by application of the method of
images for computing potential on the earth surface.
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