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Abstract In this paper we focus on the application of a higher-order finite volume

method for the resolution of Computational Aeroacoustics problems. In particular,

we present the application of a finite volume method based in Moving Least Squares

approximations in the context of a hybrid approach for low Mach number flows. In

this case, the acoustic and aerodynamic fields can be computed separately. We focus

on two kinds of computations: turbulent flow and aeroacoustics in complex geometries.

Both fields require very accurate methods to capture the fine features of the flow,

small scales in the case of turbulent flows and very low-amplitude acoustic waves in

the case of aeroacoustics. On the other hand, the use of unstructured grids is interesting

for real engineering applications, but unfortunately, the accuracy and efficiency of the

numerical methods developed for unstructured grids is far to reach the performance of

those methods developed for structured grids. In this context, we propose the FV-MLS

method as a tool for accurate CAA computations on unstructured grids.
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1 Introduction

Computational Fluid Dynamics (CFD) has become an indispensable tool in both, de-

sign and research. In aerospace industry, it is difficult to find a project in which CFD

is not present. However, and despite the great success that CFD has achieved, it is

fair to acknowledge that it still has a long way to go. In turbulent flows, for exam-

ple, the Reynolds number achieved in full-scale numerical simulations of flows is still

very low, and it is very far from the numbers of interest in industrial processes. Even

with this limitation, Direct Numerical Simulation (DNS) plays a key role in funda-

mental research. CFD has contributed to the advance in knowledge about turbulence,

astrophysical processes and in general in those phenomena where experimental mea-

surement is difficult or even impossible. Moreover, in these “virtual experiments”, the

researcher can access to every variable of interest. This kind of research has also favored

the development of turbulence models that allow the computation of flows with higher

Reynolds numbers (but at the expense of a lower accuracy). In this context it is worth

mentioning the idea of Large Eddy Simulation (LES), in which the biggest scales of the

flow are directly solved (that is, without any model) whereas the smaller flow scales

are modeled.

Godunov’s theorem [1] establishes that it is impossible to develop a monotone

linear numerical scheme with an order of accuracy higher than one. That is, high-

accuracy and the absence of new extrema near sharp gradients are two contradictory

requirements for linear methods. This is the difficulty that high-order methods have to

face. However, in CFD there is really a need of high-accuracy methods for problems

in which is essential to capture the fine features of the flow. Thus, in the simulation of

turbulent flows (both in DNS and LES) it is required a high resolution of the frequency

spectrum. In DNS, for example, the amplitude of Fourier modes of the velocity field

is distributed continuously in a wide range of wave numbers. On the other hand, if

the numerical scheme is not able to solve accurately the scales lying on the higher

frequency range of the spectrum, the distribution of the energy spectrum is displaced

to the high-frequency range and the simulation fails (pile-up).

Aeroacoustics is another field in which the accuracy requirements of the numerical

method are critical. The low-amplitude of acoustic waves and the wide range of frequen-

cies present in the solution makes very difficult the numerical resolution of these prob-

lems. The most usual approach to solve Computational Aeroacoustics (CAA) problems

nowadays is the so-called “hybrid approach”. In particular, when the Mach number is

small, it is possible to separate the aerodynamic and acoustic problems. Thus, acoustic

sources are obtained by a computation of the turbulent flow and propagated using a

wave equation, the linearized Euler equations or other approaches.

In a hybrid approach, numerical methods with high-resolution are required to solve

the turbulent flow and also the propagation of the acoustic sources. Moreover it is

needed an adequate dissipation, and the requirements of the dissipation properties of

the numerical scheme are different for the resolution of a turbulent flow or an acoustic

problem. In this context, “high-resolution” means high accuracy in the Fourier space,

that is, accuracy in the widest possible range of frequencies. Thus, even though “higher-

order” usually is identified with “more accurate solution”, it is possible the existence of

more efficient procedures to increase the width of the range of frequencies solved than

raising the order of the numerical scheme. On the other hand “adequate dissipation”

means that the dissipation of the numerical scheme has to be enough to stabilize the

computations without modifying the features of the flow (in turbulent computations)
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or dissipate the acoustic waves (in CAA computations). For example, quasi-spectral

finite differences schemes [2–5] are commonly used in such high-accuracy demanding

applications. In these schemes, some of the order that it could be possible to achieve

is sacrificed to obtain a better approximation in a wider range of the frequency spec-

trum. These methods are very accurate and efficient, but unfortunately they require

an structured grid to be applied. For rather complex geometries, however, different

strategies have to be used. For example, the use of multi-block grids allows the use of

structured grid procedures, but it requires an additional effort to build the grids and

their interfaces. On the other hand, the global nature of classical spectral methods may

be changed for a more local approach, following the spirit of hp finite element methods

[6,7]. Thus, the use of unstructured-grid methods is an attractive option. But this kind

of methods presents several problems for its application to real engineering problems.

Some of them suffer a great increase of the computational resources and many others

have difficulties for the evaluation of high-order derivatives of the variables. Another

approach that holds promise for the resolution of CFD problems on complex geometries

is the so-called Isogeometric Analysis [8,9]. This technology includes Finite Element

Analysis as a special case, but also offers other possibilities, such as, for example, pre-

cise geometrical modeling or simplified mesh refinement. The main idea of Isogeometric

Analysis is using Non-Uniform Rational B-Splines (NURBS) [10] as basis functions in

a variational formulation. The use of NURBS leads to more robust [11] higher-order

formulations and to enhanced spectral resolution of the approximation [12] compared

to classical polynomial-based Finite Elements. We feel that the reason for this lies in

two properties of NURBS not possessed by classical Finite Elements, namely, smooth-

ness and non-interpolatory character. The basis functions built with the formulation

employed in this paper do exhibit the smoothness and non-interpolatory character of

NURBS and we believe that this fact may contribute to explain the robustness of our

method.

Most Numerical schemes developed for unstructured grids are based on polynomial

approximations. In this context, it is not easy to find other ways to improve the accuracy

different from increasing the order of the numerical scheme.

When we use high-resolution schemes to solve compressible flows, an additional dif-

ficulty appears: the possible presence of shock waves. When using high-order schemes,

a shock wave originates first-order errors that propagate through the domain of com-

putation, far of the shock region. In order to deal with shock waves, and “circumvent”

the Godunov’s theorem high-order methods add some kind of numerical dissipation.

This fact limits the resolution of the scheme, since small-scale features of the flow are

damped out by this additional dissipation.

Among the most successful higher-order numerical numerical schemes for unstruc-

tured grids we can cite higher-order finite volume methods [13–23], Discontinuous

Galerkin methods [24–38], essentially non-oscillatory (ENO and WENO) methods [39–

53], the Spectral Finite volume method [54–60] and Residual Distribution schemes

[61–79].

These methods are designed in origin for the resolution of hyperbolic conservation

laws, and their application to non-strictly hyperbolic equations is not straightforward.

Thus, the discretization of viscous terms (of elliptic nature) in the Navier-Stokes equa-

tions is a source of problems. In fact, most of the differences between the Discontinuous

Galerkin schemes for this set of equations relies in the discretization of viscous terms,

and it is one of the main drawbacks of these numerical schemes.
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On the other hand, the Discontinuous Galerkin method obtains very accurate re-

sults in the case of purely hyperbolic systems when the flow is smooth. However, the

use of this numerical scheme when shock waves are present is difficult. The spectral vol-

ume method, presents advantages in this case, since it is possible to apply the limiting

techniques developed for finite volume methods. When dealing with shocks, ENO and

WENO are the reference methods. They circumvent the Godunov’s theorem by using

non-linear (data dependent) reconstructions. The idea is to use an adaptive stencil,

looking for the stencil that obtains the less oscillatory solution. Originally developed

for structured grids, the extension to unstructured grids is not straightforward due to

the increase in the size of the stencils. Thus, only recently a modified WENO method

has been applied to three-dimensional problems [49].

Nowadays, the use of finite volume methods with slope limiters is the most common

approach to deal with compressible flows in engineering applications.

A high order method well-suited for the application on unstructured grids has been

recently presented in [80,81]. This method is based on the application of a meshfree

technique (Moving LeastSquares) [82–84] in a finite volume framework. We refer to

this numerical scheme as the FV-MLS method. One of its advantages is the increase

of the order of accuracy without raising the number of degrees of freedom. Another

interesting feature is the treatment of viscous terms in the Navier-Stokes equations,

since viscous terms are directly computed at integration points. This procedure leads

to a clear and accurate approximation of the viscous fluxes [85]. Moreover, since the

FV-MLS method is a finite volume solver, it is possible to use any of the robust and

widely used shock capturing techniques developed for the finite volume method. In

order to improve the behavior of these shock-capturing methods, new selective limiting

techniques have been proposed [86,87]. In this paper we are going to focus on the

application of the FV-MLS method to the resolution of CAA problems in a context

of a hybrid approach. Thus, we examine here the ability of this numerical scheme to

simulate turbulent compressible flows and also to solve the Linearized Euler equations.

The outline of this paper is as follows: In section 2 we present a non-extensive

review about the most common approaches to simulate compressible turbulent flows.

Section 3 is devoted to present different techniques for the resolution of aeroacoustic

problems, focusing on the different hybrid approaches. In section 4 we review the FV-

MLS method and point out several issues concerning the multiresolution properties of

the numerical discretization and its application to the resolution of turbulent flows and

aeroacoustics problems. In section 5 we present a implicit turbulence model based on

the multiresolution properties of the FV-MLS scheme. In section 6 several numerical

examples of the application of the FV-MLS method to aeroacoustics are exposed.

Finally, we present the conclusions.

