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Abstract

In the last years the authors have developed a numerical formulation based on the
Boundary Element Method for the analysis of grounding systems embedded in uni-
form soils. This approach has been implemented in a CAD system that currently
allows to analyze real grounding grids in real-time in personal computers. The ex-
tension of this approach for the grounding analysis in layered soils is straightforward
by application of the method of images. However in some practical cases the result-
ing series have a poor rate of convergence; consequently, the analysis of real earthing
grids in multilayer soils requires an out of range computational cost.

In this paper we present a CAD system based on this BEM numerical formulation
for grounding analysis in multilayer soils that include an efficient technique based on
the Aitken acceleration in order to improve the rate of convergence of the involved
series expansions. Finally, we show some examples by using the geometry of real
grounding systems.
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1 Introduction

From the beginnings of the large-scale use of electricity, one of the challenging
problems stated has been to obtain the potential distribution in electrical instal-
lations when a fault current is derived into the soil through a grounding system.
Traditionally the grounding system refers to the earthing or grounding grid or
the “grounded electrode” as its main element, being the potential distribution
on the earth surface the most important parameter that it is necessary to know
in order to design a safe grounding system.

In practice, the grounding grid usually consists of a mesh of interconnected
cylindrical conductors buried to a certain depth of the ground surface (0.5− 1.0
m), and supplemented by ground rods vertically thrusted in certain places of
the substation site. Thus, when a fault condition occurs, the grounding grid
transports and dissipates the electrical currents produced into the ground, with
the aim of ensuring that a person in the vicinity of the grounded installation
is not exposed to a critical electrical shock, and also preserving the continuity
of the power supply and the integrity of the equipment. To achieve these goals,
the equivalent electrical resistance of the system must be low enough to assure
that fault currents dissipate mainly through the grounding grid into the earth.
Moreover, electrical potential values between close points on the earth surface
that can be connected by a person must be kept under certain maximum safe
limits (step, touch and mesh voltages) [1,2].

In the last four decades, several methods and procedures for the analysis and
design of grounding grids have been proposed: methods based on the professional
experience, on semi-empirical works, on experimental data obtained from scale
model assays and laboratory tests, and even on intuitive ideas. Unquestionably,
these contributions represented an important improvement in the grounding anal-
ysis area, although some problems have been systematically reported: the large
computational costs required in the analysis of real cases, the unrealistic results
obtained when segmentation of conductors is increased, and the uncertainty in
the margin of error [1,2,3,4], among others.

Maxwell’s Electromagnetic Theory constitutes the starting point to obtain the
mathematical equations that govern the dissipation of electrical currents into a
soil. Nevertheless, although these equations are well-known for years, their appli-
cation and resolution for the computing of grounding grids of large installations
in practical cases present serious difficulties. First, it is obvious that no analyt-
ical solutions can be obtained for most real problems. On the other hand, the
characteristic geometry of grounding systems (a mesh of interconnected bare con-
ductors with a relatively small ratio diameter-length) makes very difficult the use
of numerical methods. Thus, the use of some widespread numerical techniques
commonly applied for solving boundary value problems in engineering, such as
finite elements or finite differences, is extremely expensive since the discretiza-
tion of the domain is required: this is to say the ground excluding the electrode.
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Consequently, obtaining sufficiently accurate results should imply unacceptable
computing efforts in memory storage and CPU time.

In the last years, the authors have developed a numerical formulation based
on the Boundary Element Method for the analysis of grounding systems with
uniform soil models[5,6]. Its implementation in a Computer Aided Design ap-
plication for grounding systems allows to analyze real grounding installations in
real-time using conventional personal computers.

Later, we proposed a generalization of the boundary element formulation for
grounding grids embedded in layered soils [7]. This is a very challenging problem
with important consequences in the grounding design from the safety point of
view [1]. These stratified soil models are frequently used when there are impor-
tant differences in the electrical properties of the soil: for example, when the
excavation process during the construction of the substation produces a layered
soil, or as a consequence of a chemical treatment of the soil applied in the sur-
roundings of the earthing system to improve the performance of the grounding
electrode, or due to the specific geological characteristics of the substation site.

However the analysis of real grounding grids in multilayer soils requires in
some practical cases an out-of-range computational cost due to the poor rate of
convergence of the series that appear when the method of images is applied to
represent the different layers of soil. This topic becomes the bottleneck of the
whole numerical approach. In this paper we focus our attention on this problem
proposing the use of an efficient and mathematically well-founded extrapolation
technique in order to accelerate the rate of convergence of the involved series
expansions.

2 Math model of the current dissipation problem

2.1 General equations

The dissipation of electrical currents into the soil can be studied in the frame-
work of the Maxwell’s Electromagnetic Theory. If one restricts the analysis to
the electrokinetic steady-state response and neglects the inner resistivity of the
earthing conductors (so, potential is assumed constant at every point of the
grounding electrode surface), the 3D problem can be written as

div(σσσσσσσσσσσσσσ) = 0, σσσσσσσσσσσσσσ = −γγγγγγγγγγγγγγ grad(V ) in E;
σσσσσσσσσσσσσσtnnnnnnnnnnnnnnE = 0 in ΓE; V = VΓ in Γ; V → 0, if |xxxxxxxxxxxxxx| → ∞ (1)

where E is the earth, γγγγγγγγγγγγγγ is its conductivity tensor, ΓE is the earth surface, nnnnnnnnnnnnnnE is
its normal exterior unit field and Γ is the electrode surface [5]. Therefore, the
solution to (1) gives potential V and current density σσσσσσσσσσσσσσ at an arbitrary point xxxxxxxxxxxxxx
when the electrode attains a voltage VΓ (Ground Potential Rise, or GPR) with
respect to remote earth. Next, for known values of V on ΓE and σσσσσσσσσσσσσσ on Γ, it
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is straightforward to obtain the design and safety parameters of the grounding
system [5]. On the other hand, since V and σσσσσσσσσσσσσσ are proportional to the GPR value
[5], from here on it will be used the normalized boundary condition VΓ = 1.

