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Abstract

The phase field crystal equation has been recently put forward as a model for mi-
crostructure evolution of two-phase systems on atomic length and diffusive time
scales. The theory is cast in terms of an evolutive nonlinear sixth-order partial
differential equation for the interatomic density that locally minimizes an energy
functional with the constraint of mass conservation. Here we propose a new numeri-
cal algorithm for the phase field crystal equation that is second-order time-accurate
and unconditionally stable with respect to the energy functional. We present sev-
eral numerical examples in two and three dimensions dealing with crystal growth in
a supercooled liquid and crack propagation in a ductile material. These examples
show the effectiveness of our new algorithm.

Key words: Isogeometric Analysis, Time-integration, Unconditionally stable,
Phase-field crystal

1 Introduction

Material properties at the meso- and macro-scales are to a large extent controlled by com-
plex microstructures exhibiting topological defects, such as, for example, vacancies, grain
boundaries and dislocations. These defects are the result of complicated non-equilibrium
dynamics that takes place on atomic length scales. The modeling and simulation of the
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onset and evolution of these features poses significant challenges over current multiscale
techniques. Typically, predictive models for these phenomena take the form of Molecular
Dynamics simulations, which describe them with significant accuracy, but are limited by
atomic length scales and femtosecond time scales. Continuum theories permit simulating
much larger systems and longer times, but usually fall short of incorporating the fundamen-
tal physical features that govern microstructure evolution. Recently, a new theory has been
put forward under the name of phase field crystal equation [17,18,42]. This model describes
the microstructure of two-phase systems on atomic length scales, but on a diffusive time
scale, leading to significant computational savings compared to Molecular Dynamics simula-
tions. The phase field crystal equation has been employed to simulate a number of physical
phenomena, including crystal growth in a supercooled liquid, dendritic and eutectic solidifi-
cation, epitaxial growth, and crack propagation in a ductile material [17,42]. The phase field
crystal equation is derived from an energy functional that is minimized by periodic density
fields, naturally incorporating the periodicity of a crystal lattice. The model is then cast
as an evolutive sixth-order partial differential equation (PDE) that locally minimizes this
energy functional under the constraint of mass conservation.

The numerical simulation of the phase field crystal equation presents several challenges, such
as, for example, the discretization of nonlinear higher-order partial-differential operators and
the approximation of dynamic interfaces that travel over the computational domain. Previ-
ous work on the topic include [11,32–34,49,54]. Given the fact that the exact solutions to
the phase field crystal equation lead to a time-decreasing energy functional, we feel that a
significant goal in the numerical simulation of this model is the development of algorithms
that verify this property at the discrete level irrespectively of the coarseness of the dis-
cretization (in what follows, algorithms of this type will be called unconditionally energy
stable or thermodynamically consistent). Thermodynamically consistent methods have been
previously studied in the context of solid [3,39,44,45] and fluid mechanics [30,36,47,48], but
remain less investigated for phase-field equations (significant works on this topic include
[16,20,22,24,27,31,51–53]). Remarkably, a second-order accurate, unconditionally uniquely
solvable algorithm for the phase field crystal equation has been proposed in [34,54]. This
scheme is unconditionally stable with respect to a discrete energy and weakly stable with
respect to the physical energy. Here we introduce a new fully-discrete algorithm for the phase
field crystal equation that is second-order time accurate and unconditionally energy stable.
Our time integration algorithm is based on a new quadrature formula proposed in [27] that
may be thought of as a non-symmetric higher-order extension of the trapezoidal rule. Our
space discretization is based on a new mixed variational form of the phase field crystal equa-
tion. The well-posedness of our variational form requires the use of globally C1-continuous
basis functions that we generate using Isogeometric Analysis [12,35], a recently proposed
generalization of Finite Element Analysis.