2 The numerical simulation of turbulent flows

The simulation of turbulence is one of the most challenging problems that the research

community has to face nowadays. This is true not only from a “numerical” point of

view, but also from more deeper sights. Thus, even the question about the nature of

turbulence remains unclear [88]. However, although there is not a single definition of

turbulence, it is possible to identify a number of common properties to every turbulent

flow:

1. Apparently random and chaotic behavior.
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2. Dependence on initial conditions.

3. A wide range of length and time scales.

4. Three-dimensional, time-dependent and rotational character.

5. Time and space intermittency.

6. Diffusion and dissipation phenomena.

Since the problem of the simulation of turbulence is vast enough to cover sev-

eral books (for example [89–92]), our intention here is to present the most common

approaches for the simulation of turbulent flows.

2.1 The energy cascade

The wide range of scales present in a turbulent flow suggested to Richardson [93] the

idea of the self-similarity of turbulent flows. Then Kolmogorov [94] introduced the

concept of energy cascade. Most of the kinetic energy of a turbulent flow is in the

biggest vortices (biggest scales). These vortices are created by instabilities of the mean

flow and they are also under the action of inertial instabilities that may break them

down into smaller ones. These smaller vortices are also under the action of instabilities

and they may break again. Each time that a vortex breaks the energy of the bigger

scales is transferred to the smaller structures. This process is continuously taking place

in a flow. Inertial forces dominate the process and viscosity does not take part in it.

However, from a certain size of the smaller scales, the Reynolds number (Re) takes

a value near to one. In this moment, viscous forces are not negligible and dissipation

becomes important. The scale for which Re ≈ 1 is called the Kolmogorov scale. Smaller

vortices should be in a state in which the rate of kinetic energy received from larger

vortices equals the rate of energy dissipated as heat by viscous forces. This hypothesis

was introduced by Kolmogorov [94] and is known as the universal equilibrium theory.

With this theory and using dimensional analysis, it is possible to determine the

size of the smaller structures in a turbulent flow [95]:

η ∼ l Re
−3
4

T (1)

v ∼ u Re
−1
4

T (2)

where l is the typical size of bigger structures, η is the typical size of the smaller

vortices, u is the typical velocity of bigger vortices and v is the velocity of the smaller

ones. Turbulent Reynolds number is given by ReT = k1/2l/ν. k is the kinetic energy

of turbulent fluctuations per unit mass and ν is the kinematic molecular viscosity.

We note that when the Reynolds number is increased, the size of the smaller scales

decrease.

2.2 Length and time scales

One of the typical features of turbulent flows is the presence of a large number of

structures with a very wide range of time and length scales. In the study of turbulence,

there are four main sets of scales:

1. Large scale, based on the geometry (l).



6

2. Integral scale, it is a fraction (usually 20%) of the large scale.

3. Taylor microscale (λ).

4. Kolmogorov scale (η)

Using dimensional analysis and assuming Kolmogorov’s universal equilibrium the-

ory, it is concluded that the dynamics of the smaller scales will depend on the kinetic

energy dissipation rate per unit of mass ε ([L2T−3]) and on the kinematic viscosity ν

([L2T−1]). Thus, considering that ε and ν as the dimensional parameters we obtain

length, time and velocity Kolmogorov’s scales:

η ≡ (ν3/ε)
1
4 (3)

τ ≡ (ν/ε)
1
2 (4)

v ≡ (νε)
1
4 (5)

From this expressions it is possible to obtain the expression for v given by (2).

The Taylor microscale for isotropic turbulence verifies λ ∼ (lη2)
1
3 . Moreover, the

eddy turnover time is a measure of the time that a vortex needs to interact with its

surroundings. It is defined as a characteristic time in terms of a characteristic length

(l) and a characteristic velocity (k1/2).

An important consideration is the spectral representation of the properties of a

turbulent flow. As turbulent flows contain a continuous spectrum of scales, it is con-

venient to perform an analysis in terms of spectral distribution of energy. Thus, the

energy spectrum (E(κ)) is represented as the decomposition in wavenumbers (κ). In

general, the distribution of energy is a function of ν, ε, l, κ and the mean strain rate

S. However, Kolmogorov suggests that there is a range of scales for which the energy

transferred by inertial effects is dominant, and then the spectral distribution of energy

only depends on ε and κ. This range of scales is the inertial subrange.

2.3 Direct Numerical Simulation and statistically averaged methods

The most straightforward approach for the simulation of a turbulent flow is to solve

the full range of scales in the Navier-Stokes equations. Unfortunately, the number of

flows we can compute with this approach is very limited. The higher the Reynolds

number is, the smaller the size of the scales present in the flow. In fact, it can be

proven [92] that the ratio of the largest to the smallest flow scale is proportional to

Re9/4. This proportion suggest that the number of nodes scales with Re9/4. This

implies prohibitively computer requirements with current technology for most flows

of engineering interest. However, DNS plays a very important role in fundamental

research [96]. Thus, the extensive use of direct simulations has been crucial for a better

knowledge of turbulence and for the development of models that allow the simulation

of flows at higher Reynolds numbers.

Although the direct solution of the Navier-Stokes equations is not applicable to

most engineering problems, there is still a need for solving them in real practical ap-

plications. Thus, a great effort has been devoted to developing models to simulate

the effect of the unresolved scales. Probably, the most common approach in flows of

engineering interest has been the use of the statistical time averaging of the solution.

This technique, called the Reynolds averaged numerical simulation (RANS) is based



7

on the idea of the decomposition of the flow in two parts: The statistical average and

a fluctuation:

ui = ui + u′i (6)

The averaging process reduces the number of scales in the solution, but also pre-

cludes the numerical scheme from capturing the fine features of the flow. Thus, the

effect of small scales (the fluctuation) is included by a turbulent model.

The RANS equations for an incompressible flow are the following [92]:

∂ui
∂xi

= 0

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= − ∂p

∂xi
+
∂
(

2µSij − ρu′ju
′
i

)
∂xj

(7)

the superindex ¯ means an statistical average of the variable, and repeated indices indi-

cate summation (Einstein notation). The term ρu′ju
′
i appears due to the non-linearity

of the Navier-Stokes equations. It is known as the Reynolds stress tensor (or turbu-

lent stress tensor). It introduces six additional unknowns to the system. In order to

solve the system, we need to obtain additional equations relating the fluctuating part

with the averaged part of the flow. The lack of these equations is the turbulent closure

problem. The attempts to find such relations represent the history of the evolution of

turbulent models.

The first attempts to develop a mathematical description of the Reynolds stress

tensor were made by analogy with the molecular diffusion. Thus, Boussinesq introduces

the concept of turbulent viscosity as the “turbulent” analog of molecular viscosity. As

the viscous stress tensor is related to the velocity gradient by the molecular viscosity,

the Boussinesq hypothesis relates turbulent stresses with the gradient of the averaged

velocity by means of the turbulent viscosity. However, unlike molecular viscosity, which

is independent of the flow, the turbulent viscosity is different for each flow. This de-

pendence is the reason for the lack of an universal turbulent model.

The similarity between turbulence and molecular processes is also present in the

Prandtl’s theory of mixing length. He suggested that the turbulent viscosity can be

defined from the so-called “mixing length”, in an analogy with the kinetic theory of

gases, that predicts the value of the molecular viscosity from the value of the molecular

mean free path. Even though this hypothesis presents many theoretical problems to

be justified [92], it works reasonably well in shear flows, when the right value of the

mixing length is used. The idea of the mixing length is the basis of the so-called algebraic

models.

The search of an universal turbulence model continued with models in which the

turbulent viscosity is not only a function of the mixing length but also of other pa-

rameters. These additional parameters try to consider the “history” of the flow, in an

effort to obtain a more realistic description of the Reynolds stresses. This is the origin

of the n−equation models. These models introduce a new set of n transport differential

equations in addition to the conservation of mass, momentum and energy equations.

Kolmogorov [97] was the first to propose a two-equation model. Since then, several sets

of equations have been developed. Among others we can mention the k− ε model [98],

the k − ω model [99], the SST model [100], or the ν2 − f model [101]. Several authors

use the renormalization group theory to derive expressions for the turbulent viscosity
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[102,103]. This modification improves the behavior of the turbulence models near the

walls.

Algebraic and n−equation methods are widely used for real engineering applica-

tions. However, they have some drawbacks that preclude their use when high accuracy

is required. RANS methods obtain acceptable results for statistically steady flows,

which roughly means that all statistical properties are constant in time. This is not

the case, for example, in phenomena such as transition, boundary layer separation or

vortex interaction. Moreover they are unable to accurately predict turbulent flows at

high Mach numbers [104]. The reason is the even more complex phenomena involved

in turbulent compressible flows [105].

With the aim of showing the increase in difficulty, we apply the Reynolds averaging

to the compressible Navier-Stokes equations. It is convenient to introduce the Favre

averaging:

Φ̃ =
ρΦ

ρ
(8)

and

Φi = Φ̃i + Φ′′i (9)

Thus, the Favre-averaged Navier-Stokes equations are:

∂ρ

∂t
+
∂ [ρũi]

∂xi
= 0

∂ (ρũi)

∂t
+
∂
[
ρũiũj + pδij + ρu′′i u

′′
j − τji

]
∂xj

= 0 (10)

∂ (ρẽ0)

∂t
+
∂
[
ρũj ẽ0 + ũjp+ u′′j p+ ρu′′j e

′′
0 + qj − uiτij

]
∂xj

= 0

In these equations, ẽ0 is the density averaged total energy:

ẽ0 = ẽ0 +
ũkũk

2
+
ũ′′ku
′′
k

2
(11)

It is usual to rewrite unknown terms as:

τji = τ̃ji + τ ′′ji

u′′j p+ ρu′′j e
′′
0 = Cpρu′′j T + uiρu

′′
i u
′′
j +

ρu′′j u
′′
i u
′′
i

2
(12)

qj = −Cp
µ

Pr

∂T

∂xj
= −Cp

µ

Pr

∂T̃

∂xj
− Cp

µ

Pr

∂T ′′

∂xj

uiτij = ũiτ̃ij + u′′i τij + ũiτ
′′
ij (13)

where Pr is the Prandtl number. Moreover, we have neglected the molecular viscosity

(µ) fluctuations.