The most common soil model considered in many of the methods proposed for
grounding analysis is the homogeneous and isotropic one, where conductivity γγγγγγγγγγγγγγ is
substituted by an apparent scalar conductivity γ [1,5]. Obviously, this hypothesis
is valid (and it does not introduce significant errors) if the soil is “essentially
uniform” in all directions in the surroundings of the grounding grid; this model
can even be used with loss of accuracy if the soil resistivity changes slightly
with depth. Nevertheless, safety parameters involved in the grounding design
can strongly vary if the soil electrical properties change through the substation
site, particularly with the depth. These variations can be due to changes in the
material nature, or in the humidity of the soil, for example. For this reason, it
is necessary to develop more advanced models to consider variations of the soil
conductivity in the surroundings of the grounding site.

Obviously, taking into account all variations of soil conductivity would be
meaningless and unaffordable, neither from the economical nor from the technical
point of view. For this reason, more practical soil models have been proposed. A
family of these soil models consists of assuming the soil stratified in a number of
horizontal or vertical layers, defined by an appropriate thickness and an apparent
scalar conductivity that must be experimentally obtained. In fact, it is widely
accepted that two-layer and three-layer soil models should be sufficient to obtain
good and safe designs of grounding systems in most practical cases [1].

In the hypothesis of a stratified soil model formed by C layers with different
conductivities, the mathematical problem (1) can be written in terms of the
following Neumann exterior problem

div(σσσσσσσσσσσσσσc) = 0, σσσσσσσσσσσσσσc = −γc gradgradgradgradgradgradgradgradgradgradgradgradgradgrad(Vc) in Ec, 1 ≤ c ≤ C;
σσσσσσσσσσσσσσt

1nnnnnnnnnnnnnnE = 0 in ΓE, Vb = 1 in Γ;
Vc → 0 if |xxxxxxxxxxxxxx| → ∞, σσσσσσσσσσσσσσt

cnnnnnnnnnnnnnnc = σσσσσσσσσσσσσσt
c+1nnnnnnnnnnnnnnc in Γc, 1 ≤ c ≤ C − 1; (2)

where b denotes the layer in which the grounded electrode is buried, Ec is each one
of the soil layers, γc is its scalar conductivity, Vc is the potential at an arbitrary
point in the layer Ec, σσσσσσσσσσσσσσc is its corresponding current density, Γc is the interface
between layers Ec and Ec+1, and nnnnnnnnnnnnnnc is the normal field to Γc[7]. In this paper
we restrict the grounding analysis and examples for two-layer soil models, that
is C = 2.

2.2 Integral Expression for Potential and Variational Form

The ratio between the diameter and the length of the conductors of the ground-
ing grids uses to be relatively small (∼ 10−3). This apparently simple geometry
implies serious troubles in the modellization of the problem in real cases: neither
analytical solutions can be obtained, nor widespread numerical methods (such
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as finite elements or finite differences) can be used since the required discretiza-
tion of the 3D domains Ec (excluding the grounding electrode) should involve
a completely out-of-range computing effort. For these reasons, we have turned
our attention to other numerical techniques which require only the discretiza-
tion of the boundaries. With this aim, it is firstly essential to derive an integral
expression for potential V in terms of unknowns defined on the boundary [5].

First of all, we can assumed that the earth surface ΓE and the interfaces Γc

between layers are horizontal (this hypothesis seems sound if we take into account
the levelling and regularization processes performed in the surroundings of the
substation site during the construction process of the electrical installation).

With this new assumption, the application of the “method of images” and
Green’s Identity to problem (2) yields the following integral expression[7] for
potential Vc(xxxxxxxxxxxxxxc) at an arbitrary point xxxxxxxxxxxxxxc ∈ Ec, in terms of the unknown leakage
current density σ(ξξξξξξξξξξξξξξ) (σ = σσσσσσσσσσσσσσtnnnnnnnnnnnnnn, where nnnnnnnnnnnnnn is the normal exterior unit field to Γ) at
any point ξξξξξξξξξξξξξξ of the electrode surface Γ ⊂ Eb:

Vc(xcxcxcxcxcxcxcxcxcxcxcxcxcxc) =
1

4πγb

∫ ∫
ξξξξξξξξξξξξξξ∈Γ
kbc(xxxxxxxxxxxxxxc, ξξξξξξξξξξξξξξ)σ(ξξξξξξξξξξξξξξ)dΓ, ∀xxxxxxxxxxxxxxc ∈ Ec, (3)

where integral kernels kbc(xxxxxxxxxxxxxxc, ξξξξξξξξξξξξξξ) are formed by series of infinite terms correspond-
ing to the resultant images obtained when Neumann exterior problem (2) is
transformed into a Dirichlet one [5,7]. Depending on the type of the soil model,
these series can have an infinite or a finite number of terms: i.e., for uniform soil
models (C = 1), there are only two summands since there is only one image of
the original grid:

k11(xxxxxxxxxxxxxx1, ξξξξξξξξξξξξξξ) =
1

r(xxxxxxxxxxxxxx1, [ξx, ξy, ξz])
+

1

r(xxxxxxxxxxxxxx1, [ξx, ξy,−ξz])
, (4)

where r(xxxxxxxxxxxxxx1, [ξx, ξy, ξz]) indicates the distance from xxxxxxxxxxxxxx1 to ξξξξξξξξξξξξξξ ≡ [ξx, ξy, ξz], being the
point [ξx, ξy,−ξz] the symmetric one of ξξξξξξξξξξξξξξ with respect to the earth surface ΓE.
We assume that the origin of the coordinates system is on the earth surface and
the z-axis is perpendicular to ΓE.

