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1 Introduction

1.1 Phase-transition phenomena: the phase-field approach

There are two main different approaches to describe phase transition phenom-
ena: sharp-interface models and phase-field (diffuse-interface) models. From
a conceptual point of view, the straightforward approach is the use of sharp-
interface models, which leads to moving boundary problems. These require the
simultaneous resolution of the partial differential equations that hold in each
phase and the boundary conditions on the interfaces [5,21,52]. The sharp-
interface description has been a successful approach in a wide range of sit-
uations, but it leads to mathematical models whose numerical treatment is
extremely complex.

Phase-field models provide an alternative description for phase-transition phe-
nomena. The key idea in the phase-field approach is to replace sharp interfaces
by thin transition regions where the interfacial forces are smoothly distributed
[1]. The transition regions are part of the solution of the governing equations
and, thus, front tracking is avoided. Phase-field models can be derived from
classical irreversible thermodynamics [32]. Utilizing asymptotic expansions for
vanishing interface thickness, it can be shown that classical sharp-interface
models, including physical laws at interfaces are recovered [30,31]. For phase-
field models to be realistic, the transition regions (diffuse interfaces) have to
be extremely thin.

The use of diffuse-interface models to describe interfacial phenomena dates
back to Korteweg [48] (1901), Cahn and Hilliard [13,14] (1958), and Landau
and Ginzburg [49] (1965). Lately, the phase-field method has been used to
model foams [27], ferroelectric ceramics [38,50], solidification [11,47,55], den-
dritic flow [45,46], microstructure evolution in solids [29], planet formation
[60], cancer growth [28], and liquid-liquid interfaces [54]. The diversity of ar-
eas where the phase-field approach has been successfully used is striking. One
of the most recent and significant achievements using this methodology is the
development of a mathematical model that explains, apparently for the first
time, why preferential flow occurs during infiltration into homogeneous and
dry soil [15,16]. For recent reviews of phase-field methods the reader is referred
to [9,17,20,26].

This paper is devoted to the numerical simulation of the Navier-Stokes-Korteweg
equations, a phase-field model for water/water-vapor two-phase flows. The
current form of the Navier-Stokes-Korteweg equations is the result of many
contributions. The starting point is the classical theory of capillarity origi-
nated by Gibbs [34]. Later, Korteweg [48] introduced a constitutive equation
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for the Cauchy stress tensor that included density gradients. The advances
in the theory of capillarity attained by van der Waals [61] were also funda-
mental. In his paper [61], van der Waals introduced the concept of continuous
variation of density, which leads to the diffuse-interface representation of the
liquid-vapor flow. Finally, Dunn and Serrin [24] introduced the concept of
interstitial working and rearranged the energy balance equation so that the
complete model satisfies the second law of thermodynamics.

In this paper we focus on the isothermal version of the Navier-Stokes-Korteweg
equations. Although constant temperature may seem a very strong hypothesis
for this model, that is not the case in a wide variety of situations. Some of
the numerical examples in this paper were computed using both the isother-
mal and the full Navier-Stokes-Korteweg equations and we found negligible
variations in temperature.

1.2 Numerical formulations for the Navier-Stokes-Korteweg equations

The problem of water/water-vapor two-phase flow has attracted the attention
of many prominent researchers over the years. The Navier-Stokes-Korteweg
equations constitute the most commonly accepted mathematical model for
this physical problem and may have a significant potential in representing
phenomena of engineering interest, such as cavitation. However, there are very
few numerical solutions to the Navier-Stokes-Korteweg equations in the litera-
ture. We refer the reader to [43], where the authors propose a finite difference
method. Another significant work (probably, the most comprehensive to date)
was carried out by Diehl [23], who proposed a discontinuous Galerkin formu-
lation.

We feel that one of the main reasons for the absence of numerical solutions in
the literature is that the Navier-Stokes-Korteweg equations involve third-order
partial differential spatial operators. This fact significantly limits the use of
conforming finite element methods. The reason for this is third-order opera-
tors necessitate basis functions that are piecewise smooth and C1-continuous
globally. There are a very limited number of two-dimensional finite elements
possessing C1 continuity applicable to complex geometries, but none in three
dimensions. Another important aspect is that the Navier-Stokes-Korteweg
equations include a length scale which represents the thickness of the liquid-
vapor interfaces. For the Navier-Stokes-Korteweg equations to be a realistic
model, the length scale (that is, the thickness of the interfaces) must be ex-
tremely small. This length scale must be resolved by the computational mesh,
which constitutes a challenge for any numerical method. Several researchers
have tried to modify the Navier-Stokes-Korteweg equations in such a way that
the interfaces are enlarged without affecting important magnitudes on the in-
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terface, such as, for example, surface tension. Probably, the most successful
attempt to date was proposed by Jamet [42], but we feel that there is still
opportunity for improvement.

