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Abstract

It is proved that a locally quasi-convex group is a Schwartz group if and
only if every continuously convergent filter on its dual group converges
locally uniformly. We also show that for metrizable separable groups
a similar result remains true when filters are replaced by sequences.
As an ingredient in the proofs of these results, we obtain a Schauder-
type theorem on compact homomorphisms acting between the natural
group analogues of normed spaces.
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1 Introduction

The notion of a Schwartz locally convex space was introduced by A. Grothen-

dieck in [18, Definition 5]. Almost all results about Schwartz spaces obtained

in [18] were also included in his monograph [19]. Although nuclear locally

convex spaces, which form a proper subclass of that of Schwartz spaces, had

been defined earlier by Grothendieck himself in [16, 17], such spaces are not

mentioned in [18, 19] at all. Later S. Rolewicz defined similar concepts in the
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class of, not necessarily locally convex, metrizable topological vector spaces

([29, 30]).

A definition of nuclear topological abelian groups and the study of the

class thus obtained were developed by W. Banaszczyk in [4]. His work led to

proving the validity of such important results as the Pontryagin-van Kampen

duality theorem in its strong form for the class of Čech-complete nuclear

groups (see [1, Th. 20.40]). To this day, no examples of strongly Pontryagin

reflexive groups have been found outside this class.

Some years later, a notion of Schwartz topological abelian group appeared

in [2]. In relation to the present paper’s subject, it was proved there that

every nuclear group is a locally quasi-convex Schwartz group and that the

given definition is coherent with that of a Schwartz topological vector space.

Later L. Außenhofer proved in [3] that locally quasi-convex Schwartz groups

satisfy the Glicksberg property (a similar statement for nuclear groups was

obtained earlier by W. Banaszczyk and E. Mart́ın in [5]).

In this note we are interested in showing how the property of being a

Schwartz group is reflected in, or can be deduced from, convenient features

of the dual group. Our motivation for this comes from [18, Proposition 17]

where, besides the internal definition of a Schwartz space, the following dual

characterization is given: An (F)-space E is Schwartz iff it is a separable

(M)-space, and every strongly convergent sequence in the dual E ′ converges

uniformly on some neighborhood of the origin of E. Later several papers

dealt with similar characterizations (see [22, 26]); in [15, Korollar 1, p. 178]

(see also [23, Theorem 11.6.3]) the following improvement of Grothendieck’s

result can be found: a separable (F)-space E is Schwartz iff every pointwise

convergent sequence in the dual E ′, converges uniformly on some neighbor-

hood of the origin of E. Finally, in [8, 9, 27] the analogous statement was

obtained without the separability assumption. In [23, p. 201] a Hausdorff

locally convex space E is defined to be a Schwartz space if every continu-

ously convergent filter on E ′ converges equicontinuously (i. e. uniformly on

some neighborhood of the origin in E), and in [23, Theorem 10.4.1] this new

2



definition is shown to be equivalent with Grothendieck’s original one. This

characterization of Schwartz spaces is presented also in [6, Corollary 4.3.43].

In the present article we prove the statements formulated in the Abstract,

and thus obtain characterizations of locally quasi-convex Schwartz groups in

the spirit of Grothendieck-Floret-Jarchow’s results.

2 First definitions and results

All groups under consideration will be abelian. We do not assume topological

groups to be Hausdorff unless explicitly stated. The set of neighborhoods of

the neutral element in the group G will be denoted by N (G).

Let T := {z ∈ C : |z| = 1} be the unit circle group. We write T+ = {z ∈
T : Re z ≥ 0}. In what follows we shall use frequently as a base of N (T)

the sequence (Tn) where Tn = {e2πit : t ∈ R, |t| ≤ 1/4n} for every n ∈ N.

Clearly T+ = T1.

For an abelian topological group G, the group of all continuous homo-

morphisms χ : G → T, usually called continuous characters, with pointwise

multiplication, is denoted by G∧ and called character group or dual group of

G. We will often denote the constant character simply by 1, regardless of

the group G.