In the case of a two-layered soil model (figure 1), the expressions of the integral
kernels kbc(xxxxxxxxxxxxxxc, ξξξξξξξξξξξξξξ) are given by

k11 =
∞∑
i=0

κi

r(xxxxxxxxxxxxxx1, [ξx, ξy, 2iH + ξz])
+

∞∑
i=0

κi

r(xxxxxxxxxxxxxx1, [ξx, ξy, 2iH − ξz])

+
∞∑
i=1

κi

r(xxxxxxxxxxxxxx1, [ξx, ξy,−2iH + ξz])
+

∞∑
i=1

κi

r(xxxxxxxxxxxxxx1, [ξx, ξy,−2iH − ξz])
;

k12 =
∞∑
i=0

(1 + κ)κi

r(xxxxxxxxxxxxxx2, [ξx, ξy,−2iH + ξz])
+

∞∑
i=0

(1 + κ)κi

r(xxxxxxxxxxxxxx2, [ξx, ξy,−2iH − ξz])
;

k21 =
∞∑
i=0

(1− κ)κi

r(xxxxxxxxxxxxxx1, [ξx, ξy,−2iH + ξz])
+

∞∑
i=0

(1− κ)κi

r(xxxxxxxxxxxxxx1, [ξx, ξy, 2iH − ξz])
;
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Figure 1. Scheme of a two-layer soil model formed by an upper layer with a thickness
h and conductivity γ1, and a lower layer with conductivity γ2.

k22 =
1

r(xxxxxxxxxxxxxx2, [ξx, ξy, ξz])
− κ

r(xxxxxxxxxxxxxx2, [ξx, ξy, 2H+ξz])
+
∞∑
i=0

(1− κ2)κi

r(xxxxxxxxxxxxxx2, [ξx, ξy,−2iH+ξz])
; (5)

In the above expressions, r(xxxxxxxxxxxxxx, [ξx, ξy, ξz]) indicates the distance from xxxxxxxxxxxxxx to ξξξξξξξξξξξξξξ. The
other terms correspond to the distances from xxxxxxxxxxxxxx to the symmetric point of ξξξξξξξξξξξξξξ
with respect to the earth surface ΓE, and to the interface surface between layers.
H is the thickness of the upper layer. Ratio κ is defined in terms of the layer
conductivities

κ =
γ1 − γ2

γ1 + γ2

(6)

From expressions (4) and (5), it is clear that singular kernels kbc(xxxxxxxxxxxxxxc, ξξξξξξξξξξξξξξ) for
uniform and two-layer soil models can be written in a general form

kbc(xxxxxxxxxxxxxxc, ξξξξξξξξξξξξξξ) =
lk∑

l=0

kl
bc(xxxxxxxxxxxxxxc, ξξξξξξξξξξξξξξ), kl

bc(xxxxxxxxxxxxxxc, ξξξξξξξξξξξξξξ) =
ψl(κ)

r(xxxxxxxxxxxxxxc, ξξξξξξξξξξξξξξ
l(ξξξξξξξξξξξξξξ))

, (7)

where ψl is a weighting coefficient that depends only on the ratio κ given by (6),
and r(xxxxxxxxxxxxxxc, ξξξξξξξξξξξξξξ

l(ξξξξξξξξξξξξξξ)) is the Euclidean distance between the points xxxxxxxxxxxxxxc and ξξξξξξξξξξξξξξl, being ξξξξξξξξξξξξξξ0

the point ξξξξξξξξξξξξξξ on the electrode surface (ξξξξξξξξξξξξξξ0(ξξξξξξξξξξξξξξ) = ξξξξξξξξξξξξξξ), and being ξξξξξξξξξξξξξξl (l 6= 0) the images of
ξξξξξξξξξξξξξξ with respect to the earth surface and to the interfaces between layers. Finally,
lk is the number of summands in the series of integral kernels, and it depends on
the case being analyzed.

On the other hand, expression (3) is very important for the solution of the
problem since it allows to obtain the value of the electrical potential at an arbi-
trary point xxxxxxxxxxxxxxc if the leakage current density σ is known. Furthermore, it is also
possible to compute the total surge current that flows from the grounding system,
its equivalent resistance and most of the remaining safety and design parameters
of a grounding grid [5]. The leakage current density σ can be obtained by solving
the following Fredholm integral equation of the first kind on Γ

1

4πγb

∫∫
ξξξξξξξξξξξξξξ∈Γ
kbb(χχχχχχχχχχχχχχ, ξξξξξξξξξξξξξξ)σ(ξξξξξξξξξξξξξξ) dΓ = 1, ∀χχχχχχχχχχχχχχ ∈ Γ. (8)
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since the integral expression for the potential (3) is also satisfied on the electrode
surface Γ, where the potential value is known by the boundary condition Vb(χχχχχχχχχχχχχχ) =
1, ∀χχχχχχχχχχχχχχ ∈ Γ. Now, a variational form of this integral expression can be obtained
by imposing that it is verified in the sense of weighted residuals, that is, the
following integral identity

∫∫
χχχχχχχχχχχχχχ∈Γ
w(χχχχχχχχχχχχχχ)

(
1

4πγb

∫∫
ξξξξξξξξξξξξξξ∈Γ
kbb(χχχχχχχχχχχχχχ, ξξξξξξξξξξξξξξ)σ(ξξξξξξξξξξξξξξ) dΓ− 1

)
dΓ = 0, (9)

must hold for all members w(χχχχχχχχχχχχχχ) of a suitable class of test functions defined on
Γ[5]. It is important to remark that the solution of equation (8) only requires
obtaining the leakage current density σ in points of the electrode surface. So, a
numerical method based on the discretization of the boundaries of the domain,
such as the BEM [5,10], should be the best numerical approach for solving it.