We present several numerical examples in two and three dimensions dealing with crystal
growth in a supercooled liquid, and crack propagation in a ductile material. These examples
show the effectiveness of our approach. The outline of this paper is as follows: In section 2, we
describe the phase field crystal equation. Section 3 presents our algorithm for this equation.
We present numerical examples in section 4. Finally, we draw conclusions in section 5.
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2 The phase field crystal equation

The phase field crystal equation describes the microstructure of solid-liquid systems at inter-
atomic length scales, and at a diffusive time scale [17,18]. The two-phase system is described
by a local atomistic density field ρ, which will be approximately uniform in the liquid phase,
and will inherit the symmetry and periodicity of the crystal lattice in the solid phase. The
phase field crystal equation has been shown to correctly model the dynamics of crystal
growth, including naturally elastic and plastic deformations. Other physical phenomena for
which the phase field crystal equation has shown potential as a predictive tool include epi-
taxial growth, material hardness, grain growth, reconstructive phase transitions, and crack
propagation in ductile materials [17]. The phase field crystal equation has also been recently
employed to model foams [29] and colloidal solidification [50].

The fundamental quantity for the phase field crystal equation is the following Lyapunov
functional:

F(ρ) =
∫
Ω

{
Φ(ρ) +

D

2

[
(Δρ)2 − 2k2|∇ρ|2 + k4ρ2

]}
dx (1)

where k and D are positive numbers, and

Φ(ρ) = − ε

2
ρ2 − g

3
ρ3 +

1

4
ρ4 (2)

In equation (2), ε and g are positive constants with physical significance. The phase field
crystal equation was derived as an evolutive PDE that preserves mass throughout the entire
dynamical process, and achieves free-energy dissipation. These requirements lead us to the
equation

∂ρ

∂t
= Δ

(
δF
δρ

)
(3)

where δF/δρ denotes the variational derivative of F with respect to ρ. Note that equation (3)
follows the typical structure of conserved phase-field models [2,7–10,14,15,21], and satisfies
the aforementioned properties. Using the expression of the variational derivative of F and
the notation ϕ(ρ) = Φ′(ρ), we get the phase field crystal equation

∂ρ

∂t
= Δ

(
ϕ(ρ) +Dk4ρ+ 2Dk2Δρ+DΔ2ρ

)
(4)

which involves sixth-order partial derivatives in space.

Multiplying equation (3) with δF/δρ, integrating over the spatial domain Ω, and integrating
by parts, the following expression may be obtained,

dF

dt
= −

∫
Ω

∣∣∣∣∣∇
(
δF
δρ

)∣∣∣∣∣
2

dx (5)

where F is a real-valued function defined as F (t) = F(ρ(·, t)). Equation (5) shows that the
energy functional (1) decreases in time over fields ρ which satisfy the phase field crystal
equation.
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2.1 Initial/boundary-value problem

We state the following initial/boundary-value problem over the spatial domain Ω and the
time interval (0, T ): given ρ0 : Ω �→ R, find ρ : Ω× [0, T ] �→ R such that

∂ρ

∂t
= Δ

(
ϕ(ρ) +Dk4ρ+ 2Dk2Δρ+DΔ2ρ

)
in Ω× (0, T ) (6)

∇
(
ϕ(ρ) +Dk4ρ+ 2Dk2Δρ+DΔ2ρ

)
· n = 0 on Γ× [0, T ] (7)

∇(2Dk2ρ+DΔρ) · n = 0 on Γ× [0, T ] (8)

∇ρ · n = 0 on Γ× [0, T ] (9)

ρ(x, 0) = ρ0(x) in Ω (10)

3 Numerical formulation for the phase-field crystal equation

Here we present our numerical formulation for the phase field crystal equation. We first derive
a semidiscrete formulation, and then introduce a time integration scheme which preserves
mass during the entire dynamical process, and is unconditionally energy stable.

3.1 Semidiscrete formulation

To derive the semidiscrete formulation we propose the following splitting of the phase field
crystal equation,

∂ρ

∂t
=Δσ (11)

σ=ϕ(ρ) +Dk4ρ+ 2Dk2Δρ+DΔ2ρ (12)

Let us define the functional space V ⊂ H2, whereH2 is the Sobolev space of square integrable
functions with square integrable first and second derivatives. We derive a weak form of
equations (11)–(12) by multiplying them with functions w, q ∈ V , and integrating by parts.
At this point, we assume periodic boundary conditions in all directions. The problem can
be stated as: find ρ, σ ∈ V such that for all w, q ∈ V

(
w,

∂ρ

∂t

)
+ (∇w,∇σ) = 0 (13)