Let G be an abelian topological group G; for A ⊂ G, the set A. := {χ ∈
G∧ : χ(A) ⊂ T+} is named the polar of A. In what follows, when polars are

computed in a group without any topology it is implicitly assumed that the

group is endowed with the discrete topology. In some important cases, this

distinction is not necessary, see Lemma 2 below.

If B ⊂ G∧, B/ := {x ∈ G : χ(x) ⊂ T+ ∀χ ∈ B} is named the

inverse polar of B. For A ⊂ G, we abbreviate (A.)/ to A./, and (A.).

to A... We will say that A is quasi-convex if A =
⋂
χ∈A. χ−1(T+), that is,

A = A./. Intersections of families of quasi-convex sets, as well as inverse

images of quasi-convex sets under continuous homomorphisms, are quasi-

convex sets. For an arbitrary set A, A./ is the intersection of all quasi-convex
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sets containing A and thus we also call it the quasi-convex hull of A and we

will often denote it by qc(A). A quasi-convex subset of an abelian group is

simply a quasi-convex subset of the same group endowed with the discrete

topology.

A topological abelian group is said to be locally quasi-convex if it has a

basis of neighborhoods of the neutral element formed by quasi-convex sets

(see e. g. [4, p. 2]).

A subset A of a topological abelian group G is said to be precompact or

totally bounded in G if for every U ∈ N (G) there exists a finite subset F ⊂ G

with A ⊂ F + U (where F + U stands for {f + u : f ∈ F, u ∈ U}).
For any nonempty family S of nonempty subsets of a topological group

G, we may consider on the dual group G∧ the topology TS of uniform con-

vergence on members of S. If S is well directed in the sense of [11], the

family {A. : A ∈ S} forms a basis of neighborhoods of the neutral element

for (G∧,TS). It is easy to see that the families of finite sets, compact sets

and precompact sets, are well directed families and they induce on G∧ the

topologies of uniform convergence on finite sets (Tp), compact sets (Tco) and

precompact sets (Tpc), respectively. We will use the following important fact:

Proposition 1. ([1, Prop. 3.5]) Let U be a neighborhood of the neutral ele-

ment in the topological abelian group G. Then U. is a Tpc-compact subset of

G∧.

For a subset U of an abelian group G, such that 0 ∈ U , and a natural

number n, we set U(n) := {x ∈ G : x ∈ U, 2x ∈ U, . . . , nx ∈ U}, and

U(∞) :=
⋂
n∈N U(n). It is known that Tn = (T+)(n) for every n ∈ N (and

hence (T+)(∞) = {1}); from this fact it is easy to derive the following useful

property:

Lemma 2. ([24], Lemma 2.1) Let G be an abelian group and V a subset

of G which contains the neutral element. Any homomorphism χ : G → T
which sends V into T+ is continuous with respect to any group topology on G

for which V is a neighborhood of the neutral element. Hence the polar of V
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is the same whenever computed with respect to any of these group topologies

(e. g. the discrete topology).

3 A Schauder theorem for groups

In the following statement we recall the construction of the locally quasi-

convex topologies associated with the quasi-convex subsets of a group. The

similar construction is known for locally convex topologies and absolutely

convex subsets of a vector space.

Lemma 3. (cf. [2, Sect. 2]; see also [3, Cor. 2.6]) Let G be an abelian group

and let U be a quasi-convex subset of G, then

(a) the sequence {U(n) : n ∈ N} is a basis of neighborhoods of the neutral

element in G for a group topology TU on G.

(b) (G, TU) is a (not necessarily Hausdorff) locally quasi-convex topological

abelian group. Moreover,

(G, TU)∧ =
⋃
n∈N

(U(n))
..

(c) U(∞) is a closed subgroup of (G, TU); moreover, U(∞) coincides with the

closure of {0} in (G, TU).

(d) Put GU := (G/U(∞), TU/U(∞)) and let ϕU be the canonical map from

G to GU . For every n ∈ N the set ϕU(U(n)) coincides with (ϕU(U))(n),

and this sequence is a basis of quasi-convex neighborhoods of the neutral

element for the topology TU/U(∞), which in particular coincides with

TϕU (U).