Favre-averaged Navier-Stokes equations present different properties than Reynolds-

averaged Navier-Stokes. For example, there is no mass flux across the Favre-averaged

streamlines [105,106]. However, in homogeneous flows (those whose statistics of turbu-

lent fluctuations are independent of position [107]) it can be shown that Favre averaging

and ensemble average give identical results. A discussion of advantages and drawbacks

of Favre-averaging is found in [106].



9

Incompressible, non-heat conducting flows are described completely by the velocity

field. In this case the divergence-free condition couples the pressure with the velocity.

In compressible flows the pressure is determined by an equation of state.

In compressible flows we can split the turbulent fluctuations in a compressible and

an incompressible parts. The incompressible part of this splitting can be understood as

the part of the solution that satisfies the incompressible Navier-Stokes equations, and

the compressible part is the remainder. However, there is no general decomposition

based on this approach useful for the analysis, since there is no explicit distinction be-

tween acoustic waves and other compressible events [90].1 Kovasznay [108] introduced

linearized theory based on a small parameter expansion to obtain a decomposition

of compressible turbulent fluctuations. Thus, these fluctuations can be considered as

combinations of acoustical, vortical and entropy modes. Although the validity of this

assumption is restricted, this decomposition is useful since it gives considerable insight

of this kind of flows. Following this approach, it is possible intermodal energy transfer

in addition to interscale energy transfer. Hence the increasing complexity in modeling

compressible turbulence.

The number of terms of equation (10) to be modeled is bigger than in the incom-

pressible case. Unfortunately, it has been shown that the models based on the extension

of those developed originally for incompressible flows fail to adequately predict turbu-

lent flows at high Mach numbers, and a specific work is required for compressible flows.

An important concept is that of isotropy. In case of turbulent flows, isotropy usu-

ally means direction invariance. Experiments seems to confirm the hypothesis of local

isotropy is reasonable for the flow smaller scales. However most turbulence models are

developed under the assumption of isotropy in all the range of scales, which possibly

introduce errors in the solution.

Second-order closure models [109–111] abandon the Boussinesq hypothesis. These

methods introduce a differential equation for each component of the Reynolds stresses,

and another equation to determine the dissipation. This approximation removes the

isotropy assumption of the Boussinesq hypothesis, and it accounts for phenomena

such as flows over curved surfaces. However, the numerical resolution of these models

presents problems due to instability. Moreover, several terms of the exact transport

equations for the components of the Reynolds stresses are unknown and the modeling

of these terms introduces again the Boussinesq hypothesis.

We refer the interested reader to [92] for a thorough discussion of these methods.

Even though it is fair to acknowledge the importance of RANS methods in the de-

velopment of turbulence computations, there is a theoretical issue that is important to

remember. When we average the Navier–Stokes equations, the nature of the equations

change. A deterministic phenomenon is expressed in terms of a set of statistic equa-

tions. If we accept that the Navier–Stokes equations describe correctly the dynamics

of a flow, there is a contradiction with the statistical approach of averaging. In this

context the approach of Large Eddy Simulation allows to circumvent this contradiction.

1 When the nonlinear mechanism of the flow is dominant it is possible to use the Helmholtz
decomposition of the compressible velocity field, but without a direct decomposition of the
other variables [90].
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2.4 Large Eddy Simulation

Large Eddy Simulation (LES) of turbulent flows is a different strategy to solve turbulent

flow problems. Turbulent flows are characterized by vortices with a wide range of length

and time scales. Biggest vortices have a size comparable to the length size of the mean

flow. On the other hand, the dissipation of kinetic energy occurs at the smaller scales.

The idea of LES is to model only the scales that are not solved by the numerical

scheme. Ideally, the smallest size of the resolved scales is determined by the grid size,

and then the subgrid scales (SGS) are those of a size smaller than the grid size. However,

the numerical method may introduce dispersion and dissipation errors even in scales

captured by the grid. Thus, in current LES models SGS terms include scales bigger

than the grid size but not well resolved by the numerical method. The separation of

this scales is performed by means of filtering. Thus, subfilter scales (SFS) instead of

SGS models is a more suitable term. We consider a resolved scale as a scale whose

wavenumber is below the cut-off frequency of the numerical method.

The filtering operation has to fulfill some requirements [89]

1. Constant preservation

a = a, a ∈ R (14)

2. Linearity,

Φ+ Ψ = Φ+ Ψ, (15)

3. Commutation with derivation:

∂Φ

∂s
=
∂Φ

∂s
, with s = xxx, t (16)

Many filters have been used in literature, among them we can cite the volume-

average box filter [112] and the Gaussian filter [113]. In the context of structured

grids, LES with Padé filters [2,4,5] has obtained very good results. However, filtering

for unstructured grid is more difficult. In particular, the development of commutative

filters for this kind of grids is specially complex. The use of MLS has been proposed

[114], and also other approaches based on Least-Squares [115], or in discrete triangular

filters with weights assigned to each vertex [116].

Most turbulence models are developed under the assumption of Boussinesq hypoth-

esis, and therefore, they suppose isotropic flows. This assumption does not hold for a

vast majority of flows in nature. However, in LES formulations the idea is to apply the

turbulence model only to the smaller scales. In this context, the assumption of isotropy

in these scales is more reasonable. Another advantage of the LES approach is that the

Navier-Stokes equations are not averaged, keeping their deterministic nature.

2.4.1 The filtered Navier-Stokes equations

In the following, super index¯indicates filtered variables. Favre-filtered variables (Φ̃ =

ρΦ/ρ) are denoted with .̃ Quantities denoted byˆare computed according its definition

but from filtered variables. Prime ′ variables are used for the small scale part of the

variables. We define the small scale as the subfilter part of a variable, u′i = u− ũ.

Following [117,118], the filtered compressible Navier Stokes equations, for the con-

servative variables
(
ρ, ρũ, ρṽ, ρw̃, ρÊ

)
are
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∂ρ

∂t
+
∂
(
ρũj
)

∂xj
= 0

∂ (ρũi)

∂t
+
∂
(
ρũiũj + pδij − τ̂ij

)
∂xj

= −
∂
(
ρσij

)
∂xj

+ βi (17)

∂ρÊ

∂t
+
∂
[(
ρÊ + p

)
ũj − τ̂ij ũi + q̂j

]
∂xj

= −α1 − α2 − α3 + α4 + α5 − α6

The term ρσij = ρ
(
ũiuj − ũiũj

)
represents the subgrid stresses and βi is:

βi =
∂
(
τ ij − τ̂ij

)
∂xj

(18)

βi arises from the nonlinearity of the viscous stress. We define the total resolved energy

Ê = p/(γ− 1) +
1

2
ρuiρuj/ρ, and p is the filtered pressure. Subgrid terms in the energy

equation are:

α1 = ũi
∂ρσij
∂xj

, α2 =
1

γ − 1

∂
(
puj − pũj

)
∂xj

α3 = p
∂uj
∂xj
− p

∂ũj
∂xj

, α4 = τij
∂ui
∂xj
− τij

∂ũj
∂xj

(19)

α5 =
∂
(
ũiτ ij − ũiτ̂ij

)
∂xj

, α6 =
∂
(
qj − q̂j

)
∂xj

(20)

α1 is the SGS dissipation and α2 is the pressure-velocity subgrid term, which describes

the effect of subgrid turbulence on the conduction of heat in the resolved scales. The

term α3 is the pressure-dilatation correlation. On the other hand, α4 is related to the

SGS molecular dissipation. Moreover α5 is the SGS diffusion due to molecular transport

of momentum, and α6 is the SGS diffusion due to molecular transport of heat. This

is not the only possible formulation. Thus, it is possible to modify the thermodynamic

variables to obtain other expressions of the compressible LES filtered equations [90,

119].

Subgrid stresses, ρσij , are usually expressed as the sum of three terms:

ρσij = ρ
( ˜̃uiũj − ũiũj)+ ρ

(
ũ′iũj + ˜̃uiu′j)+ ρ

(
ũ′iu
′
j

)
(21)

The first term is the Leonard stress tensor, which represents a relation between

filtered quantities. The second is the cross-term stress. It accounts for the interactions

between resolved and unresolved scales. The third term represents the SGS Reynolds

stresses, which relates only subgrid quantities.

Classical LES models for compressible flow start from these equations and intro-

duce a SGS model, for example the Smagorinsky [120] or the more advanced Dynamic

Smagorinsky [121,122] models. Terms α3-α6 and βi are neglected under the assumption

that they are smaller than the SGS modeled terms [123]. One of the main assumptions

in the modeling of SGS terms for compressible flow is the incompressibility of the

subgrid scales, that is, compressibility only affects the large scales.
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2.4.2 Current Techniques

One of the main drawbacks of classical LES techniques is that the SGS model is in

fact applied to the whole range of scales. Current LES techniques try to modify only

the range of scales that are unresolved. From a physical standpoint, these methods try

to take into account the interaction between the unresolved scales and the smallest

resolved scale. Interactions between largest scales of the flow and subgrid scales are

neglected.

The Variational Multiscale method (VMS) [124–127] is a different approach to Large

Eddy Simulation. It uses variational projections instead of filtered-equations. This fact

avoids the problems caused by non-commutative filters. In their formulation, they

decompose the solution space of the Navier–Stokes equation into large and small scales.