(q, σ)−
(
q, ϕ(ρ) +Dk4ρ

)
+
(
∇q, 2Dk2∇ρ

)
− (Δq,DΔρ) = 0 (14)
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We derive a semidiscrete formulation by replacing (13)–(14) by a finite-dimensional problem
defined over the discrete space V h ⊂ V . The problem can be stated as follows: find ρh, σh ∈
V h such that for all wh, qh ∈ V h

(
wh,

∂ρh

∂t

)
+
(
∇wh,∇σh

)
= 0 (15)

(
qh, σh

)
−
(
qh, ϕ(ρh) +Dk4ρh

)
+
(
∇qh, 2Dk2∇ρh

)
−
(
Δqh, DΔρh

)
= 0 (16)

Note that the condition V h ⊂ V requires the discrete space to be H2 conforming. We satisfy
this requirement using Isogeometric Analysis [12,35], a recently proposed generalization of
Finite Element Analysis. Isogeometric Analysis is based on developments of Computer Aided
Design (CAD). The main idea of Isogeometric Analysis is to use the parametrizations that
underlie CAD designs to generate the computational mesh and the basis functions necessary
for analysis, following the isoparametric concept. This holds promise to simplify, or even
eliminate altogether, the mesh generation and refinement process, currently the most time-
consuming step of analysis. CAD parametrizations are usually defined in terms of Non-
Uniform Rational B-Splines (NURBS), although there are other possibilities, such as, for
example, T-Splines [4] or PHT-Splines [40]. NURBS are generated from B-Splines using
projective transformations, while B-Splines are simply piecewise polynomials [41,43]. Thus,
in NURBS-based Isogeometric Analysis, both the computational domain and the solution
field are described using NURBS. This not only leads to simpler interface between CAD
and analysis, but has also proven superior accuracy than classical Finite Elements on a
per-degree-of-freedom basis [1,23]. Isogeometric Analysis has been successfully applied to
a number of problems in solid [13,19,37,38] and fluid mechanics [5,6] showing significant
efficiency and robustness. Even more importantly for the present work, the use of NURBS
permits generating globally C1-continuous basis functions easily, which leads to a simple and
efficient discretization of higher-order operators as shown in [25–28]. In what follows, we will
suppose that V h = span{NA}; A = 1, . . . , nb, where NA is a C1-continuous NURBS function
associated to the global degree of freedom A and nb is the dimension of the discrete space.

3.2 Time integration

This section presents our time integration scheme for the phase field crystal equation. We
divide the time interval [0, T ] into subintervals In = [tn, tn+1] where 0 = t0 < t1 < · · · <
tN = T and [0, T ] = ∪N−1

n=0 In. We define the time step Δtn = tn+1 − tn. Let us call ρhn the
time discrete approximation to ρh(tn). Thus, the problem can be stated as follows: given ρhn,
find ρhn+1 ∈ V h such that for all wh, qh ∈ V h

5
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(
wh,

�ρhn�

Δtn

)
+
(
∇wh,∇σh

)
= 0 (17)

(
qh, σh

)
−
(
qh,

1

2

(
ϕ(ρhn) + ϕ(ρhn+1)

)
− �ρhn�

2

12
ϕ′′(ρhn)

)
−
(
qh, Dk4ρhn+1/2

)

+
(
∇qh, 2Dk2∇ρhn+1/2

)
−
(
Δqh, DΔρhn+1/2

)
= 0 (18)

where

�ρhn� = ρhn+1 − ρhn and ρhn+1/2 = (ρhn+1 + ρhn)/2 (19)

We summarize in the following theorem the most relevant properties of our discrete formu-
lation.

Theorem 1 The fully-discrete variational formulation (17)–(18):

(1) Verifies mass conservation, that is,

∫
Ω
ρhndx =

∫
Ω
ρh0dx ∀n = 1, . . . , N

(2) Verifies the nonlinear stability condition

F(ρhn) ≤ F(ρhn−1) ∀n = 1, . . . , N

irrespectively of the time step.
(3) Gives rise to a local truncation error τ that may be bounded as |τ(tn)| ≤ KΔt2n for all

tn ∈ [0, T ], where K is a constant independent of Δtn.