3 Numerical model based on the BEM

3.1 General 2D approach

The unknown leakage current density σ and the electrode surface Γ can be
discretized in terms of a given set of N trial functions {Ni(ξξξξξξξξξξξξξξ)} defined on Γ and
a given set of M 2D boundary elements {Γα}:

σ(ξξξξξξξξξξξξξξ) =
N∑

i=1

σiNi(ξξξξξξξξξξξξξξ), Γ =
M⋃

α=1

Γα, (10)

Now, the integral expression (3) for the potential Vc(xxxxxxxxxxxxxxc) can be also discretized
as

Vc(xxxxxxxxxxxxxxc) =
N∑

i=1

σiVc,i(xxxxxxxxxxxxxxc); Vc,i(xxxxxxxxxxxxxxc) =
M∑

α=1

lV∑
l=0

V αl
c,i (xxxxxxxxxxxxxxc); (11)

V αl
c,i (xxxxxxxxxxxxxxc) =

1

4πγb

∫∫
ξξξξξξξξξξξξξξ∈Γα

kl
bc(xxxxxxxxxxxxxxc, ξξξξξξξξξξξξξξ)Ni(ξξξξξξξξξξξξξξ) dΓ

α; (12)

where lV represents the number of summands to consider in the evaluation of the
series of kernels until convergence is achieved (lV = lk if this number is finite).

Finally, variational form (9) is reduced to the following LSE for a given set of
N test functions {wj(χχχχχχχχχχχχχχ)} defined on Γ:

N∑
i=1

Rjiσi = νj (j = 1, . . . , N)

Rji =
M∑

β=1

M∑
α=1

lR∑
l=0

Rβαl
ji , νj =

M∑
β=1

νβ
j ,

(13)
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being

Rβαl
ji =

1

4πγb

∫∫
χχχχχχχχχχχχχχ∈Γβ

wj(χχχχχχχχχχχχχχ)
∫∫
ξξξξξξξξξξξξξξ∈Γα

kl
bb(χχχχχχχχχχχχχχ, ξξξξξξξξξξξξξξ)Ni(ξξξξξξξξξξξξξξ)dΓ

αdΓβ, (14)

νβ
j =

∫∫
χχχχχχχχχχχχχχ∈Γβ

wj(χχχχχχχχχχχχχχ)dΓβ, (15)

where lR represents the number of summands to consider in the evaluation of the
series of kernels until convergence is achieved (lR = lk if this number is finite).

Solution of the linear system (12) provides the values of the current densities
σi (i = 1, . . . , N) leaking from the nodes of the grid. However, In practice, the
2D discretization required to solve the above stated equations in real problems
implies an extremely large number of degrees of freedom. In addition, the coeffi-
cient matrix in (13) is full and the computation of each contribution (14) requires
double integration on a 2D domain [5] and, in the case of kernels given by infinite
series, an extremely high number of evaluations of terms of the kernel. For these
reasons, it is essential to introduce some additional simplifications in the BEM
approach to decrease the computational cost.

3.2 Approximated 1D BEM approach

With this aim, and taking into account the real geometry of grounding grids
in most of electrical substations, one can assume that the leakage current density
is constant around the cross section of the cylindrical electrode (hypothesis of
“circumferential uniformity”) [1,5,7].

Consequently, if we denote L the whole set of axial lines of the buried con-
ductors, ξ̂ξξξξξξξξξξξξξ the orthogonal projection over the bar axis of a given generic point
ξξξξξξξξξξξξξξ ∈ Γ, φ(ξ̂ξξξξξξξξξξξξξ) the electrode diameter, P (ξ̂ξξξξξξξξξξξξξ) the circumferential perimeter of the
cross section in ξ̂ξξξξξξξξξξξξξ, and σ̂(ξ̂ξξξξξξξξξξξξξ) the approximated leakage current density at this
point (assumed uniform around the cross section), we can derive an approxi-
mated expression for potential (3) as,

V̂c(xxxxxxxxxxxxxxc) =
1

4γb

∫
ξ̂ξξξξξξξξξξξξξ∈L

φ(ξ̂ξξξξξξξξξξξξξ)kkkkkkkkkkkkkkbc(xxxxxxxxxxxxxxc, ξ̂ξξξξξξξξξξξξξ) σ̂(ξ̂ξξξξξξξξξξξξξ) dL, ∀xxxxxxxxxxxxxxc ∈ Ec (16)

being kkkkkkkkkkkkkkbc(xxxxxxxxxxxxxxc, ξ̂ξξξξξξξξξξξξξ) the average of the integral kernel kbc(xxxxxxxxxxxxxxc, ξ̂ξξξξξξξξξξξξξ) in the cross section in
ξ̂ξξξξξξξξξξξξξ:

kkkkkkkkkkkkkkbc(xxxxxxxxxxxxxxc, ξ̂ξξξξξξξξξξξξξ) =
∫
ξξξξξξξξξξξξξξ∈P (ξ̂ξξξξξξξξξξξξξ)

kbc(xxxxxxxxxxxxxxc, ξξξξξξξξξξξξξξ)dP. (17)

Now, the variational identity (9) will not hold, because the leakage current is
not exactly uniform around the cross section and boundary condition V1(χχχχχχχχχχχχχχ) =
1, χχχχχχχχχχχχχχ ∈ Γ will not be strictly satisfied at every point χχχχχχχχχχχχχχ on Γ. For it, restricting
the class of trial functions to those with circumferential uniformity (i.e., w(χχχχχχχχχχχχχχ) =
ŵ(χ̂χχχχχχχχχχχχχ) ∀χχχχχχχχχχχχχχ ∈ P (χ̂χχχχχχχχχχχχχ)), we obtain the new variational form