Later, the VMS framework was extended to a three-level approach where the scales

are divided in coarse, fine and unresolved scales [128]. In earlier versions of VMS, the

idea is to apply the subscale model to the unresolved scales, whereas large and small

scales are solved directly. A more recent approach [129] is the Residual-based subgrid-

scale modeling. In this approach, the problem of solving the Navier-Stokes equations

is divided in two problems: obtaining approximate solutions to the fine-scale problem

(that involves the unresolved scales) and the resolution of the coarse-scale problem

(that involves the coarse and fine scales). The solution of the fine-scale problem is

inserted in the coarse-scale problem. Interactions between coarse and fine scales are

included in the formulation without addition of any eddy-viscosity model. In practice,

the fine-scale problem is not solved exactly. Instead an approximate expression is used

[129].

The VMS method could be included in a class of methods of Multi-level Simulations

[89]. These methods try to solve an equation for the subgrid terms, and it seems that

currently they are the preferred for the research community. Among these Multi-level

techniques, we can cite methods with several grid levels [130,131] or methods that use

several filtering levels [132].

Another method is the Approximated Deconvolution Model (ADM) [133]. The idea

of this method is to recover the unfiltered solution with an approximated deconvolution

and the application of a relaxation term to model the effect of subgrid scales on the

resolved scales.

Usual SGS models for LES are computed from filtered variables. In [117,134] a

High Pass Filtered (HPF) model is used. The idea of this method is to use high-pass

filtered variables instead of filtered variables to compute the SGS model terms. In [118]

it is shown an analogy between the VMS and filtering in LES. In this framework, the

HPF model may also be related to the VMS method.

A successful technique in structured grids is the use of high-resolution compact

finite differences with the addition of an explicit filter [2,4,5]. These techniques are

usually called “no model” methods. However, there is an implicit SGS model in them:

the filter. Padé filters depend on a parameter. Depending on this parameter, the amount

of filtering changes, according to its transfer function. In practice, the amount of fil-

tering is selected following stability criteria. Since the filtering has only (ideally) a

dissipative action, backscatter is not modeled. This approach is also related with the

ADM method, since the ADM process is equivalent to filtering a wider range of high

frequencies [135].

The spirit of this approach is similar to that of Implicit Large-Eddy Simulation

(ILES) techniques. The main assumption in ILES is that the action of the subgrid
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scales on the resolved scales is purely dissipative. In these methods, the numerical

discretization introduces the amount of dissipation needed without explicit subgrid

modeling. In LES the energy cascade process is truncated since the smaller scales are

not solved by the grid. However, there are methods used in LES that introduce cer-

tain amount of dissipation. Thus, it is legitimate to ask if it is convenient the use of a

dissipative SGS model with these methods. The use of upwind methods for LES is con-

troversial [136,137], due to the excessive dissipation in coarse grids. On the other hand,

in [138] it is shown that the amount of dissipation of upwind discretizations mainly

depends on the quality of the approximation of the derivatives. The use of upwind

methods for LES has been proposed in [139–144] without using any SGS model. This

approach is the Monotonically Integrated Large-Eddy Simulation (MILES). In some of

the MILES approaches, the physical viscosity is set to zero [145], and all the viscos-

ity (molecular also) is introduced by the numerical method. However, this approach

presents consistency problems. The main drawback of the MILES approach is the lack

of physical foundation. Even though from a numerical point of view the method ob-

tains goods results, there is no solid physical basis for this approach. However, there

are some theoretical advances [144], that relate the form of certain terms of the dis-

cretized equations with a subgrid tensor. Since the numerical method also plays the

role of a dissipation model, it is very important the numerical scheme used in these

techniques. Not all the methods are valid for use in MILES, since they have to mimic

the dissipation of energy at the smaller scales [146].

3 Computational Aeroacoustics

The sound generation by a flow and its propagation are a matter of aerodynamics. In-

deed, the conservation equations of mass and momentum govern both the flow dynamics

and the resulting acoustic phenomena. However, the features of the aerodynamic flow

and the sound are different. The first is convective and/or diffusive and the second is

propagative with very low attenuation due to viscosity. On the other hand, aeroacoustic

problems present a wider range of wavelengths than those of aerodynamic ones.

Aeroacoustic noise optimization is the main topic of many widespread research

studies of industrial interest [147–149]. In fact, the noise level emitted by a device could

determine the success or failure of a new prototype. On the other hand turbomachines

are widely found in industrial applications. In these devices the level of sound generated

is a very important parameter of design.

The prediction of aerodynamic noise benefits from recent developments in numerical

methods and computer science. However, despite the knowledge accumulated over the

past few decades on the mechanisms of noise generation on complex systems as for

example air delivery systems, the prediction of such a flow field and the resulting

acoustic pressure, by numerical methods is still difficult. This is due to our inability

to model the turbulent viscous flow with enough accuracy on complex geometries and

to the complicated nature of flow through turbomachines. Until now, there is still no

consensus about the aeroacoustic approach to adopt, and actually, it depends on the

application. In the following we present a succinct description of the most commonly

used approaches.

Previously to our exposition, we recall the concepts of far and near-fields. The con-

cept of far-field, relative to the effects of the flow compressibility, concerns the propaga-

tion of acoustic waves produced by a pressure change in the propagation medium. The
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occurred disturbance propagates gradually by molecular excitement to the observer

located far from the source. Unlike the far-field, near-field includes the sound due to

the fluid compressibility and another component called the aerodynamic disturbance

field or pseudo-sound. It consists of all pressure fluctuations governed primarily by the

incompressibility directly related to the flow. These fluctuations are local and are not

propagative.

In Computational Aeroacoustics (CAA), two computational approaches are possi-

ble:

Direct approach

This approach consists of adjusting the aerodynamic numerical modeling to the acous-

tics requirements. In other words, it is needed to use numerical schemes adapted to

the acoustic propagation, providing low-dissipation and low-dispersion. However, the

complexity of implementing these schemes and the far field constraint, where the grid

must extend over very large distances, greatly increases the computational costs and

makes using this approach very difficult for complex geometries.

Hybrid approach

This approach can be divided into two types of modeling.

– The first one is to use the direct approach near disturbances in which the acoustic

waves are propagated over a short distance. They are then propagated using an

adapted propagation operator, as Kirchhoff’s equation [150] for example, to the far

field. For adapted wave operator we mean a wave equation or other conservation

equation system that permits an acoustic wave to propagate from a given acoustic

source. However, the simulation of the flow field requires DNS or LES, and the

treatment of boundary conditions must be done with utmost care to ensure an

accurate transition between near and far fields.

– The second consists of separating aerodynamics and acoustics computations. This

is possible when the Mach number of the flow is small [151]. Thus, acoustic sources

are given by aerodynamic calculation and propagated using wave equation (Ffowcs

Williams-Hawkings [153], Kirchhoff,...), linearized Euler equations (LEE) or other

approaches like LPCE [154],... The constraints and the computation time is con-

siderably reduced compared to DNS.

3.1 Aeroacoustics of complex geometries

Aeroacoustics is a science dealing with the sound generated either by the flow itself,

as free jet turbulence or by its interaction with a moving or static surface, rigid or

deformable, as fan blades, helicopter rotor, compressors or turbines, etc... Thus, in these

latter kinds of applications, we need to deal with flow through complex geometries.

The first attempt to formulate a theory about the acoustics of propellers was con-

ducted by Lynam and Webb [155] in 1919. They showed that the rotation of the blades

of a propeller causes a periodic modulation of the fluid flow and associated acoustic
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disturbance. Another approach, initiated by Bryan [156] in 1920, is to study the prop-

agation of a source point in uniform motion. This had as main feature the introduction

of the concept of delayed time.

Gutin [157] was the first in 1936 to establish a theoretical formalism of a steady noise

source through linear acoustics. He showed that steady aerodynamic forces correspond

to dipole source distribution on the disc of a propeller. This model proves to be in-

complete because, in reality, the noise emitted by rotating blades extends rather high

frequencies. The sound at high frequencies is a consequence of the unsteadiness of aero-

dynamic loads.

Advances in the prediction of noise from the airflow, are based on of Lighthill’s [158,

159] investigations. In his analogy, the generated noise is mathematically reduced to

the study of wave propagation in a medium at rest, in which the effect of the flow is

replaced by a distribution of sources. The pressure is therefore regarded as character-

izing a sound field of small amplitude carried by a fluid, whose properties are uniform

throughout the area at rest. The major intake of Lighthill is to include nonlinear terms

expressing the noise generation by turbulent flow.

Curle [160] extended the Lighthill’s analogy to include solid boundaries by treating

them as distributions of surface loads. Subsequently, Ffowcs Williams and Hawkings

(FW&H) [153] have extended this approach by taking into account the motion of solid

surfaces in the flow.

Limits of aeroacoustic analogy and alternative approaches

In the common formulation of aeroacoustic analogy solution, the noise is radiated in

free and far field. As strong hypotheses: reflections, diffractions, scattering as well as

the confinement effects are not taken into account. These hypotheses make very easy

the use aeroacoustic analogy for noise prediction of open rotors or free jets for example,

but they are also its weaknesses in case of confining. In [149] it was shown that using

the FW&H formulation to model the noise generated by a centrifugal fan does not

match measurements because of the presence of a casing. Taking into account the

sound attenuation of the casing to correct the directivity has not really solved the

problem. For this kind of problems, it was therefore concluded that the aeroacoustic

analogy does not obtain accurate results.