Proof:

(1) The result can be proven taking wh = 1 in equation (17), and applying inductive logic.
(2) The proof relies on the following quadrature formula: Let f : [a, b] �→ R be a sufficiently

smooth function. It may be proven that

∫ b

a
f(x)dx =

b− a

2
(f(a) + f(b))− (b− a)3

12
f ′′(a)− (b− a)4

24
f ′′′(ξ); ξ ∈ (a, b) (20)

A complete derivation of this formula may be found in [27]. If we apply this quadrature
formula to the right hand side of the identity

∫ ρhn+1

ρhn

Φ′(t)dt =
∫ ρhn+1

ρhn

ϕ(t)dt (21)

we get

�ϕ(ρhn)� =
�ρhn�

2

(
ϕ(ρhn) + ϕ(ρhn+1)

)
− �ρhn�

2

12
ϕ′′(ρhn)−

�ρhn�
4

24
ϕ′′′(ρhn+ε); ε ∈ (0, 1) (22)

Now, let us take wh = σh in (17) and qh = �ρhn� in (18). It follows that,

6
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(
σh,

�ρhn�

Δtn

)
+
(
∇σh,∇σh

)
= 0 (23)

(
�ρhn�, σ

h
)
−
(
�ρhn�,

1

2

(
ϕ(ρhn) + ϕ(ρhn+1)

)
− �ρhn�

2

12
ϕ′′(ρhn)

)
−
(
�ρhn�, Dk4ρhn+1/2

)

+
(
∇�ρhn�, 2Dk2∇ρhn+1/2

)
−
(
Δ�ρhn�, DΔρhn+1/2

)
= 0 (24)

Taking into account that,

(�ρhn�, ρ
h
n+1/2) =

1

2

∫
Ω
�(ρhn)

2�dx; (∇�ρhn�,∇ρhn+1/2) =
1

2

∫
Ω
�|∇ρhn|2�dx; (25)

(Δ�ρhn�,Δρhn+1/2) =
1

2

∫
Ω
�(Δρhn)

2�dx (26)

and making use of (22), we conclude that

�F(ρhn)� = −Δtn
(
∇σh,∇σh

)
− 1

24

(
�ρhn�

4, ϕ′′′(ρhn+ξ)
)

(27)

and the result is proven, because ϕ′′′(ρ) ≥ 0 ∀ρ ∈ R.
(3) We derive a bound on the local truncation error by comparing our method with the

midpoint rule, which is known to be a second-order time-accurate algorithm. Applying
the midpoint rule to the semidiscrete formulation of the phase field crystal equation
(15)–(16), we obtain

(
wh,

�ρhn�

Δtn

)
+
(
∇wh,∇σh

)
= 0 (28)

(
qh, σh − ϕ(ρhn+1/2)−Dk4ρhn+1/2

)
+
(
∇qh, 2Dk2∇ρhn+1/2

)
−
(
Δqh, DΔρhn+1/2

)
= 0(29)

where equation (29) defines σh, and ρhn+1 is the time discrete solution using the midpoint
rule. The local truncation error of the midpoint rule may be obtained by replacing the
time discrete solution ρhn with the time continuous solution ρh(tn) in equations (28)–
(29). The time continuous solution does not satisfy equations (28)–(29), giving rise to
the local truncation error. Proceeding this way, we obtain

(
wh,

�ρh(tn)�

Δtn

)
+
(
∇wh,∇σh

τ

)
=
(
wh, τ(tn)

)
(30)

(
qh, σh

τ − ϕ
(
ρh(tn+1/2)

)
−Dk4ρh(tn+1/2)

)
+
(
∇qh, 2Dk2∇ρh(tn+1/2)

)
−
(
Δqh, DΔρh(tn+1/2)

)
= 0 (31)

where σh
τ is defined in equation (31), and τ(tn) is the local truncation error of the

midpoint rule. Using Taylor series, it may be proven that |τ(tn)| ≤ KΔt2n, where K
is a real constant independent of Δtn. If we proceed analogously with our algorithm,
we define the local truncation error of our method by replacing the time continuous
solution in equations (17)–(18), which leads to