1

4γb

∫
χ̂χχχχχχχχχχχχχ∈L

φ(χ̂χχχχχχχχχχχχχ) ŵ(χ̂χχχχχχχχχχχχχ)

[∫
ξ̂ξξξξξξξξξξξξξ∈L

φ(ξ̂ξξξξξξξξξξξξξ)kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkbb(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) σ̂(ξ̂ξξξξξξξξξξξξξ) dL

]
dL =

∫
χ̂χχχχχχχχχχχχχ∈L

φ(χ̂χχχχχχχχχχχχχ) ŵ(χ̂χχχχχχχχχχχχχ) dL, (18)
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which it must be verified for all functions ŵ(χ̂χχχχχχχχχχχχχ) of a suitable class of test ones
defined on L, where integral kernel kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkbb(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) is given by

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkbb(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) =
∫
χχχχχχχχχχχχχχ∈P (χ̂χχχχχχχχχχχχχ)

[∫
ξξξξξξξξξξξξξξ∈P (ξ̂ξξξξξξξξξξξξξ)

kbb(χχχχχχχχχχχχχχ, ξξξξξξξξξξξξξξ) dP

]
dP. (19)

In contrast to integral equation (9), the resolution of (18) requires the dis-
cretization of the whole set of axial lines L of the grounded conductors. Thus,
the unknown approximated leakage current density σ̂ and the axial lines L can
be discretized if we consider a set of n trial functions {N̂i(ξ̂ξξξξξξξξξξξξξ)} defined on L, and
a set of m 1D boundary elements {Lα}:

σ̂(ξ̂ξξξξξξξξξξξξξ) =
n∑

i=1

σ̂i N̂i(ξ̂ξξξξξξξξξξξξξ), L =
m⋃

α=1

Lα, (20)

Now, it is possible to discretize the approximated potential (16)

V̂c(xxxxxxxxxxxxxxc) =
n∑

i=1

σ̂i V̂c,i(xxxxxxxxxxxxxxc); V̂c,i(xxxxxxxxxxxxxxc) =
m∑

α=1

lV∑
l=0

V̂ αl
c,i (xxxxxxxxxxxxxxc); (21)

V̂ αl
c,i (xxxxxxxxxxxxxxc) =

1

4γb

∫
ξ̂ξξξξξξξξξξξξξ∈Lα

φ(ξ̂ξξξξξξξξξξξξξ)kkkkkkkkkkkkkkl
bc(xxxxxxxxxxxxxxc, ξ̂ξξξξξξξξξξξξξ) N̂i(ξ̂ξξξξξξξξξξξξξ) dL

α, (22)

where lV represents the number of summands to consider in the evaluation of the
series of kernels until convergence is achieved (lV = lk if this number is finite).

Finally, the variational form (18) is also reduced to a LSE for a given set of n
test functions {ŵj(χ̂χχχχχχχχχχχχχ)} defined on L:

n∑
i=1

R̂jiσ̂i = ν̂j (j = 1, . . . , n)

R̂ji =
m∑

β=1

m∑
α=1

lR∑
l=0

R̂βαl
ji , ν̂j =

m∑
β=1

ν̂β
j ,

(23)

where

R̂βαl
ji =

1

4γb

∫
χ̂χχχχχχχχχχχχχ∈Lβ

φ(χ̂χχχχχχχχχχχχχ) ŵj(χ̂χχχχχχχχχχχχχ)
∫
ξ̂ξξξξξξξξξξξξξ∈Lα

φ(ξ̂ξξξξξξξξξξξξξ)kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkl
bb(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) N̂i(ξ̂ξξξξξξξξξξξξξ) dL

αdLβ, (24)

ν̂β
j =

∫
χ̂χχχχχχχχχχχχχ∈Lβ

φ(χ̂χχχχχχχχχχχχχ) ŵj(χ̂χχχχχχχχχχχχχ) dLβ. (25)

In contrast with the 2D boundary element general formulation, the number
of elemental contributions needed to state the system of linear equations (23)
and the number of unknowns σi are now significantly smaller for a given level
of mesh refinement. In spite of the important reduction in the computational
cost, extensive computing is still necessary mainly because of the circumferential
integration on the perimeter of the electrodes that are involved in the integral
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kernels. In previous works we have proposed the approximated evaluation of these
circumferential integrals by using specific quadratures [5]: thus, kernel (17) can
be computed as

kkkkkkkkkkkkkkbc(xxxxxxxxxxxxxxc, ξ̂ξξξξξξξξξξξξξ) =
lV∑
l=0

kkkkkkkkkkkkkkl
bc(xxxxxxxxxxxxxxc, ξ̂ξξξξξξξξξξξξξ) (26)

being

kkkkkkkkkkkkkkl
bc(xxxxxxxxxxxxxxc, ξ̂ξξξξξξξξξξξξξ) = π φ(ξ̂ξξξξξξξξξξξξξ)

ψl(κ)

r̂(xxxxxxxxxxxxxxc, ξ̂ξξξξξξξξξξξξξ
l(ξ̂ξξξξξξξξξξξξξ))

; r̂(xxxxxxxxxxxxxxc, ξ̂ξξξξξξξξξξξξξ
l) =

√
|xxxxxxxxxxxxxxc − ξ̂ξξξξξξξξξξξξξl|2 +

φ2(ξ̂ξξξξξξξξξξξξξ)

4
(27)

and kernel (19) can be obtained as

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkbb(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) =
lR∑
l=0

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkl
bb(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) (28)

being

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkl
bb(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) = π2 φ(ξ̂ξξξξξξξξξξξξξ)φ(χ̂χχχχχχχχχχχχχ)

ψl(κ)̂̂r(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξl(ξ̂ξξξξξξξξξξξξξ))
; ̂̂r(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξl) =

√
|χ̂χχχχχχχχχχχχχ− ξ̂ξξξξξξξξξξξξξl|2 +

φ2(ξ̂ξξξξξξξξξξξξξ) + φ2(χ̂χχχχχχχχχχχχχ)

4

(29)

The final result is an approximated 1D formulation in which the coefficients
of the equations system only requires integration on 1D domains, i.e. the axial
lines of the electrodes [5].