(e) GU is a metrizable locally quasi-convex topological abelian group, which

is uniformly free from small subgroups in the sense of [14].
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Remark 1. Lemma 3(a) may not be true for an arbitrary symmetric subset

U containing the neutral element, as the following example (pointed out to us

by Prof. Elena Mart́ın Peinador) shows. Let G = R2 and U = (R × {0}) ∪
({0} × R). Then U is a symmetric set containing (0, 0), but for no m ∈ N
there exists m′ ∈ N satisfying the relation U(m′) + U(m′) ⊂ U(m).

Let G be a topological abelian group and U a nonempty subset of G.

The subset U. is quasi-convex in G∧, and the topology TU. on G∧ coincides

with the topology T{U} of uniform convergence on U . The Hausdorff group

associated with (G∧, TU.) is the quotient (G∧/(U.)(∞), TU./(U.)(∞)). Observe

that (U.)(∞) = {χ ∈ G∧ : χ(U) = {1}}. It follows that TU. is a Hausdorff

topology provided that gp(U) = G. (For a subset U of an abelian group G,

we denote by gp(U) the subgroup of G generated by U .)

Lemma 4. Let U be a quasi-convex subset of an abelian group G. The group

homomorphism

ρU : gp(U)→ ((G, TU)∧, TU.)∧, ρU(x)(χ) = χ(x)

∀x ∈ gp(U) ∀χ ∈ (G, TU)∧

is well defined and induces an embedding

(gp(U))U → ((G, TU)∧, TU.)∧U..

Proof. Let us show that ρU is well defined, i. e., that for every x ∈ gp(U) the

evaluation ρU(x) on x is TU.-continuous. Consider the evaluation map from

G to Hom((G, TU)∧,T). The inverse image of the subgroup ((G, TU)∧, TU.)∧

by this map clearly contains U, hence it contains gp(U).

For x ∈ gp(U) and n ∈ N,

ρU(x) ∈ (U..)(n) ⇔ ∀χ ∈ U. χ(x), χ(2x), . . . , χ(nx) ∈ T+

⇔ x, 2x, . . . , nx ∈ U./ ⇔ x, 2x, . . . , nx ∈ U ⇔ x ∈ U(n).

From this we deduce, for every n ∈ N,

ρU(U(n)) = ρU(gp(U)) ∩ (U..)(n)
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and hence, ρU is continuous and open onto its image for the topologies TU
and TU.. . Thus the corresponding map between the associated Hausdorff

groups is continuous and open onto its image, too. Moreover it is injective,

since the above equivalences ρU(x) ∈ (U..)(n) ⇔ x ∈ U(n) (n ∈ N) imply

U(∞) = ρ−1((U..)(∞)).

Recall that for any two topological abelian groups G and H and any

continuous group homomorphism u : G → H the dual homomorphism u∧ :

H∧ → G∧ is defined by u∧(χ) = χ ◦ u, for every χ ∈ H∧.

Lemma 5. Suppose that G and H are abelian groups and V, U are quasi-

convex subsets of G and H, respectively. Let u : G → H be a group homo-

morphism and suppose that u(V ) ⊂ U. Then

(a) u : (G, TV )→ (H, TU) is continuous.

(b) The dual homomorphism u∧ : ((H, TU)∧, TU.) → ((G, TV )∧, TV .) satis-

fies u∧(U.) ⊂ V . and is therefore continuous.

Proof. (a) u(V ) ⊂ U clearly gives u(V(n)) ⊂ U(n) for every n ∈ N, which

implies that u is continuous with respect to the topologies TV and TU .

(b) It is easily verified that u∧(U.) ⊂ V . holds, and the continuity of u∧

follows as in (a).

Definition 1. Let G and H be topological abelian groups. A homomorphism

u : G → H is said to be precompact (compact) if for some V ∈ N (G), the

set u(V ) is precompact (relatively compact) in H.

Next we present a version for topological groups of the well known theo-

rem of Schauder for normed spaces as it appears for example in [21].