7
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(
wh,

�ρh(tn)�

Δtn

)
+
(
∇wh,∇σh

τ

)
=
(
wh, τ(tn)

)
(32)

(
qh, σh

τ −
1

2

(
ϕ(ρh(tn)) + ϕ(ρh(tn+1))

)
− �ρh(tn)�

2

12
ϕ′′(ρh(tn))−Dk4ρh(tn+1/2)

)

+
(
∇qh, 2Dk2∇ρh(tn+1/2)

)
−
(
Δqh, DΔρh(tn+1/2)

)
= 0 (33)

Taking into account that

1

2

(
ϕ(ρh(tn)) + ϕ(ρh(tn+1))

)
− �ρh(tn)�

2

12
ϕ′′(ρh(tn)) = ϕ(ρh(tn+1/2)) +O(Δt2n) (34)

it follows that,

(
wh, τ(tn)

)
=
(
wh, τ(tn)

)
+O(Δt2n) (35)(

qh, σh
τ

)
=
(
qh, σh

τ

)
+O(Δt2n) (36)

which implies that there exists a real constantK, independent of Δtn such that |τ(tn)| ≤
KΔt2n, and the pursued result is proven.

�

3.3 Implementation

Let P n and Sn be the global vectors of degrees of freedom associated to ρhn and its corre-
sponding σh, respectively. We introduce the following residual vectors

Rρ(P n,P n+1,Sn+1); Rρ = {Rρ
A};A = 1, . . . , nb (37)

Rσ(P n,P n+1,Sn+1); Rσ = {Rσ
A};A = 1, . . . , nb (38)

where

Rρ
A =

(
NA,

�ρhn�

Δt

)
+
(
∇NA,∇σh

)
(39)

Rσ
A = (NA, σ

h)−
(
NA,

1

2

(
ϕ(ρhn+1) + ϕ(ρhn)

)
− �ρhn�

2

12
ϕ′′(ρhn)

)

− (NA, Dk4ρhn+1/2) +
(
∇NA, 2Dk2∇ρhn+1/2

)
−
(
ΔNA, DΔρhn+1/2

)
(40)

When we equate these residual vectors to zero, we obtain a nonlinear system of equations
for P n+1 and Sn+1 that we solve using Newton’s method.

Let P n+1,(i) and Sn+1,(i) be the i-th iteration of Newton’s algorithm. Our iterative procedure
is defined as follows: Take P n+1,(0) = P n, and Sn+1,(0) = Sn. Then, for i = 1, . . . , imax

8



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(1) Compute the residual vectors using the values P n+1,(i), Sn+1,(i). These will be denoted
as Rρ

(i), R
σ
(i).

(2) Compute the tangent matrix K(i) using the i-th iterates. This matrix has a block
structure and may be written as

K(i) =

⎛
⎜⎝Kρρ

(i) K
ρσ
(i)

Kσρ
(i) K

σσ
(i)

⎞
⎟⎠

.
(3) Solve the linear system

⎛
⎜⎝Kρρ

(i) K
ρσ
(i)

Kσρ
(i) K

σσ
(i)

⎞
⎟⎠
⎛
⎜⎝ΔP (i+1)

ΔS(i+1)

⎞
⎟⎠ = −

⎛
⎜⎝Rρ

(i)

Rσ
(i)

⎞
⎟⎠

using diagonally-preconditioned GMRES [46].
(4) Update the solution as,

⎛
⎜⎝P n+1,(i+1)

Sn+1,(i+1)

⎞
⎟⎠ =

⎛
⎜⎝P n+1,(i)

Sn+1,(i)

⎞
⎟⎠+

⎛
⎜⎝ΔP (i+1)

ΔS(i+1)

⎞
⎟⎠

The process (1)-(4) needs to be repeated until the norms of both residual vectors have been
reduced to a given tolerance tol of their initial value. Taking tol = 10−4, convergence is
typically achieved in two or three iterations.