Different choices of the sets of trial and test functions allow to derive spe-
cific numerical approaches. In this paper, we have selected a Galerkin type one,
where the matrix of coefficients is symmetric and positive definite [5,11]. On the
other hand, the authors have derived a highly efficient analytical technique to
evaluate the coefficients of the linear system of equations for Point Collocation
and Galerkin type weighting in uniform soil models. Since the 1D approximated
expressions for the terms V̂ αl

c,i and R̂βαl
ji in (22) and (24) are formally equivalent

to those obtained in the case of uniform soil models, their computation can also
be performed analytically by using the above mentioned techniques [5].

4 Convergence acceleration techniques of the series

Series involved in the calculus of kernels (26) and (28) have a poor rate of
convergence particularly when the ratio κ —given by (6)— is close to +1 or -1;
that is, when there are important differences between the electrical properties
of the two layers of soil: these are the most interesting cases. It is important to
remark that the increase in the computing cost by the use of multilayer soil mod-
els is justified when conductivities drastically vary since two-layer (or in general
multilayer) models produce results noticeably different from those obtained by
using a uniform soil model.

10



Kernels (26) and (28) appear in the computing of potential terms (21) and
in the computing of matrix coefficients terms (23). Of course, both terms are
important and the series involved in each computations have a similar rate of
convergence. However in practice computing potential distribution on the earth
surface usually is the bottleneck of the complete process of grounding analysis,
since it is necessary to compute the potential in an extremely high number of
points on the earth surface in order to obtain high-quality results and to compute
the safety parameters of the grounding grid: for a substation site of an approx-
imated area of 40.000 m2 it is necessary to compute the value of potential in
approximately 50.000 points by using formula (21). If we take into account that
expression (21) can also be rewritten as

V̂c(xxxxxxxxxxxxxxc) =
lV∑
l=0

(
n∑

i=1

σ̂i

m∑
α=1

V̂ αl
c,i (xxxxxxxxxxxxxxc)

)
(30)

where lV represents the number of summands to consider in the evaluation of the
series of kernels until convergence is achieved, it is clear that obtaining potential
distribution on earth surface could break off the design process due to the scale
factor of the number of points if lV >> 1. For this reason we have focused
our attention to develop a technique for accelerate the convergence of the series
involved in the potential values computing.

Figure 2. Scheme of a punctual source of current with intensity I buried to a depth d
in a two-layer soil formed by an upper layer with a thickness h and conductivity γ1,
and a lower layer with conductivity γ2.

4.1 Convergence of the potential calculus in the case of a punctual current
source

The starting point in the derivation of our proposal for acceleration of the
convergence of the series consists in studying the upper bound of the error when
the potential is computed in the ground surface. Thus, let be a punctual source
of current with intensity I buried to a depth d in a two-layer soil formed by
an upper layer with a thickness h and conductivity γ1, and a lower layer with
conductivity γ2 (Figure 2).

The potential V on the ground surface is given by the following two expressions
depending on the position of the source[12,13,14]: If it is placed in the upper layer,

11
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Figure 3. Potential on earth surface produced by a punctual current source buried to a
depth d in a two-layer soil of thickness of the upper layer h (d > h): Results depending
on the number of images computed for a κ = −0.98 (up) and κ = −0.998 (down) for
a ratio r̃ = 0 (point on the earth surface over the vertical of the punctual source) and
h̃ = 0.25.

then d < h, and potential is given by

V (r) =
I

2πdγ1

 1√
r̃2 + 1

+
∞∑

n=1

 κn√
r̃2 + (2nh̃− 1)2

+
κn√

r̃2 + (2nh̃+ 1)2

 ;

(31)
being r̃ = r/d and h̃ = h/d. If the punctual source is in the lower layer, then
d > h, and potential is given by

V (r) =
I

2πdγ2

∞∑
n=0

(1− κ)κn√
r̃2 + (2nh̃+ 1)2

; (32)

Figures 3 and 4 show the potential (32) for two different situations. The values
of the parameters have been chosen similar to real geometric configurations: i.e.,
h̃ = h/d = 0.25 corresponds to d = 1 m and h = 0.25 m, κ = −0.98 corresponds
to the case of γ1 = 10−4 mho/m and γ2 = 10−2 mho/m, and κ = −0.998
corresponds to the case of γ1 = 10−5 mho/m and γ2 = 10−2 mho/m. (The value
of intensity I has been chosen I = 2πdγ2 in order to represent directly the series
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Figure 4. Potential on earth surface produced by a punctual current source buried to a
depth d in a two-layer soil of thickness of the upper layer h (d > h): Results depending
on the number of images computed for a κ = −0.98 (up) and κ = −0.998 (down) for a
ratio r̃ = 1 (point on the earth surface to a distance d over the vertical of the punctual
source) and h̃ = 0.25.

in all graphics).

In both formulae, κ is the ratio between conductivities, given by (6).