In this paper, we propose a numerical formulation for the Navier-Stokes-
Korteweg equations based on isogeometric analysis. Isogeometric analysis is a
generalization of finite element analysis possessing several advantages [6,7,10,19,25,35,40,41,53].
We feel that isogeometric analysis presents a unique combination of attributes
that can be exploited on problems involving higher-order partial-differential
operators, namely, higher-order accuracy, robustness, two- and three-dimensional
geometric flexibility, compact support, and, most importantly, C1 and higher-
order continuity. The simplicity of isogeometric analysis compared with many
procedures that have been published in the literature is noteworthy. These
properties open the way to application to phase-field models, as shown in the
previous work of the authors on the Cahn-Hilliard equation [35,36] (for another
study that uses conforming finite elements for phase-field models, see [58,59]).
We believe that isogeometric analysis may prove an effective procedure for
solving problems of these kinds on complex geometries.

To address the treatment of problems in which the length scale of the model
is unresolved by the computational mesh, we propose a new scaling for the
parameters of the Navier-Stokes-Korteweg equations. One of the key ideas
is to adapt the length scale of the Navier-Stokes-Korteweg equations to the
computational mesh. Thus, as the mesh is refined, the length scale of the model
tends to its correct value, which is of the order of magnitude of ten Angstroms.
This scaling turned out to be crucial to perform reliable computations.

Finally, we present several numerical examples in two and three dimensions
which illustrate the effectiveness and robustness of our approach.

2 The isothermal Navier-Stokes-Korteweg equations

2.1 Continuous problem in strong form

Let Ω ⊂ Rd be an open set, where d is the number of spatial dimensions. The
boundary of Ω, assumed sufficiently smooth, is denoted Γ. We call n the unit
outward normal to Γ. The initial/boundary value problem can be stated as:
find the density ρ : Ω × (0, T ) 7→ (0, b) and the velocity u : Ω × (0, T ) 7→ R3
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such that

∂ρ

∂t
+∇ · (ρu) = 0 in Ω× (0, T ), (1.1)

∂(ρu)

∂t
+∇ · (ρu⊗ u+ pI)−∇ · τ −∇ · ς = ρf in Ω× (0, T ), (1.2)

u = 0 on Γ× (0, T ), (1.3)

∇ρ · n = 0 on Γ× (0, T ), (1.4)

u(x, 0) = u0(x) in Ω, (1.5)

ρ(x, 0) = ρ0(x) in Ω. (1.6)

where u0 : Ω 7→ R3, ρ0 : Ω 7→ (0, b) are given functions which represent the
initial density and velocity, respectively. The rest of the notation is as follows:
f is the body force per unit mass and τ is the viscous stress tensor. We
consider Newtonian fluids, that is,

τ = µ(∇u+∇Tu) + λ∇ · uI (2)

where µ and λ are the viscosity coefficients and I is the identity tensor. ς is
the so-called Korteweg tensor, defined as

ς = λ
(
ρ∆ρ+

1

2
|∇ρ|2

)
I − λ∇ρ⊗∇ρ. (3)

Finally, p is the thermodynamic pressure, defined as,

p = Rb
ρθ

b− ρ
− aρ2 (4)

Equation (4) is known as van der Waals equation, and gives the pressure in
terms of density and temperature, which for the isothermal model is assumed
to be constant. When modeling liquid-vapor flows, the van der Waals equation
is the most commonly employed model, but there are certainly other possibili-
ties. Prime examples are the equations proposed by Berthelot [4], Kamerlingh-
Onnes, Beattie-Bridgeman, Wilson [62] and more recently Serrin [57].

The pressure p is a non-monotone function of ρ for certain combinations of
temperature and density. Actually, the sign of

pρ ≡
∂p

∂ρ
(ρ, θ) = Rb2 θ

(b− ρ)2
− 2aρ (5)

in the physically relevant interval, that is ρ ∈ (0, b), may be analyzed using
well-known properties of cubic polynomials. Let us define

θc =
8

27

ab

R
. (6)

Then,
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Fig. 1. Van der Waals pressure as a function of density for θ < θc, θ = θc and θ > θc.
The pressure is a non-monotone function of density for θ < θc.

(1) For θ > θc, pρ > 0 ∀ρ ∈ (0, b).
(2) For θ < θc, the equation pρ = 0 has two roots, ρv and ρl (we assume that

ρv < ρl). The sign of pρ is given by pρ < 0 ∀ρ ∈ (ρv, ρl); pρ > 0 ∀ρ ∈
[0, ρv) ∪ (ρl, b). Observe that ρv and ρl only depend on θ/θc and may be
exactly calculated as the roots of a cubic polynomial.