Remark:

An important topic that is, however, out of the scope of this paper is the solvability of the
nonlinear system of equations (37)–(40). In principle, the unique solvability of this nonlinear
system of equations may impose a restriction on the time step size. Our numerical simulations
indicate that this potential restriction, if existed, would be very mild, because for all the
numerical examples that we performed, we have been able to take time steps larger than
those reported in the literature. We also remark that the algorithm proposed by Hu et al. [34]
is second-order accurate and unconditionally uniquely solvable. The trade-off for the sake of
unconditional solvability is that Hu’s method is not unconditionally stable with respect to
the physical energy, but with respect to a slightly modified energy.

4 Numerical examples

In this section we present some numerical examples for the phase field crystal equation. The
examples are related to several physical phenomena, such as, for instance, the growth of
a polycrystal in a supercooled liquid, and the dynamic propagation of a crack in a ductile
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material. Our calculations provide numerical corroboration for the theoretical results pre-
sented in the previous sections, and illustrate the accuracy, stability and robustness of our
new algorithm.

4.1 Crystal growth in a supercooled liquid in two dimensions

This example presents the growth of a polycrystal in a supercooled liquid. We simulate the
evolution of three crystallites with different orientations. This leads to a complex dynami-
cal process which simultaneously involves the motion of liquid-crystal interfaces and grain
boundaries separating the crystals. Similar numerical examples may be found in [18,34].

To define the initial configuration we proceed as follows: first; we set all control variables
to a constant value ρ̄, which for this example takes the value ρ̄ = 0.285; second; we modify
this constant configuration by setting three perfect crystallites in three small square patches
of the domain as illustrated in Figure 6(a). We use the following expression to define the
crystallites:

ρ(xl, yl) = ρ̄+ C

[
cos

(
q√
3
yl

)
cos (qxl)− 0.5 cos

(
2q√
3
yl

)]
(41)

where xl and yl define a local system of cartesian coordinates that is oriented with the
crystallite lattice. The parameters C and q take the values C = 0.446, and q = 0.66. To
generate crystallites with different orientations, we define the local coordinates (xl, yl) using
an affine transformation of the global coordinates (x, y), that produces a rotation given by
an angle α. We generated the three crystallites using this strategy. We took α = −π/4,
α = 0 and α = π/4. Figure 6(a), which is the computed solution at an early time, gives a
precise idea of the initial condition we employed.

The computational domain for this example is Ω = [0, 800]2. On this domain, we define an
uniform computational mesh composed of 20482 C1 quadratic elements. The time step is
Δt = 4. The parameters of the phase field crystal equation take the values D = k = 1,
g = 0, and ε = 0.25.

Figure 6 shows snapshots of the numerical solution at several computational times. We
observe the growth of the crystalline phase and the motion of well-defined crystal-liquid
interfaces. The different alignment of the crystallites causes defects and dislocations that are
clearly observed in the pictures. The solution presents similar features to those obtained in
[18,34].

Figure 6 analyzes the time evolution of the energy functional. We recomputed this example
using three different time steps, namely, Δt = 1, Δt = 2, Δt = 4, and plotted the free-
energy evolution. The plot shows that the free energy is time decreasing in all cases, and
the differences between the three cases are negligible. The inset in Figure 6 is a zoom of the
energy evolution in the late dynamics of the equation. The inset shows that the larger is the
time step, the higher is the energy at a given time, which is consistent with our previous
experience with unconditionally stable methods for phase dynamics [27]. Additional insight

10
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about the dependence of the energy evolution on the time step may be obtained examining
equation (27).

4.2 Crack propagation on a square domain

Following [17], we utilize the phase field crystal equation to model crack propagation in a
ductile material. We consider a square domain Ω = [0, 1024π/3]2. The computational mesh
is composed of 10242 C1 quadratic elements, and the time step is Δt = 20. We assume
periodic boundary conditions in both directions. The parameters of the phase field crystal
equation are D = k = ε = 1, and g = 0. As initial condition, we set a crystal lattice given
by the expression

ρ0(x) = 0.49 + cos (qxx) cos

(
qy√
3
y

)
− 1

2
cos

(
2qy√
3
y

)
(42)

A crystal under no mechanical loads would be in equilibrium when qx = qy =
√
3/2 in

the limit ε → 0. We take qx = 0.7265625000000, and qy = 0.7307089344312, which induces
stretchings with respect to the equilibrium wavelength of approximately 16% and 15% in
the x and y directions, respectively. These values of qx and qy also ensure that the initial
condition is periodic, and, thus, compatible with boundary conditions. In the center of the
domain, we set a small notch in which the density takes an homogeneous value of 0.79.
We performed simulations using circular and square notches. The numerical approximation
to the atomistic density field may be observed in Figure 3. We notice that the solution
is extremely dependent on the shape of the notch. This is not surprising due to the high
nonlinearity of the phase field crystal equation and the fact that different notch shapes
induce different stress concentrations.