To take into account confining effects, it is expected that LEE can give satisfactory

results. In fact, with LEE one can use the same acoustic sources as FW&H for example,

and in addition reflections, diffractions and scattering are naturally taken into account

by an adequate choice of boundary conditions.

Linearized Euler Equations

In many aeroacoustic applications we can assume that problems are linear [151]. In

those cases, it is possible to linearize the Euler equations around a (mean) station-

ary solution UUU0 = (ρ0, u0, v0, p0). Thus, we can write the Linearized Euler Equations

written in conservative form are the following:

∂UUU

∂t
+
∂FFF

∂x
+
∂GGG

∂y
+HHH = SSS (22)
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In equation (22) SSS a source term and

UUU =


ρ

ρu

ρv

p

 FFF =


ρu0 + ρ0u

p+ ρ0u0u

ρ0u0v

u0p+ γp0u

 GGG =


ρv0 + ρ0u

ρ0v0u

p+ ρ0v0v

v0p+ γp0v

 (23)

HHH =


0

(ρ0u+ u0ρ)
∂u0
∂x

+ (ρ0v + v0ρ)
∂u0
∂y

(ρ0u+ u0ρ)
∂v0
∂x

+ (ρ0v + v0ρ)
∂v0
∂y

(γ − 1) p∇∇∇ · ννν0 − (γ − 1)ννν · ∇∇∇p0

 (24)

where ννν = (u, v) is the perturbation in velocity, ννν0 = (u0, v0), ρ is the perturbation

in density, p is the perturbation in pressure and γ = 1.4. In case of an uniform mean

flow, HHH is null. To solve these equations, we need to compute previously the acoustic

sources SSS, by using LES or DNS. In [152] is presented a methodology to compute the

sources.

4 The FV-MLS method

The Finite Volume method is one of the most usual numerical techniques for the res-

olution of fluid dynamics problems in complex geometries on unstructured grids [1,

17,161]. The main problem for achieving higher-order accuracy when these methods

are used with unstructured grids is the computation of the gradients and successive

derivatives required for the reconstruction of the variables inside the cells by Tay-

lor approximations. Moreover, the accuracy in the computations of the gradients is

also important in the computation of viscous fluxes in the case of the Navier-Stokes

equations. The first attempts to obtain finite volume methods with order higher than

one were the Monotone Upstream Schemes for Conservation Laws (MUSCL) [13]. One

drawback of this technique is the lack of multidimensionality, since it is based on the

direct extension of the one-dimensional approach.

One technique that has achieved the least dissipative results for hyperbolic prob-

lems is the so called Residual Distribution or Fluctuation Splitting techniques [61–79].

The main problem of this technique is that it is based on a conservative linearization of

the inviscid flux, which is not always available. Moreover the viscous flux discretization

and the extension to orders of accuracy higher than two are not straightforward. Other

authors compute the gradients by using the Least-Squares technique or reconstructions

based on the Green-Gauss theorem [16,19,22,162]. However, by using these techniques

it is no easy to find convergence orders higher than two. The k-exact reconstruction [18,

163,164] is based on the computation of a polynomial expansion inside each cells that

preserves the mean of the variable in that cell. This polynomial expansion reconstructs

exactly polynomials up to order k. The coefficients defining this polynomial are chosen

by minimization, in the Least-Squares sense, of the difference between the averages of

the reconstructing polynomial and the actual averages. Moreover, geometric weights

are included to measure the relative importance of the error incurred at each control

volume. These weights are functions of the distance. These constraints in the Least-

Squares problems makes mandatory the resolution of the Least-Squares problem each
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time step. This technique has problems with boundary-layer grids and in the compu-

tation of viscous fluxes. Recently, a generalization of the k − exact reconstruction is

introduced in [165,166]. More information about high-order methods for unstructured

grids can be found in [86].

The basic idea of the FV-MLS method [80,81,85,167] is to use Moving-Least

Squares [82–84] approximations to compute the derivatives required for the finite vol-

ume scheme. The MLS method, and in general Reproducing Kernel methods [83,84],

have been widely used in surface reconstruction and by the meshless community. It is

able to obtain accurate approximations of a variable and its derivatives from a scat-

tered set of data. Thus, it is very convenient for use with unstructured grids in a finite

volume framework. Moreover, the centered nature of the MLS approximations makes

it very suitable for the computation of viscous terms. Thus, viscous fluxes are directly

computed at integration points whereas for convective terms an upwind discretization

is used.

The usual approach of high-order finite volume schemes is pragmatic and bottom-

up. Starting from an underlying piecewise constant representation, a discontinuous

reconstruction of the field variables is performed at the cell level. An important prac-

tical consequence is that the discretization of higher order terms requires some kind of

recovery procedure, which is, almost invariably, inconsistent with the aforementioned

reconstruction. Our approach is somewhat the opposite. We start from a high-order

and highly regular representation of the solution, obtained by means of Moving Least-

Squares approximations [82]. This approach is directly suitable for the discretization

of elliptic/parabolic equations and high-order spatial terms. For equations with a pre-

dominantly hyperbolic character, the global representation is broken locally, at the cell

level, into a piecewise polynomial reconstruction, which allows to use the finite volume

technology of Godunov-type schemes for hyperbolic problems (e.g. Riemann solvers,

limiters).

4.1 General formulation

Consider a system of conservation laws of the form

∂uuu

∂t
+∇∇∇ ·

(
FFFH +FFFE

)
= SSS in Ω (25)

supplemented with suitable initial and boundary conditions. The fluxes have been

generically split into a hyperbolic-like part,FFFH , and an elliptic-like part,FFFE . Consider,

in addition, a partition of the domain Ω into a set of non-overlapping control volumes

or cells, T h = I. Furthermore, we define a reference point (node), xxxI inside each cell

(the cell centroid).

The spatial representation of the solution is as follows: consider a function uuu(xxx),

given by its point values, uuuI = uuu(xxxI), at the cell centroids, with coordinates xxxI . The

approximate function uuuh(xxx) belongs to the subspace spanned by a set of basis functions

{NI(xxx)} associated to the nodes, such that uuuh(xxx) is given by

uuuh(xxx) =

nxxx∑
j=1

Nj(xxx)uuuj (26)
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which states that the approximation at a point xxx is computed using certain nxxx sur-

rounding nodes. This set of nodes is referred to as the stencil associated to the eval-

uation point xxx. In particular, the above approximation is constructed using Moving

Least-Squares (MLS) approximation [82]. Note that, using MLS, the approximate func-

tion uuuh(xxx) is not a polynomial in general. The centered character of the approximation

avoids the spatial bias which is often found in patch-based piecewise polynomial inter-

polation. MLS shape functions values at a point depend on the number of neighbors

considered for this point (nxxx), a kernel function and a basis [167]. In this work we use

a polynomial basis and the following exponential kernel, defined in 1D as:

W (x, x∗, sx) =
e−( d

c )2 − e−( dm
c )2

1− e−( dm
c )2

(27)

with d =
∣∣xj − x∗∣∣, dm = 2 max

(∣∣xj − x∗∣∣), with j = 1, . . . , nx∗ , c = dm
sx

, x∗ is the

position of a reference point, x is the position of every cell centroid of the stencil and

sx is a shape parameter. A 2D kernel is obtained by multiplying two 1D kernels. Thus,

the 2D exponential kernel is the following:

Wj(xxx,xxx
∗, sx, sy) = Wj(x, x

∗, sx)Wj(y, y
∗, sy) (28)

The integral form of the system of conservation laws (25) for each control volume I is:∫
ΩI

∂uuu

∂t
dΩ +

∫
ΓI

(
FFFH +FFFE

)
·nnndΓ =

∫
ΩI

SSS dΩ (29)

Introducing the component-wise reconstructed function uuuh we obtain∫
ΩI

∂uuuh

∂t
dΩ +

∫
ΓI

(
FFFhH +FFFhE

)
·nnndΓ =

∫
ΩI

SSS(uuuh) dΩ (30)

For hyperbolic problems, we introduce a “broken” reconstruction, uuuhbI , which ap-

proximates uuuh(xxx) (and, therefore, uuu(xxx)) locally inside each cell I, and is discontinuous

across cell interfaces [81,86]. In general, we require the order of accuracy of the broken

reconstruction to be the same as that of the original continuous reconstruction. Thus,

using Taylor series expansions; a quadratic reconstruction inside cell I, reads

uuuhbI (xxx) = uuuhI +∇∇∇uuuhI · (xxx− xxxI) +
1

2
(xxx− xxxI)T HHHh (xxx− xxxI) (31)

where the gradient ∇∇∇uuuhI and the Hessian matrix HHHh involve the successive derivatives

of the continuous reconstruction uuuh(xxx), which are evaluated at the cell centroids using

MLS. This dual continuous/discontinuous reconstruction of the solution is crucial in or-

der to obtain accurate and efficient numerical schemes for mixed parabolic/hyperbolic

problems. The cell-wise broken reconstruction defined here is actually a piecewise con-

tinuous approximation to uuuh. The advantage is that it allows to make use of Riemann

solvers, limiters, and other standard finite volume technologies, while keeping some

consistency in terms of functional representation. Thus, the general continuous recon-

struction is used to evaluate the viscous (elliptic-like) fluxes, whereas its discontinuous

approximation is used to evaluate the inviscid (hyperbolic-like) fluxes.

The final semidiscrete scheme for the continuous/discontinuous approach can be

written as
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∫
ΩI

∂uuuh

∂t
dΩ +

∫
ΓI

HHH(uuuhb+,uuuhb−) dΓ +

∫
ΓI

FFFhE ·nnndΓ =

∫
ΩI

SSS(uuuh) dΩ (32)

where HHH(uuuhb+,uuuhb−) is a suitable numerical flux.