Now if we denote εN the absolute error produced in the calculus of the poten-
tial by computingN terms of the series (that is, by using the firstN images), then
it is given by εN = V − V N , being V the exact value and V N the approximation
by computing N terms:

εN = V − V N =
I

2πdγ1

∞∑
n=N

 κn√
r̃2 + (2nh̃− 1)2

+
κn√

r̃2 + (2nh̃+ 1)2

 ; if d < h

(33)

This error is upper bounded by

|εN | <

∣∣∣∣∣∣ I

πdγ1

(1− κ)κN√
r̃2 + (2h̃− 1)2

∣∣∣∣∣∣ ; if d < h (34)
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Figure 5. Absolute error in the potential computing on earth surface produced by a
punctual current source buried to a depth d in a two-layer soil of thickness of the upper
layer h (d > h): Results depending on the number of images computed for a κ = −0.98
(up) and κ = −0.998 (down) for ratios r̃ = 0 and h̃ = 0.25.

and consequently the common-logarithm of |εN | is linear dependent with N

log |εN | < log |A|+N log |κ|; if d < h (35)

where A depends on geometric parameters, and it is a constant value for every
potential calculus. If d > h, the absolute error is given by

εN = V − V N =
I

2πdγ2

∞∑
n=N

(1− κ)κn√
r̃2 + (2nh̃+ 1)2

; if d > h (36)

and its upper bound is

|εN | <

∣∣∣∣∣∣ I

2πdγ2

κN√
r̃2 + (2h̃+ 1)2

∣∣∣∣∣∣ ; if d > h (37)

and consequently the common logarithm of |εN | is again linear dependent with
N

log |εN | < log |B|+N log |κ|; if d > h (38)
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Figure 6. Absolute error in the potential computing on earth surface produced by a
punctual current source buried to a depth d in a two-layer soil of thickness of the upper
layer h (d > h): Results depending on the number of images computed for a κ = −0.98
(up) and κ = −0.998 (down) for ratios r̃ = 1 and h̃ = 0.25.

where B depends on geometric parameters, and it is a constant value for ev-
ery potential calculus. Figures 5 and 6 show the evolution of absolute error in
the computation of potential —expression (36)— for different cases. The linear
dependency of the log-error is clear when the number of images increases as
predicted by formulae (37) and (38).

As we can observe from expressions (35) and (38), the upper bound of the
absolute error (in logarithmic scale) is linear with N . Both are very important
results. If the potential is computed by using two different numbers of terms of
the series (namely N1, N2), the Richardson extrapolation allows to conclude that
εN2 = εN1κ

(N2−N1), that is, a geometric convergence is achieved since |κ| < 1.
This expression is useful to obtain extrapolated values for the electrical potential
(V E). For example, if N2 = N1 + 1 then

V E =
V N2 − κV N1

1− κ
(39)

Furthermore, and due to this geometric convergence, the Aitken acceleration
can also be used to obtain an improved value of potential, by using the computed
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values of the potential with three different numbers of terms of the series (namely
N1, N2 and N3, satisfying N1 < N2 < N3 and N3 − N2 = N2 − N1, being V N1 ,
V N2 and V N3 the computed values for each case). Thus, the Aitken acceleration
allows to obtain a expression for computing an improved value of potential (V ?):

V ? =
V N1V N3 − V N2V N2

V N1 + V N3 − 2V N2
(40)

This formula is very simple and easy to use: for a given point on the ground
surface, three values of the potential (32) should be computed by using N1, N2

and N3 number of terms of the series (for example, with 5, 10 and 15 images)
and then it is computed the improved value V ? by using the Aitken acceleration
given by (40). Figures 7 and 8 show the potential values and the extrapolated
potential ones versus the number of images. It is important to remark the good
quality of the extrapolated values obtained with a few number of images. (As
in the previous graphics, the value of intensity I has been chosen I = 2πdγ2 in
order to represent directly the series).

Figures 9 and 10 show the number of images necessary to compute the po-
tential if no extrapolation is used versus the number of images if extrapolation
is used. It is also represented the relative error in the potential value. Note that
the number of images required would be extremely large specially when |κ| ≈ 1
(i.e., κ = −0.998) where the rate of convergence of the series is very poor.

4.2 Application of the convergence acceleration of the series to the grounding
analysis by the Boundary Element Method

The idea presented in the previous section was the starting point for developing
a more efficient computational way for obtaining potential in layered soil models.
In the numerical approach based on the Boundary Element Method, the absolute
error (εN) produced in the calculus of the potential by using expression (30) and
computing N terms of the series, it is given by εN = V̂ ∞c (xxxxxxxxxxxxxxc) − V̂ N

c (xxxxxxxxxxxxxxc), being
V̂ ∞c (xxxxxxxxxxxxxxc) the exact value and V̂ N

c (xxxxxxxxxxxxxxc) the approximation by computing N terms:

εN = V̂ ∞c (xxxxxxxxxxxxxxc)− V̂ N
c (xxxxxxxxxxxxxxc) =

∞∑
l=N

(
n∑

i=1

σ̂i

m∑
α=1

V̂ αl
c,i (xxxxxxxxxxxxxxc)

)
(41)

Now substituting (22) and (27) in (41), it is possible to rewrite the previous
expression as

εN = V̂ ∞c (xxxxxxxxxxxxxxc)− V̂ N
c (xxxxxxxxxxxxxxc) =

∞∑
l=N

ψl(κ)Φl
c(xxxxxxxxxxxxxxc) (42)

where Φl
c(xxxxxxxxxxxxxxc) represents the contribution to the potential calculus of the image

l (it is important to remark that Φl
c(xxxxxxxxxxxxxxc) is not a function of κ). Finally it can

be shown the upper bound of the absolute error is given by an expression of the
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Figure 7. Potential values and potential improved values by using the Aitken accelera-
tion (40) on earth surface produced by a punctual current source buried to a depth d
in a two-layer soil of thickness of the upper layer h (d > h) computed for a κ = −0.98
(up) and κ = −0.998 (down) for ratios r/d = 0 and h/d = 0.25.

form

|εN | <
∣∣∣ΨκN

∣∣∣ (43)

where Ψ depends on geometric parameters, and it is a constant value for every
potential calculus. This result is formally equivalent to the one obtained in the
study of the punctual source (and given by (37)), so we can use expression the
Aitken acceleration given by (40) to obtain improved values of the potential.