Figure 4 shows the time evolution of the energy functional for the two computations pre-
sented in Figure 3. We observe that the energy is decreasing at all times.

4.3 Crack propagation on a rectangular domain

For this calculation we consider the rectangular domain Ω = [0, 2048π/3]× [0, 512π/3]. The
computational mesh is composed of 2048× 512 C1 quadratic elements. We assume periodic
boundary conditions in both directions. The parameters of the phase field crystal equation
are D = k = ε = 1, and g = 0. The time step is Δt = 20. We remark that similar calculations
presented in [17] employed a time step 400 times smaller, which indicates that our method
is significantly more effective.

The initial condition is generated using formula (42), but we take different stretchings than in
the last example. We perform two computations that correspond to two different mechanical
configurations.
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Configuration 1

We define configuration 1 taking qx = 0.8525390625000, and qy = 0.7713038752455 which
induces stretchings of approximately 1% and 11% in the x and y directions, respectively. In
this initial density field, we define a rectangular notch in which the density takes the constant
value 0.79. The initial condition may be observed in Figure 5(a). As the computation evolves,
the crack propagates over a straight horizontal line, leading to the situation depicted in
Figure 5(b).

Configuration 2

Configuration 2 is defined taking qx = 0.7705078125000, and qy = 0.7713038752455 which
induces stretchings of approximately 11% in both directions. For this example, we set two
rectangular notches in which the density takes the value 0.79. The initial condition may be
observed in Figure 6(a). This configuration leads to more complicated cracks that interact
with each other. The numerical solution at time t = 24000 may be observed in Figure 6(b).

Figure 7 shows the time evolution of the free energy for the two mechanical configurations.
It is observed that the energy decreases at all times.

4.4 Crystal growth in a supercooled liquid in three dimensions

This example deals with the numerical simulation of crystal growth in three dimensions. We
simulate the growth and interaction of two crystallites that originate from two nucleation
sites. The computational domain is Ω = [0, 100]3, and we assume periodic boundary condi-
tions in all directions. The parameters of the phase field crystal equation are D = k = ε = 1
and g = 0. For this calculation, we employed an uniform mesh composed of 1283 C1-quadratic
elements. We utilized the time step Δt = 1. The initial configuration, depicted in Figure
8(a)-(b) was generated as follows: we let a randomly perturbed constant (liquid) state evolve
to a periodic lattice (solid) state using the set up and parameters mentioned above. We ex-
tracted two pieces of the final state with an hexahedric shape, and superposed them to a
constant density field as shown in Figure 8(a)-(b). In Figure 8, snapshot (a) shows isosur-
faces of the density field, while image (b) presents a slice of the solution across the indicated
plane. The evolution of the two crystallites may be observed in the second and third rows
of Figure 8 (again, the left hand side shows isosurfaces, while the right hand side presents a
slice of the solution across a plane). At some point the crystallites have grown enough as to
start interacting as shown in Figure 9.

The asymptotic state, which can be observed in the third row of Figure 9 (snapshots (e)-(f)),
corresponds to a solid state represented by a periodic lattice.

Figure 10 shows the time history of the energy functional (1). It may be observed that the
energy decreases at all times, which, again, provides numerical evidence for our method
being unconditionally stable.
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5 Conclusions

The phase field crystal equation is a higher-order nonlinear PDE endowed with an stability
property. It describes the microstructure of two-phase systems at interatomic length scales.
We introduce new space-time discretizations that inherit the nonlinear stability relationship
of the continuous equation irrespectively of the mesh and time step sizes, and that are
second-order time-accurate. We utilize our new algorithm to compute a number of numerical
examples that deal with several physical phenomena, such as, for example, crystal growth,
and dynamic crack propagation. These examples provide numerical corroboration for our
theoretical results, and show the accuracy, efficiency and robustness of our new method.
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(a) t = 20 (b) t = 400