Time integration scheme requires special attention. It has been shown [168] that at

most third order of accuracy is achieved by using an explicit time integration scheme

with a zero-mean reconstruction [18,169]. This problem is avoided by using mass lump-

ing formulations or implicit time integration techniques [168].

4.2 1D linear advection equation analysis

In the following, we expose the analysis of the discretization of the 1D linear advection

equation with the third-order FV-MLS method. This analysis will allow us to evaluate

the behavior of the FV-MLS method in the approximation of convective terms of a

transport equation. We note that this analysis is only valid for equally-spaced nodes,

but it will be useful to compare with other existing methods and to get a flavour of the

behavior of the numerical scheme. In this analysis we analyze the spatial discretization

only, without taking into account the effects of time integration. For a study of the

effects of third and fourth order Runge-Kutta explicit schemes we refer the reader to

[167].

The 1D linear advection equation reads

∂u

∂t
+ a

∂u

∂x
= 0 (33)

on the domain 0 ≤ x ≤ 2π, with an harmonic wave as initial condition:

u(x, 0) = g(0)eikx (34)

and that also verifies that u(0) = u(2π). In equation (33), u is a scalar quantity

propagating with phase velocity a. In order to make the exposition easier to follow, we

consider only a > 0. However, the conclusions will be valid for any value of a.

With this initial setup, the solution of the problem is written as:

u (x, t) = g(t)eiκx (35)

Thus, introducing (35) in (33):

dg

dt
eiκx + iaκgeiκx = 0 (36)

that is,

dg

dt
= −iaκg (37)

and consequently g(t) is

g(t) = g(0)e−iaκt (38)

where g(0) is the initial value of g(t). Thus, we have:

u (x, t) = g(0)ei(κx−aκt) (39)
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On the other hand, an initial wave can be obtained by the addition of initial

conditions of the form (34):

u(x, 0) =

F∑
q=1

gq(0)eiκqx (40)

where F is the number of Fourier modes.

Due to the linearity of equation (33), the solution can be obtained by the addition

of solutions of the form (39). Thus, for F modes we obtain:

u(x, t) =

F∑
q=1

gq(0)eiκq(x−at) (41)

A real wavenumber κ is related to a real frequency ω = aκ, such that equation (41)

is a solution of (33). The relationship between frequency and wavenumber is called

dispersion relation. For equation (33) this relationship is linear, that is a characteristic

feature of wave propagation in non-dispersive media. Thus, the velocity of propagation

is the same for all the wavenumbers.

The discretization of equation (33) usually introduces a dispersion error. This means

that in the numerical solution of (33), waves with different wavenumber propagate with

different velocities. Moreover, if the modified wavenumber is complex, dissipation errors

will appear.

The linearity of the solution allows us to perform the analysis for a single Fourier

mode (equation (40)), so the subindex q is omitted.

In contrast with a finite difference discretization, where we use point values of the

variable, a finite volume scheme refers to the mean value of the variables inside a control

volume I.

ũI =
1

∆x

∫ xR

xL

u dx (42)

where xR and xL are the values of the x-coordinate of the cell I interfaces I + 1
2 and

I − 1
2 , as is plotted in figure 1.

Fig. 1 1D Spatial discretization scheme.

The FV-MLS method uses the integral form of equation (33):

∂

∂t

∫ xR

xL

u dx = − (f (xR, t)− f (xL, t)) (43)
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where f (u) = au is the flux function. by using the mean value definition (42) of u(x),

the spatial discretization of (43) reads as:

∂ũI
∂t

= − a

∆x

(
u∗(I+ 1

2 ) − u
∗
(I− 1

2 )

)
(44)

In equation (44), u∗ refers to the reconstruction of the value of u at integration points

(I ± 1
2 ). After some algebra, we obtain the modified wavenumber of the third order

FV-MLS scheme. The interested reader is referred to [167] for the complete process.

Note that this is a time-dependent problem, and in this analysis we have introduced

the correction terms required for the conservation of the mean (zero-mean) of the

third-order scheme [81,168].

Here, we only point out that the modified wavenumber of the third order FV-MLS

scheme is:

κ∗ =
Z∗

i
(45)

with

Z∗ = 1− e−iκ∆x+

+

Q∑
l=−P

∂N(I+l)

∂x

(
eiκl∆x − eiκ(l−1)∆x

)(
∆x

2

)
+

+
1

2

Q∑
l=−P

∂2N(I+l)

∂x2

(
Ãeiκl∆x − B̃eiκ(l−1)∆x

) (46)

and

Ã =

(
∆x

2

)2

− 1

∆x

∫
I

(x− xI)2 dx (47)

B̃ =

(
∆x

2

)2

− 1

∆x

∫
(I−1)

(x− x(I−1))
2 dx (48)

Note that Ã and B̃ include the zero-mean terms. If we only consider the spatial dis-

cretization error, we can write [167]

a∗

a
=

Z∗

iκ∆x
(49)

The modified phase velocity a∗ is the numerical propagation velocity of a harmonic

function. When a∗ and a are different, dispersion errors appear in the numerical so-

lution. As the original equation (33) is non-dispersive, the numerical solution of an

harmonic function with different wavenumbers loses the original shape.

The real part of the modified wavenumber is related to dispersion errors, whereas

the imaginary part is related to dissipation errors. Upwinding introduces a non-null

imaginary part in the modified wavenumber of the FV-MLS method. Although this

could be seen as a drawback in terms of accuracy, we note the remarkable property

that most of the dissipation is introduced in the wavenumbers that are not accurately

resolved for the numerical method. This fact can indeed be seen as an implicit low-pass

filtering of the spurious waves.
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Remark 1 This is an interesting feature of the numerical scheme, since it is going to

be used on unstructured grids. On this kind of grids, the anisotropy of the elements

may originate additional spurious waves. The implicit filtering helps to attenuate the

distortion of the solution by these waves.

In figure 2 we plot the real and the imaginary parts of the scaled modified wavenum-

ber versus the real scaled wavenumber for different values of the kernel shape parameter

sx. Resulting curves show the dispersion and dissipation errors of the third-order FV-

MLS numerical scheme. We observe the strong dependence of the properties of the

numerical method with the choice of the kernel parameter. Moreover, its properties

also depend on the kind of kernel [167].
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Fig. 2 Dispersion and dissipation curves of the third-order FV-MLS method for different
values of the kernel shape parameter sx. On the top, we plot the real part of the modified
scaled wavenumber, related to the dispersion of the numerical scheme (left) and the dispersion
error in logarithmic scale (right). On the bottom, we plot the imaginary part of the modified
scaled wavenumber, related to dissipation.

For a problem with non-harmonic waves, the crests of the waves propagate with

the phase speed but the energy of the wave packet propagate with the group velocity

vg = a
∂κ∗

∂κ
(see [170]). The phase speed and the group velocity of the third-order

FV-MLS method are shown in figure 3.



23

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

κ∆x

a* /a

s
x
=1

s
x
=3

s
x
=6

0 0.5 1 1.5 2 2.5 3
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

κ∆x

a g/a

s
x
=1

s
x
=3

s
x
=6

Fig. 3 Phase-speed (left) and group velocity (right) of the third-order FV-MLS method for
different values of the kernel shape parameter sx.

In figure 4 we plot a comparison between the third and second-order FV-MLS

method and the first order upwind scheme in terms of dispersion and dissipation error.

It is clear the improvement in the properties of the numerical scheme by increasing the

order.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

κ∆x

R
e(

κ* ∆x
)

1st order upwind 

2nd order FV−MLS s
x
=5 

3rd order FV−MLS s
x
=5 

Exact

0 0.5 1 1.5 2 2.5 3
−2.5

−2

−1.5

−1

−0.5

0

κ∆x

Im
(κ

* ∆x
)

1st order upwind 

2nd order FV−MLS s
x
=5 

3rd order FV−MLS s
x
=5 

Fig. 4 Influence of the order of the approximation for the FV-MLS method. On the left: Real
part of κ∗∆x versus κ∆x. On the right: Imaginary part of κ∗∆x versus a κ∆x.

Remark 2 Note that the main source of differences between two different finite volume

methods, in terms of dispersion and dissipation properties, is the accuracy on the com-

putation of the derivatives, provided the numerical flux functions are the same. Thus,

it is very important an accurate computation of the derivatives. In multidimensional

problems and in a finite volume framework, it is also important a multidimensional

character of the computation of the derivatives.
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4.2.1 A numerical benchmark for simulation of wave propagation

In this section we solve the first problem presented in the First ICASE/LaRC Workshop

on Benchmark Problems in Computational Aeroacoustics [171]. We solve the equation

(33) in the domain −20 ≤ x ≤ 450 with the following initial condition:

u(x, 0) = 0.5e

[
−ln(2)( x

3 )2
]

(50)

The transported wave may be considered as the addition of a number of harmonic

waves with different frequencies and amplitudes. If the numerical scheme is not able

to simulate accurately the propagation of waves with very different frequencies the

numerical solution will be a very distorted wave.

In figure 5 we show the results for the second order FV-MLS method. We observe

that the solution is not accurate, as it presents a very distorted wave. The results with

the second-order FV-MLS scheme are equivalent to the results of the MUSCL scheme

using centered fourth-order differences (This result only holds for 1D [167]).
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Fig. 5 Second and third-order FV-MLS solution for the first problem presented in [171] at a
non-dimensional time t = 400, with CFL = 0.6, exponential kernel sx = 6, ∆x = 1.

In order to improve the resolution, we increase the order of the numerical scheme.

In figure 6 we plot the results for the third-order FV-MLS method at non-dimensional

times t = 100, t = 400. For this grid spacing (∆x = 1) the solution is somewhat

dissipative, and the wave shape presents a certain amount of distortion for t = 400.