Theorem 6. Let G and H be abelian groups, V and U quasi-convex subsets

of G and H, respectively. Let u : (G, TV ) → (H, TU) be a continuous group

homomorphism such that u(V ) ⊂ U and let u∧ : (H, TU)∧ → (G, TV )∧ be the

dual homomorphism.
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(a) If u is a precompact homomorphism from (G, TV ) to (H, TU) such that

u(V ) is TU -precompact then u∧(U.) is TV .-compact and hence u∧ is a

compact homomorphism from ((H, TU)∧, TU.) to ((G, TV )∧, TV .).

(b) If u∧ is a precompact homomorphism from ((H, TU)∧, TU.) to ((G, TV )∧, TV .)

such that u∧(U.) is TV .-precompact, then u(V ) is TU -precompact and

hence u is a precompact homomorphism from (G, TV ) to (H, TU).

Proof. (a) Consider on (H, TU)∧ the topology Tpc. The assertion is a con-

sequence of the following two facts:

(1) U. is a compact subset of ((H, TU)∧,Tpc). This follows at once

from Prop. 1.

(2) u∧ is continuous from ((H, TU)∧,Tpc) to ((G, TV )∧, TV .). This is

a consequence of the inclusions u∧((u(V ).)(n)) ⊂ (V .)(n) (n ∈ N),

since by hypothesis u(V ) is TU -precompact.

(b) By Lemma 5 we may define the (continuous) bidual homomorphism

u∧∧ : (((G, TV )∧, TV .)∧, TV ..)→ (((H, TU)∧, TU.)∧, TU..)

Since u∧(U.) is TV .-precompact and contained in V ., (a) implies that

u∧∧(V ..) is TU..-compact. Consider the maps ρV and ρU as in Lemma

4. Since ρV (V ) ⊂ V .., it follows that u∧∧(ρV (V )) is TU..-relatively

compact. On the other hand it is clear that u∧∧(ρV (V )) = ρU(u(V )).

Since ρU induces an embedding of (gp(U))U into ((H, TU)∧, TU.)∧U..

(Lemma 4), u(V ) is TU -precompact.

4 A characterization of Schwartz groups

Definition 2. ([2]) Let G be a Hausdorff topological abelian group. We say

that G is a Schwartz group if for every neighborhood of the neutral element
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U in G there exists another neighborhood of the neutral element V in G and

a sequence (Fn) of finite subsets of G such that

V ⊂ Fn + U(n) for every n ∈ N.

For later use we include the following statement which can be viewed as

a group version of the known fact that a normed Schwartz space is finite-

dimensional.

Proposition 7. Let U be a quasi-convex subset of an abelian group G such

that (G, TU) is a Schwartz group, then (G, TU) is a locally precompact topo-

logical abelian group.

Proof. Since (G, TU) is a Schwartz group and the sequence (U(k))k∈N is a

basis for N (G, TU), for U ∈ N (G, TU) there exists a natural number k and a

sequence (Fn) of finite subsets of G such that

U(k) ⊂ Fn + U(n) for every n ∈ N.

From this, and again using the fact that (U(n))n∈N is a basis for N (G, TU),

we deduce that U(k) is precompact in G.

Suppose that U and V are quasi-convex subsets of an abelian group G,

such that V(n) ⊂ U for some n ∈ N. Then we can consider the linking

homomorphism

ϕV U : GV → GU , ϕV (x) 7→ ϕU(x)

which is clearly continuous.

Theorem 8. Let G be a locally quasi-convex topological abelian group. The

following are equivalent:

(i) G is a Schwartz group.

(ii) For every quasi-convex U ∈ N (G) there exists V ∈ N (G) such that V

is precompact in (G, TU) (equivalently, ϕU(V ) is precompact in GU).
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(iii) For every quasi-convex U ∈ N (G) there exists a quasi-convex V ∈
N (G) such that V ⊂ U and ϕV U : GV → GU is precompact.

(iv) For every quasi-convex U ∈ N (G) there exist a quasi-convex V ∈ N (G)

such that V ⊂ U and U. is precompact in ((G, TV )∧, TV .) (equivalently,

ϕV .(U.) is precompact in ((G, TV )∧)V .).

Proof. (i)⇔(ii): This is a direct consequence of the definition of a Schwartz

group.