This methodology of computing interpolated values of the potential has been
implemented in the Computer Aided Design system for grounding analysis based
on the approach proposed in sections 2. and 3. and based on the Boundary El-
ement Method. Consequently, the computation of potential by using expression
(21) is programmed in such way as new terms of the series (corresponding to new
images) are added, the improved values are also computed. The rise of computa-
tional cost due to this extra-calculus is completely irrelevant and the convergence
is quickly achieved.

The improvement in the rate of convergence of the series is remarkably and
the CPU time required in the postprocessing stage of the grounding analysis
of a real case is reduced in a factor of two orders of magnitude on average for
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Figure 8. Potential values and potential improved values by using the Aitken accelera-
tion (40) on earth surface produced by a punctual current source buried to a depth d
in a two-layer soil of thickness of the upper layer h (d > h) computed for a κ = −0.98
(up) and κ = −0.998 (down) for ratios r/d = 1 and h/d = 0.25.

two-layer soil models even for κ values very closer to −1.

In order to conclude this study, we have performed this analysis of acceleration
of convergence by computing the potential in different points on the earth surface,
and for different values of the thickness of the upper layer and conductivities of
the layers. We have obtained the same improvement in the convergence of the
series, and no significant difference has been observed: in fact, we have shown
that the ratio of acceleration (i.e., the quotient between the number of terms
required without using an acceleration process and the number of terms if Aitken
process is applied) depends esentially on the tolerance on the relative error fixed
as target, and not of the point where potential value is computed.

The techniques previously presented to accelerate the convergence of the se-
ries can be applied to the different methods proposed in the bibliography for
computing potential in the case of layered soil models based on the method of
images. The authors have applied the Aitken δ2-process to the Boundary Element
numerical approach for grounding analysis derived in the last years for uniform
and layered soil models [4,5,7,8,9].

The acceleration technique proposed can be applied because the log-error of
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Figure 9. Number of images versus the number of images necessary for potential im-
proved values by using the Aitken acceleration (40) on earth surface produced by a
punctual current source buried to a depth d in a two-layer soil of thickness of the
upper layer h (d > h) computed for a κ = −0.98 (up) and κ = −0.998 (down) for
ratios r/d = 0 and h/d = 0.25. It is also represented the potential relative error.

the potential computing by using the BEM approach is also linearly-dependent
with the number of images N [14,15], so the formula (40) derived from the
analysis of a punctual source should allow to obtain enhanced or improved values
of the potential.

As application example of this acceleration method in the context of a BEM
numerical approach, we present the results of the grounding analysis of the grid
of figure 11, formed by a mesh of 408 cylindrical conductors buried to a depth
of 0.80 m (see Table I). The Ground Potential Rise (GPR) considered in this
study is 10 kV. We have analyzed this earthing system with a two-layer soil
model formed by two horizontal strata: the upper one with an apparent scalar
resistivity of 10000 Ω m and a thickness of 0.25 m, and the lower one with an
apparent scalar resistivity of 50 Ω m. Table I also show the equivalent resistance
and the fault current derived to the ground. The potential distribution on the
earth surface when a fault condition occurs is shown in Figure 12.

We have implemented the Aitken process to accelerate the convergence of
the series in the potential computing, and in particular the “Aitken-Aitken pro-
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Figure 10. Number of images versus the number of images necessary for potential
improved values by using the Aitken acceleration (40) on earth surface produced by
a punctual current source buried to a depth d in a two-layer soil of thickness of the
upper layer h (d > h) computed for a κ = −0.98 (up) and κ = −0.998 (down) for
ratios r/d = 1 and h/d = 0.25. It is also represented the potential relative error.

cedure” presented in the previous section which consists in applying the Aitken
algorithm twice [15,16]. Table I summarizes the CPU time by not using and using
the acceleration method. Note that the quotient of these CPU times, the speed-up
factor , is about 200 in the analysis of a total surface of 21600 m2, computing the
potential in almost 22000 points. Obviously the use of this acceleration of the
convergence of the series allows to perform an accurate analysis of the grounding
system in a layered soil model in real-time.

5 Conclusions

In this paper, we have revised the mathematical and numerical model for
grounding analysis in two-layered soil models. Furthermore it has been presented
for the first time a methodology for the acceleration of the convergence of the
series involved in the computing of potential, which is the larger bottleneck in
the computational cost of the numerical approach. Nowadays, we are working in
the application of acceleration techniques in the computing of matrix coefficients
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Table 1
Grounding Analysis: Data, Numerical Model and Results

General Data

Number of Electrodes: 408

Diameter of Electrodes: 12.85 mm

Depth of the Grid: 0.80 m

Maximum Dimensions of Grid: 145×90 m2

GPR: 10 kV

Soil Model: Two Layer

Height of the Upper Layer: 0.25 m

Soil Resistivity of the Upper Layer: 10000 Ω m

Soil Resistivity of the Lower Layer: 50 Ω m

κ: -0.99

Numerical model

Type of Numerical Approach: Galerkin

Type of 1D BEM Element: Linear

Number of Elements: 408

Degrees of Freedom: 238

Numerical results

Fault current: 37.75 kA

Equivalent Resistance: 0.2648 Ω

Earth Surface Potential Computing Postprocess

Total Surface Analyzed: 180×120 m2

# of Points where Potential is computed: 21901

Maximum Relative Error: 10−7

CPU Time: 22.5 hours

CPU Time (by using the Aitken-Aitken Process): 7 minutes

Speed-up factor: 192.86

of the LSE of the BEM approach.
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Figure 11. Plan of the grounding grid buried to a depth of 0.8 m.
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soil model (Table I) when the grounding grid is energized to the GPR.
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