However, the dispersion and dissipation errors of the wave are smaller than those

of other higher-order methods as the fourth-order MacCormack method presented in

[172], or fourth-order centered finite differences [173].

From the present analysis, it is clear the importance of a good resolution of a given

numerical scheme for the resolution of wave propagating problems. Thus, not only the

dissipative errors are important but also phase errors, which may lead to a inaccurate

solution. It is important that a numerical scheme solves accurately the widest possible

range of frequencies. Even though on unstructured grids the main procedure to improve

the resolution is increasing the order of the numerical scheme, it is important to note

that two different numerical methods with the same order of accuracy may have very
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Fig. 6 Third-order FV-MLS solution for the first problem presented in [171] at different non-
dimensional times, with CFL = 0.6, ∆x = 1, exponential kernel and several values of the
shape parameter sx.

different dispersion and dissipation curves. Thus, the use of a higher-order method does

not imply a more accurate solution.

5 Implicit filtering for turbulence computations

We have just seen that the kernel function determines the properties of the FV-MLS

scheme. It is possible to see dissipation and dispersion curves in terms of resolved

scales. Thus, in figure 2, we see that the numerical scheme introduces dispersion and

dissipation errors for a given frequency (cut-off frequency). We recall that we consider

a resolved scale as a scale whose wavenumber is below the cut-off frequency of the

numerical method. From the dissipation curve we observe that frequencies over the

cut-off frequency are naturally dissipated by the numerical method. This dissipation

has to mimic the high-wavenumber end of the inertial subrange. The spirit of this

approach follows closely the MILES method.

The methodology presented in [5] for the computation of turbulent flows uses a

no-model approach. The numerical method is based on quasi-spectral compact finite

differences and the addition of an explicit Padé filter. The explicit filter removes the

energy of the highest frequencies, and the amount of energy removed is controlled by

the parameter of the Padé filter. Here, we follow a similar procedure, but the filter is

implicitly defined in the numerical model. Thus, the shape parameter of the exponential

kernel s acts as the filter parameter. The dissipation curve in figure 2 gives a flavor of

the shape of the implicit filter.

On the other hand, in compressible flow simulations it is possible the presence

of shocks in the solution. An usual approach with finite volume methods is the use

of slope-limiters [19,20]. However, the use of slope-limiters presents some drawbacks.

One of the main drawbacks of slope limiters is the limiting in smooth regions. In these

regions, limiting is not needed, and the introduction of additional numerical dissipation

reduces the accuracy of the numerical scheme. One possible solution is the selective-

limiting approach, in which a shock detector decides if the slope-limiter is applied or

not. There are many shock-detectors developed in the literature. Among others, we
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can cite [21,174–178]. Here, the additional dissipation introduced by the slope-limiter

is restricted by the MLS-based shock detector developed in [87,86]. It allows to keep the

high-order of the numerical scheme except in the vicinity of shocks (where it is first-

order accurate). Thus, in our approach the limiting method is only used to prevent

oscillations near shocks, not to mimic the small-scale dissipation. This is a remarkable

difference with other implicit LES approaches based on non-oscillatory finite volume

schemes [142–144]. In fact, the dissipation for the SGS model is controlled by the s

parameter of the kernel.

5.1 Decay of compressible isotropic turbulence

In this section we present the application of the third-order FV-MLS method to the

computation of a turbulent flow. We solve the decay of compressible isotropic tur-

bulence. Even though this example is the simplest case of turbulent flow, it is very

interesting since it allows to check if the numerical method is able to mimic the dis-

sipation of the subfilter scales. The numerical model has to predict the evolution of

a turbulent region without walls or any mechanism to remove or add energy, nor to

organize the larger eddies.

The computational domain is [0, 2π]3. We have imposed periodic boundary condi-

tions in all directions [138]. The setup of the problem is the same as case 6 in [179].

The turbulence length scale is defined by selecting the initial three-dimensional energy

spectrum as

E3D ∝ k4exp

[
−2

(
k

kp

)2
]

(51)

where kp = 4 is the wavenumber corresponding to the peak of the spectrum and k

is the wavenumber. Following [180], we define χ, as the ratio of compressible kinetic

energy to the total turbulent kinetic energy. In this example, χ =

(
qd

q

)2

= 0.2, where

q is the root mean square magnitude of the fluctuation velocity, and qd is the root

mean square magnitude of the dilatational fluctuation velocity. We note that χ is an

indicator of the level of compressibility of the flow. Thus, χ = 0 corresponds to an

incompressible flow.

The initial velocity fluctuations are specified to obtain a turbulent Mach number,

Mt =
q

c
= 0.4, where c is the mean speed of sound. In this simulation, the initial values

are given by: (
ρ′rms

)2
/ 〈ρ〉2 = 0.032 (52)(

T ′rms
)2
/ 〈T 〉2 = 0.005

We recall that symbol 〈〉 refers to mean value and primes denote fluctuating variables.

The third-order FV-MLS scheme has been used for the computations, with the

MLS-based sensor [87] and the Barth and Jespersen limiter [19]. We have tested two

levels of refinement. The coarse grid with 323 elements and the finest grid with 643

elements. An explicit fourth-order Runge-Kutta scheme has been used for time integra-

tion. The time step is ∆t = 0.05, corresponding approximately to 250 time-steps per

eddy turnover time (τ0) (the eddy turnover time is defined as the ratio of the turbulent

kinetic energy to the dissipation rate based on the initial field).



27

Our “reference solution” is a LES calculation on a 1283 grid, computed with sixth-

order compact finite differences and a explicit Padé filter with parameter α = 0.49 [5].

The result of this LES coincides with the DNS solution of [179].
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Fig. 7 Effect of the shape parameter sx on time history of turbulent kinetic energy decay.
Results for the 323 mesh (left) and for the 643 mesh (right).
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Fig. 8 Instantaneous three-dimensional energy spectra at t/τ0 = 0.3. Effect of the shape
parameter sx. Results for the 323 mesh (left) and for the 643 mesh (right).

In figures 7 and 8 we plot the results obtained on the 323 and 643 grids, for different

values of the kernel shape parameter sx for the time evolution of the turbulent kinetic

energy, K =
〈
ρ
[
(u′)2 + (v′)2 + (w′)2

]〉
, and the energy spectrum. Results agree very

well with those of the reference solution. The choice of sx has an influence on the results.

Thus, the value of sx = 5 is somewhat under dissipative. The origin of this under

dissipation is probably related with an excess of energy in the range of the resolved

scales for this value of the parameter, as it is shown in figure 8. We note the two different

slopes appearing in the results of the three-dimensional energy spectrum. This result
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Fig. 9 Time history of turbulent kinetic energy decay. Comparison between third-order FV-
MLS results and a centered fourth-order finite differences method with an eighth-order filter
[5]. Results for the 323 mesh.

agrees with the Eddy-Damped Quasi-Normal Markovian Theory (EDQNM), which

predicts that the slope of the inertial range of the irrotational velocity correlation

depends on time [181,182]. On a convective time scale, it is proportional to k−5/3,

whereas in a viscous time scale it is proportional to k−11/3.

In order to compare the accuracy of this approach we show in figure 9 the results

of this approach and the results of a fourth-order centered finite difference method.

We note that these results are also more accurate than the results obtained with an

standard third-order finite volume scheme [5]. The origin of this greater accuracy relies

on the high quality of the computations of derivatives with MLS. Moreover, we believe

that the excessive dissipation usually attributed to upwind methods is not consequence

of the upwinding process but of the poor quality of the derivatives computed [138].

6 Selected Aeroacoustics examples

In this section we present the results of the application of the FV-MLS method to the

resolution of some selected aeroacoustic problems on unstructured grids, by using the

Linearized Euler Equations.

In CAA the treatment of boundary conditions plays a key role [183], since even

small spurious disturbances when the waves leave the domain can distort the acoustic

field. In the following we expose our approach to the boundary conditions. For our

modeling, the boundary conditions enter in the discretized equations through a proper

definition of the numerical flux that can be written as HHH(UUU+,UUU∗−) (see equation

32), where UUU∗− is the external state variable. Depending on the boundary type, the

construction of UUU∗− accounts for, both, the physical boundary conditions that must

be enforced and the information leaving the domain.
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Reflecting boundary conditions

A perfectly reflecting boundary condition is easily obtained by defining, at each Gauss

points on the rigid wall boundaries, an external mirror fictitious state UUU∗−.

The external state is then expressed as

UUU∗− = RRRUUU+ (53)

where RRR is a transition matrix function of nnn’s components, it reads

RRR =


1 0 0 0

0 1− 2n2x −2nxny 0

0 −2nxny 1− 2n2y 0

0 0 0 1

 (54)

Using this condition, the mass flux computed by the Riemann solver is zero and the

non-permeability condition is satisfied.

Absorbing boundary conditions

Constructing absorbing (non-reflecting) boundary conditions for CAA is pretty delicate

because of the high sensitivity of the accuracy to the small spurious wave reflexions

at far field boundaries. Approaches based on the characteristics theory are not suited

for CAA problems, other approaches, such as Perfectly Matched Layers (PML) [184]

and radial boundary condition [185] are more indicated and widely discussed in the

literature for finite differences schemes.

In this work we employ upwinding technique used by Bernacki et al. [186] with

DG to select only outgoing waves at the outer boundaries. Intuitively, it means that

the wave is completely dissipated at boundaries, but unfortunately nothing proves that

energy is actually dissipated and no spurious wave reflexions persist. To overcome this

problem, we join to the above procedure a grid stretching zone[187]. Grid stretching

transfers the energy of the wave into increasingly higher wavenumber modes and the

numerical scheme removes this high-frequency content. This is the same idea as the

one exposed for the implicit SGS modeling. With this process most of the energy of

the wave is dissipated before reaching the boundaries.