(ii)⇒(iii): Fix a quasi-convex U ∈ N (G). Fix V ∈ N (G) such that ϕU(V )

is precompact in GU . We can suppose that V is quasi-convex and V ⊂ U.

Since ϕV U(ϕV (V )) = ϕU(V ), we deduce that ϕV U is precompact.

(iii)⇒(ii): Fix a quasi-convex U ∈ N (G). Find a quasi-convex V ∈ N (G)

satisfying the property described in (iii). For some n ∈ N, ϕV U(ϕV (V(n))) =

ϕU(V(n)) is precompact in GU .

(ii)⇔ (iv): For quasi-convex U, V ∈ N (G) such that V ⊂ U , consider the

identity map (G, TV )→ (G, TU). This map and the sets V and U satisfy the

hypothesis of Theorem 6; an application of this result gives the equivalence

between (b) and (d).

5 Convergence of characters on the dual of a

Schwartz group

5.1 Continuous convergence

LetG be a topological abelian group andG∧ its dual group. Let ω : G∧×G→
T be the natural evaluation map. We say that a filter F in G∧ converges

continuously ([7, 0.2]) to an element χ ∈ G∧ if for every x ∈ G and every filter

H in G that converges to x, ω(F ×H) converges to χ(x) in T (here, F ×H
denotes the filter generated by the products F ×H, where F ∈ F , H ∈ H,
and ω(F ×H) is the filter generated by the sets ω(F × H) = {f(x) : f ∈
F, x ∈ H}). It can be proved ([6, Prop. 8.1.8]) that F converges continuously
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to an element χ if for all x ∈ G, the filter F(x) converges to χ(x) and there

exists some neighborhood U of the neutral element in G such that F contains

U..

Continuous convergence can be defined also for nets. A net (χα)α∈A in

G∧ converges continuously to an element χ ∈ G∧ if for every x ∈ G and every

net (xβ)β∈B in G which converges to x, the net (χα(xβ))(α,β)∈A×B converges

to χ(x) in T. A net in G∧ converges continuously to a character χ if and

only if its tail filter converges continuously to the same limit, if and only if

χα(x) converges to χ(x) for every x ∈ G and there exist a neighborhood U

of the neutral element in G and an index α0 ∈ A such that χα ∈ U. for every

α ≥ α0 (this is Lemma 2 in [10]).

Continuous convergence is compatible with the group structure of G∧.

In particular a filter F converges to χ ∈ G∧ continuously if and only if the

filter Fχ−1 converges to 1 continuously. More information about this type

of convergence can be found in [6].

The definition of continuous convergence means that it is the weakest

convergence on G∧ making the evaluation ω continuous. It is a well known

fact that the continuous convergence is stronger than the uniform convergence

on compact sets and if G is a locally compact group, they coincide.

5.2 Local uniform convergence

We say that a filter F in G∧ converges locally uniformly to an element χ ∈
G∧ ([7, 5.4]) if it converges uniformly on some neighborhood of the neutral

element, i. e. there exists a neighborhood V of the neutral element in G such

that for all n ∈ N, there exists some Sn ∈ F with Sn(x) ⊂ χ(x)Tn for every

x ∈ V .

Local uniform convergence can be defined also for nets. We say that

(χα)α∈A converges locally uniformly to an element χ ∈ G∧ if it converges

uniformly on some neighborhood of the neutral element, i. e. there exists

a neighborhood V of the neutral element in G such that for all n ∈ N,

there exists some αn ∈ A with χα(x) ⊂ χ(x)Tn for every α ≥ αn and every
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x ∈ V . This happens if and only if the tail filter of (χα)α∈A converges locally

uniformly according to the definition given above.

Local uniform convergence is compatible with the group structure of G∧.

Observe that if a filter F on G∧ converges locally uniformly, then there exists

a neighborhood U of the neutral element in G such that F converges in TU. .

Definition 3. Let G be a topological abelian group. We say that G is locally

generated if gp(U) = G for every U ∈ N (G).

It is known that a connected topological abelian group is locally gener-

ated; the converse is true in the locally compact case (see [20]).