(c) t = 800 (d) t = 1300

Fig. 1. Crystal growth in a supercooled liquid. Snapshots of the numerical approximation to the
atomistic density field. The parameters of the phase field crystal equation are D = k = 1, g = 0,
and ε = 0.25. The computational mesh is composed of 20482 C1 quadratic elements. The time step
is Δt = 4.
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Fig. 2. Crystal growth in a supercooled liquid. Time evolution of the free energy functional for
three different time steps. We observe that the energy decreases at all times, which confirms that
our algorithm is unconditionally stable, as predicted by the theory. The inset shows the small
differences in the energy evolution for the considered time steps.
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(a) Circular notch. Density at t = 16000 (b) Square notch. Density at t = 15000

Fig. 3. Crack propagation in a ductile material. The computational domain is Ω = [0, 1024π/3]2,
and the spatial mesh is composed of 10242 C1 quadratic elements. The time step is Δt = 20. The
initial condition is a crystal lattice with stretchings of approximately 16% and 15% in the x and
y directions, respectively. In the center of the domain, we set a small notch. On the left hand side
we show the numerical solution using a circular notch of radius 20π/3. For the computation on the
right hand side we employed a square notch of side 20π/3.

19



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

0 2000 4000 6000 8000 10000 12000 14000 16000
−3.85

−3.8

−3.75

−3.7

−3.65

−3.6

−3.55

−3.5

−3.45
x 10

4

t

F

Fig. 4. Crack propagation on a square domain. Time evolution of the energy functional for the two
computations presented in Figure 3. We observe that the energy is decreasing at all times.
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(a) t = 0

(b) t = 110000

Fig. 5. Crack propagation on a rectangular domain. The computational domain is
Ω = [0, 2048π/3] × [0, 512π/3], and the spatial mesh is composed of 2048 × 512 C1 quadratic ele-
ments. The time step is Δt = 20. The initial condition, shown on top, corresponds to Configuration
1. At the bottom we present the numerical solution at time t = 110000.
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(a) t = 0

(b) t = 24000

Fig. 6. Crack propagation on a rectangular domain. The computational domain is
Ω = [0, 2048π/3] × [0, 512π/3], and the spatial mesh is composed of 2048 × 512 C1 quadratic ele-
ments. The time step is Δt = 20. The initial condition, shown on top, corresponds to Configuration
2. At the bottom we present the numerical solution at time t = 24000.
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Fig. 7. Crack propagation on a rectangular domain. Time evolution of the free energy for two
mechanical configurations. We observe that the free energy is decreasing at all times.
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(a) t = 0 (b) t = 0

(c) t = 10 (d) t = 10

(e) t = 20 (f) t = 20

Fig. 8. Crystal growth in a supercooled liquid in three dimensions. The images show the evolution
and interaction of two crystallites initially surrounded by liquid. The computational times are
indicated in the labels. On the left hand side, we show isosurfaces of the solution, while on the
right hand side we present a slice of the solution across the indicated plane. The computational
mesh is composed of 1283 C1 quadratic elements. The time step is Δt = 1.
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(a) t = 30 (b) t = 30

(c) t = 40 (d) t = 40

(e) t = 190 (f) t = 190

Fig. 9. Crystal growth in a supercooled liquid in three dimensions. The images show the evolution
and interaction of two crystallites initially surrounded by liquid. The computational times are
indicated in the labels. On the left hand side, we show isosurfaces of the solution, while on the
right hand side we present a slice of the solution across the indicated plane. The computational
mesh is composed of 1283 C1 quadratic elements. The time step is Δt = 1.
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Fig. 10. Crystal growth in a supercooled liquid in three dimensions. The plot shows that the energy
is decreasing at all times. We have appended to the energy curve some snapshots of the solution
to give an indication of the dynamical process that correspond to the energy decay.
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We propose a new space time discretization algorithm for the phase field crystal equation.

The proposed method inherits the nonlinear stability property of the continuum theory.

We present several numerical examples that support our theoretical results and illustrate the efficiency,
accuracy and stability of our new method.