At the grid stretching zone, it is possible to use the MLS method as a filter in unstruc-

tured grids. The filtering process is developed by the application of a MLS reconstruc-

tion of the variables, i.e:

Ū̄ŪU(xxx) =

nxI∑
j=1

UUU(xxx)Nj(xxx) (55)

where, UUU is the reconstructed variable, Ū̄ŪU is the filtered variable and N is the

MLS shape function. This reconstruction is performed by using a kernel with shape

parameters favoring dissipative behavior as those used to the approximation of the

variables. The value of these parameters determines the range of frequencies to be

filtered.
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At the outer boundaries, we propose the following explicit numerical flux,

HHH(UUUn,UUU∗n,nnn) =
1

2
(FFF(UUUn) ·nnn+ |PPP|UUUn−1) (56)

with,

UUU∗n is the fictitious state corresponding to the absorbing side ensuring PPPUUU∗n =

|PPP|UUUn−1.

PPP is the Jacobian matrix of system (22) and |PPP| = VVV−1|DDD|VVV
DDD and VVV are respectively, eigenvalues diagonal matrix and eigenvectors matrix of PPP.

|PPP| then is given by,

|PPP| =


L3

nx
2c0

(−L1 + L2)
ny
2c0

(−L1 + L2)
−1

c20
L3 + 1

2c0
(L1 + L2)

0
n2
x
2 (L1 + L2) + n2

yL4
nxny

2 (L1 + L2 − 2L4)
nx
2c0

(−L1 + L2)

0
nxny

2 (L1 + L2 − 2L4)
n2
y
2 (L1 + L2) + n2

xL4
ny
2c0

(−L1 + L2)

0
nxc0

2 (−L1 + L2)
nyc0

2 (−L1 + L2)
1
2 (L1 + L2)

 (57)

where,

L1 = |V0V0V0 ·nnn− c0|
L2 = |V0V0V0 ·nnn+ c0| (58)

L3 = L4 = |V0V0V0 ·nnn|

with, VVV 0 = (u0, v0) and c0 the speed of sound.

6.0.1 Convected monopole

This case reproduces the example of [188]. The radiation of a monopole source is

computed in a subsonic mean flow, with Mach number Mx = 0.5. The source is located

at xs = ys = 0, and is defined as:

SSSp =
1

2
exp

(
− ln(2)

(x− xs)2 + (y − ys)2

2

)
sin (ωt)× [1, 0, 0, 1]T (59)

where the angular frequency is ω = 2π/30 and t is the time coordinate. The wave

length is λ = 30 units, and the computational domain is a square with 200 units for

each side. The source term is made dimensionless with
[
ρ0c0/∆x, 0, 0, ρ0c

3
0/∆x

]T
. This

a very good test case to check the ability of the FV-MLS to simulate the propagation

of acoustic waves on an unstructured grid. With the aim of testing the stability and

the behavior of the proposed method for the boundary conditions, an unstructured

grid absorbing layer has been added. The absorbing layer is placed from the boundary

of the computational domain to x = ±300 and y = ±300. In figure 10 it is shown

the unstructured grid used for the resolution of this problem. To build this grid, 800

equally spaced nodes at the circumference of the computational domain are used and

120 nodes at the outer boundaries circumference.

In addition to the absorbing boundary condition given by equation (56), the shape

filter parameters of the absorbing layer are sx = sy = 8 [187].

A fifth-order mass matrix-based FV-MLS solver is used for this example [168].
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Two acoustic waves propagate upstream and downstream of the source, and due to

the effect of the mean flow, the apparent wavelength is modified and it is different

upstream (λ1 = (1−Mx)λ) and downstream (λ2 = (1 +Mx)λ) of the source.

In figure 11 pressure isocontours for different non-dimensional times t are shown. The

pressure profile along axis y = 0 at time t = 270 is reproduced in figure 12, and also

matches the results in [188].

Fig. 10 Radiation of a monopolar source in a subsonic (M=0.5) uniform mean flow. 200×200
unstructured grid and acoustic pressure at t = 270.

a) b) c)

d) e)

Fig. 11 Radiation of a monopolar source in a subsonic (M=0.5) uniform mean flow. Acoustic
pressure at different times a) t=60, b) t=90, c) t=150, d) t=210, e) t=270
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Fig. 12 Radiation of a monopolar source in a subsonic (M=0.5) uniform mean flow. Acoustic
pressure profile along axis y = 0 at t = 270.

In order to check the stability of the boundary conditions, we let the computations

to continue until 180 periods of the source. This time is enough for the wave to reach

outer boundaries. Comparing the pressure field with the one corresponding to t = 270 (9

source periods), it is observed that there is no change in the solution. The acoustic wave

is completely dissipated by the buffer zone when it lefts the computational domain, see

figure 10.

6.0.2 Acoustic waves propagation into a centrifugal fan

The centrifugal fan noise is usually dominated by tones produced by the impeller blade

passage. The resultant tonal noise corresponds to the blade passage frequency and its

higher harmonics. This is a consequence of the strong interaction between the impeller

and the diffuser blades at their interface.

Shrouded impellers are usually used in high-rotational speed centrifugal fans. The im-

pellers are linked downstream by a vaned diffuser, see figure 13.

A methodology based on a hybrid modeling of the aeroacoustic behavior of a high-

rotational speed centrifugal fan is presented in this section. The main objective of

this example is to visualize the wave propagation into a centrifugal turbomachine

and demonstrate, then, the power of the proposed methodology. Linearized Euler’s

equations are used to propagate noise radiated by the rotor/stator interaction. The

fluctuating forces at the interaction zone are obtained by an aerodynamic study of the

centrifugal fan presented in [149,189]. In this section we calculate the acoustic wave
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Fig. 13 3D and 2D centrifugal fan geometry

propagation of a centrifugal fan with a 9-bladed rotor and a diffuser with 17 blades, as

shown in figure 13. For the computations we use an unstructured grid, with at least 10

points per wavelength. A detail of the unstructured grid used in this problem is shown

in figure 14.

Fig. 14 Detail of the unstructured grid at the diffuser blades

Sources modeling

If we refer to FW&H analogy [153], one can identify three acoustic sources of three

different natures:

– Monopole or thickness source: it is a surface distribution due to the volume dis-

placement of fluid during the motion of surfaces.

– Dipole source or loading source: it is a surface distribution due to the interaction

of the flow with the moving bodies.

– Quadrupole source: it is a volume distribution due to the flow outside the surfaces.
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When the quadrupole source is included, substantially more computational resources

are needed for volume integration. However, in many subsonic applications the contri-

bution of the quadrupole source is small. Thus, we have neglected it in this calculation.

Moreover, the monopolar source is also neglected at low Mach numbers and small sur-

face thickness.

In our case, the interaction between the impeller and the diffuser blades is considered

as the main source of noise radiated by the centrifugal fan [149]. It is expressed by a

pressure fluctuation on impeller and diffuser blades. It is, then, of a dipolar nature. This

study takes into account only sources located at trailing edge of impeller blades and at

the leading edge of blades of diffuser. The rotation of the impeller blades is modeled by

rotating sources. Impeller blades are not taken into account in the propagation zone.

Thus, we place 17 stationary bipolar acoustic sources located at the leading edge of

the blades of diffuser and 9 additional rotating impeller sources located at the trailing

edge of each impeller blade.

As for FW&H analogy, the source terms introduced in the LEE are constructed from

the momentum equations, and defined by:

SSSpi(x, y, t) = e−
ln(2)

2 [(x−xsi
(x,y,t))2+(y−ysi (x,y,t))

2
] × pi(t)× [0, nxi , nyi , 0]T (60)

the subscribe i corresponds to the identification of each blade, the position of the

sources is defined by the coordinates (xs(x, y, t), ys(x, y, t)). For the impeller each

source moves following a circle path, the diffuser sources are static. pi(t) is the aero-

dynamic static pressure and (nx, ny) are the components of the unit radial vector at

sources (xs, ys). The exponential term of equation (60) models the punctual nature of

the considered sources.

Acoustic pressure history is presented in figure 15. At the beginning of the simulation

we can observe clearly the position of sources. But soon we lose track of them because

of reflections and interference. Thus, all these effects will be explicitly represented in

the far field. Note that they are not represented when other approach is used (FW&H,

for example).

7 Conclusions

In this work we have presented the features of a high-order finite volume method (FV-

MLS) and its use for CAA in the context of hybrid approaches. In this approach, we

require the computation of the turbulent flow to obtain the acoustic sources. These

sources are propagated using an acoustic analogy or the Linearized Euler Equations.

After a non-extensive review about different approaches to the computation of tur-

bulent flows and acoustic wave propagation, we have examined the dispersion and

dissipation curves of the FV-MLS method, as these properties play a fundamental role

in the simulation of wave propagation. Moreover, these properties are also useful in the

definition of an implicit filtering that allow us to use the FV-MLS method in a no-model

framework for the simulation of turbulent flows. The possibility of using the FV-MLS

method for LES calculation in a no-model approach is shown by the computation of

the isotropic turbulence decay problem. We have also applied the FV-MLS method to

the simulation of acoustic wave propagation in a benchmark case and also in complex
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Fig. 15 Acoustic pressure history for the acoustic waves propagation into a centrifugal fan
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geometries using unstructured grids. Obtained results are excellent and they show the

real potential of FV-MLS for the simulation of wave-propagation phenomena. From

our analysis and numerical results we conclude that the FV-MLS is an effective tool

for the simulation of aeroacoustics in complex geometries using unstructured grids.
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