Lemma 9. Let G be a locally generated topological abelian group. Every

locally uniformly convergent filter in G converges pointwise to the same limit.

Proof. This is a consequence of the fact that if a filter of characters F con-

verges uniformly to 1 on U ∈ N (G), in particular it converges pointwise to

1 on gp(U).

Lemma 10. Let G be a topological abelian group. If a filter F on G∧ con-

verges both pointwise and locally uniformly, then it converges continuously.

Proof. Suppose that F converges to 1 locally uniformly and pointwise. There

exists U ∈ N (G) such that F converges to 1 in (G∧, TU.), hence for every m ∈
N we have (U.)(m) ∈ F ; in particular U. ∈ F and F converges continuously

to 1.

Note that, according to Lemma 9, the condition of pointwise convergence

in Lemma 10 is redundant for locally generated groups.

In Subsection 5.4 we will see that within the class of locally quasi-convex

groups, continuous convergence on the dual imply locally uniform conver-

gence if and only if the original group is Schwartz.
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5.3 A realization of the topology of locally generated

Schwartz groups

Lemma 11. Let G be a metrizable topological abelian group. For any precom-

pact set A ⊂ G there exists a sequence {xn : n ∈ N} in G, which converges

to the neutral element, such that {xn : n ∈ N}. ⊂ A..

Proof. Let G̃ be the completion of G. The set K = A is compact in G̃. By

[1, 4.4], there exists a sequence {xn : n ∈ N} in G, which converges to the

neutral element, such that {xn}. ⊂ K.. In particular {xn}. ⊂ A.. (Note

that the dual groups of G and G̃ coincide.)

Proposition 12. Let (G, τ) be a locally quasi-convex and locally generated

Schwartz group. Then τ coincides with the topology of uniform convergence

on the sequences of the dual group which converge locally uniformly to 1.

Proof. Since G is locally quasi-convex, τ is the topology of uniform conver-

gence on all equicontinuous subsets of the dual. The topology of uniform

convergence on the sequences of the dual group which converge locally uni-

formly to 1, is weaker than τ . Inversely: fix a quasi-convex τ -neighborhood

U ; by Theorem 8 there exists V such that ϕV .(U.) is a precompact subset

of the metrizable group (G, TV )∧V . . Using Lemma 11, we find a sequence (χn)

in (G, TV )∧ which converges to the neutral element in TV . , and its TV .-polar

is contained in the TV .-polar of U.. Let us show that {χ1, χ2, · · ·}/ ⊂ qc(U)

and, since U is quasi-convex, this will prove our statement. Note that, since

V generates G, the evaluation map α(g) is TV .-continuous for any g ∈ G.

Suppose that g ∈ {χ1, χ2, · · ·}/. Then α(g) is in the TV .-polar of {χn} and

thus in the TV .-polar of U.. Hence g ∈ qc(U).

Proposition 12 is a group version of the implication (1)⇒(3) of [23,

Th. 10.4.1].
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5.4 Schwartz groups and convergence of characters

Theorem 13. Let G be a locally quasi-convex group G. The following are

equivalent:

(i) G is a Schwartz group.

(ii) Every continuously convergent filter on G∧ converges locally uniformly.

(iii) Every continuously convergent net on G∧ converges locally uniformly.

Proof. (i)⇒(ii): We may restrict ourselves to filters which converge to

1. Let F be a filter on G∧ which converges pointwise to 1, and contains

U. for some U ∈ N (G). Since G is a Schwartz group, there exists

another neighborhood of the neutral element V in G and a sequence

of finite sets Sk ⊂ G such that V ⊂ Sk + U(k) for every k ∈ N. We

will prove that F converges uniformly to 1 on V, that is, for every

n ∈ N there exists F ∈ F with F (V ) ⊂ Tn. By pointwise convergence

Wn := {χ ∈ G∧ : χ(S2n) ⊂ T2n} belongs to F . Put Fn = Wn∩U. ∈ F .

We have Fn(V ) ⊂ Fn(S2n + U(2n)) ⊂ Fn(S2n)Fn(U(2n)) ⊂ T2nT2n = Tn.

(ii)⇒(i): Fix a quasi-convex neighborhood U of the neutral element in

G. Let F be the filter generated by the sets (U(2) ∪ S). = (U(2))
. ∩ S.,

where S runs through all finite subsets of G. The filter F converges

pointwise to 1, and contains (U(2))
., hence it converges continuously

to 1. By hypothesis there exists a quasi-convex V ∈ N (G), V ⊂ U,

such that F converges uniformly to 1 on V. Thus for every n ∈ N there

exist a finite set Sn ⊂ G with ((U(2))
.∩S.n)(V ) ⊂ Tn. Now consider the

natural homomorphism φ : (G, TU)∧ → (G, TV )∧. Let us show that the

map

φ|U. : (U.,Tp|U.)→ ((G, TV )∧, TV .)

is (uniformly) continuous. Given any n ∈ N, for the finite set Sn ⊂ G

we have

ϕ1, ϕ2 ∈ U., ϕ1ϕ
−1
2 ∈ S.n
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⇒ ϕ1ϕ
−1
2 ∈ (U.U. ∩ S.n) ⊂ (U(2))

. ∩ S.n
⇒ ϕ1ϕ

−1
2 (V ) ⊂ Tn ⇒ ϕ1ϕ

−1
2 ∈ (V .)(n).

Since U. is Tp–compact (see [1, 3.5]), U. is TV .–compact. Now Theo-

rem 8 gives the desired result.

(ii)⇔(iii): This follows from the fact that a net of characters converges

continuously (resp. locally uniformly) if and only if its tail filter con-

verges continuously (resp. locally uniformly) to the same limit, and

from the known construction ([25, Problem L to Chapter 2]) which

associates to every abstract filter F a net whose tail filter is F .

Corollary 14. Let G a locally quasi-convex and locally generated group.

Then G is a Schwartz group if and only if continuous convergence and locally

uniform convergence coincide on G∧.

See [23, 10.4.1] for related results in topological vector space setting.

Let G be a topological abelian group. It is easy to see that a sequence

{χn} in G∧ converges continuously, as a net, according to the above defini-

tion, if and only if {χn} is equicontinuous and pointwise convergent.

In the next result we obtain a characterization of Schwartz groups in the

class of metrizable groups, in terms of convergence of sequences of characters.

We denote by c0(T) the subgroup of TN formed by the sequences which

converge to 1, endowed with the topology given by the complete invariant

metric

d(t, s) = sup
n∈N
|tn − sn|

Note that the set U = {t ∈ c0(T) : d(1, t) ≤
√

2} is quasi-convex and TU
coincides with the topology of c0(T).

Theorem 15. Let G be a metrizable separable locally quasi-convex group.

The following statements are equivalent:

(i) G is a Schwartz group.

15



(ii) Every continuously convergent sequence in G∧ converges locally uni-

formly.

(iii) Every continuous homomorphism ϕ : G → c0(T) is a compact homo-

morphism.

Proof. (i)⇒ (ii) follows from Theorem 13.

(ii)⇒ (i): We recall the following fact, which is true by general reasons:

if G is a separable group, equicontinuous subsets of G∧ are Tp-metrizable.

Fix U ∈ N (G). By Theorem 8, we need to find a quasi-convex V ∈ N (G)

such that V ⊂ U and U. is TV .-precompact. Let (Vk)k∈N be a decreasing

basis of quasi-convex neighborhoods of the neutral element in G such that

V1 ⊂ U .

Suppose that U. is not precompact for any of the topologies TV .
k
. For

every k ∈ N there exists a sequence (χ
(k)
i )i∈N in U. without TV .

k
-convergent

subsequences. Since U. is Tp−compact (see Prop. 1), we can suppose that

each (χ
(k)
i ) converges pointwise to an element χk ∈ U.. Consider the se-

quences ξ(k) = (ξ
(k)
i )i∈N, defined by ξ

(k)
i = χ

(k)
i χk, for every k, i ∈ N. For

every k, ξ(k) is contained in the equicontinuous (hence Tp-metrizable) set

W = U.U., converges to 1 in Tp, and does not contain any subsequence

which converges in TV .
k

to the constant character.

Let (Bn)n∈N be a decreasing basis of neighborhoods of the neutral element

for the topology Tp in W . Define inductively a strictly increasing sequence

of indices (mn)n∈N such that ξ
(k)
i ∈ Bn for every i ≥ mn and 1 ≤ k ≤ n. We

build up a new sequence joining successive blocks of the sequences ξ(k), in

the following way:

(ξ(1)
m1
, ξ

(1)
m1+1, . . . , ξ

(1)
m2−1,

ξ(1)
m2
, ξ

(1)
m2+1, . . . , ξ

(1)
m3−1, ξ

(2)
m2
, ξ

(2)
m2+1, . . . , ξ

(2)
m3−1,

ξ(1)
m3
, ξ

(1)
m3+1, . . . , ξ

(1)
m4−1, ξ

(2)
m3
, ξ

(2)
m3+1, . . . , ξ

(2)
m4−1, ξ

(3)
m3
, ξ

(3)
m3+1, . . . , ξ

(3)
m4−1, . . .)

As ξ(k) ∈ W for every k, the above sequence is equicontinuous. Moreover, it

converges to the neutral element in Tp, since the elements in the first block
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are in B1, those in the second and the third ones are in B2, those in the

following three blocks are in B3, and so on. Therefore, (ξ(k)) converges to

1 continuously. On the other hand, (ξ(k)) does not converge to the neutral

element in any TV .
k

since it contains tails of all the sequences ξ(k) as subse-

quences. This contradicts our hypothesis.

(ii) ⇔ (iii): For any sequence (χn) in G∧ which converges pointwise to

1, the associated group homomorphism

x ∈ G 7→ (χn(x))n∈N ∈ c0(T)

is continuous if and only if (χn) is equicontinuous (i. e. converges continuously

to 1), and it is compact if and only if (χn) converges locally uniformly to

1.

Remark 2. A non-Schwartz locally convex space E such that every contin-

uous linear operator T : E → c0 is compact was found in [26, Example 3],

thus answering a question posed in [12, p. 118]. The same example can be

used in the group setting to show that implication (iii)⇒ (i) of Theorem 15

is not true in general for a non-metrizable G.

Next we present a natural reformulation of (i)⇔ (ii) in Theorem 15 for

sequentially barrelled groups. Recall that a sequentially barrelled group is a

topological abelian group G such that every pointwise convergent sequence in

G∧ is equicontinuous ([28]). Every Baire group (in particular every complete

and metrizable group) is sequentially barrelled.

Theorem 16. Let G be a sequentially barrelled separable and metrizable

locally quasi-convex group. The following statements are equivalent:

(i) G is a Schwartz group.

(ii) Every pointwise convergent sequence in G∧ converges locally uniformly.

Remark 3. Theorem 16 was proved for Fréchet spaces by Floret ([15]).

Our proof follows the presentation of this result given in [23, 11.6], where
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it was asked if the assumption of separability could be dropped. Later an

affirmative answer was given independently by Bonet ([8]) and Lindström

and Schlumprecht ([27]). We do not know whether the same is true in the

group setting. Note that, unlike in the locally convex space case, there ex-

ist complete, metrizable, not separable locally quasi-convex Schwartz groups

(e. g. any uncountable discrete group).

Corollary 17. Let G be an abelian group and U ⊂ G a quasi-convex set.

Assume that (G, TU) is complete separable and Hausdorff. If every pointwise

convergent sequence in (G, TU)∧ converges uniformly on U , then (G, TU) is

locally compact.

Proof. By (ii)⇒(i) in Theorem 16, (G, TU) is a Schwartz group. By Propo-

sition 7, (G, TU) is locally precompact. Since it is complete, it is actually

locally compact.

Remark 4. The above corollary is a group version of the famous Josefson-

Nissenzweig theorem ([13, Ch. XII]). This theorem asserts the following: If

for a Banach space any pointwise convergent sequence of continuous linear

functionals converges in norm, then the space is finite-dimensional. We do

not know whether Corollary 17 is true without the separability assumption.
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