(3) For θ = θc, the two roots ρv and ρl merge at a single point which consti-
tutes a double root of the equation pρ = 0. At any other point in (0, b),
pρ > 0.

On the basis of the above argument we call θc the critical temperature. This
is the maximum temperature at which two-phase flow is stable. We repre-
sent typical van der Waals pressure profiles in Figure 1. The portion AB of
the isotherm plotted as a solid line corresponds to the region where pρ < 0.
Without any regularizing effect, this region would correspond to unstable
states which would immediately degenerate into a mixture of liquid and vapor
phases. However, the Navier-Stokes-Korteweg equations do include a regular-
izing term. Mathematically, this term is represented by a partial-differential
operator acting on the density. With this regularizing term, the region AB
corresponds to the interface between water and water-vapor. The thickness
of the interfaces is given by a length scale of the model. This point will be
further analyzed in sections 4.1 and 4.2.

Remarks:

(1) The existence and uniqueness of solution for the initial/boundary value
problem defined in (1) has been proven in [22].

(2) We wish to emphasize the difference between λ and λ. The former is the
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Fig. 2. Potential W as a function of density for θ < θc, θ = θc and θ > θc. The
potential W is a non-convex function of density for θ < θc.

capillarity coefficient while the latter is one of the viscosity coefficients.
(3) The capillarity term in equation (1.2) may be written in non-conservative

form using the relationship

∇ · ς = λρ∇(∆ρ). (7)

2.2 Nonlinear stability of the isothermal Navier-Stokes-Korteweg equations

The fundamental stability property of the isothermal Navier-Stokes-Korteweg
equations is expressed in terms of the free-energy

E(ρ, ρu) =
∫

Ω

(
W (ρ) +

λ

2
|∇ρ|2 +

1

2
ρ|u|2

)
dx (8)

where W (ρ) is a potential that satisfies the relationship

ρW ′′(ρ) = pρ. (9)

Thus, W (ρ) is given by

W (ρ) = Rθρ log

(
ρ

b− ρ

)
− aρ2. (10)

Equation (9) indicates that W is a non-convex function of density when pρ < 0.
In Figure 2 we present plots of the potential W as a function of density for
θ < θc, θ = θc and θ > θc.
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The energy functional E constitutes a Lyapunov functional. To prove this we
define the real-valued function ε : R+ 7→ R as

ε(t) = E (ρ(·, t), ρu(·, t)) ∀t > 0. (11)

Then, using the chain rule, we obtain

dε

dt
=
∫

Ω

(
Eρ
∂ρ

∂t
+ Eρu

∂(ρu)

∂t

)
dx (12)

where Eρ and Eρu represent the variational derivatives of the functional E with
respect to its first and second slot, respectively. Using the standard definition
of variational derivative, we obtain

Eρ = W ′(ρ)− λ∆ρ−1

2
|u|2 (13.1)

Eρu = u (13.2)

Using (13), (1.1) and (1.2) we can rewrite (12) as

dε

dt
=−

∫
Ω
∇ · (ρu)W ′(ρ)dx+

∫
Ω
λ∇ · (ρu)∆ρdx+

1

2

∫
Ω
∇ · (ρu)|u|2dx

−
∫

Ω
u · ∇ · (ρu⊗ u)dx−

∫
Ω
u · ∇p+

∫
Ω
u · ∇ · τdx

+
∫

Ω
λρu · ∇(∆ρ)dx+

∫
Ω
ρf · udx (14)

Taking into account (1.3), the relationship ρW ′′(ρ) = pρ and integrating by
parts, we obtain

dε

dt
= −

∫
Ω
τ : ∇udx+

∫
Ω
ρf · udx (15)

For µ ≥ 0 , λ+ 2
3
µ ≥ 0

dε

dt
≤
∫

Ω
ρf · udx. (16)

Finally, if we assume f = 0, we obtain

dε

dt
≤ 0 (17)

which proves that E constitutes a Lyapunov functional.
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3 Numerical formulation for the isothermal Navier-Stokes-Korteweg
equations

In this section we develop a numerical formulation for the isothermal Navier-
Stokes-Korteweg equations (we will assume vanishing body forces). We use
isogeometric analysis for the spatial discretization, which allows us to generate
the C1-continuous functions that are needed for the discretization of the third-
order partial-differential operator in primal form. We integrate in time using
the generalized-α method. We also make use of an adaptive time stepping
scheme previously proposed by the authors [35].

3.1 Continuous problem in the weak form

Let X denote both the trial solution and weighting function spaces, which
are assumed to be identical. At this point, we consider periodic boundary
conditions in all directions. Let (·, ·)Ω denote the L2 inner product with respect
to the domain Ω. Taking into account all of this, the variational formulation
is stated as follows:

Find U = {ρ,u} ∈ X such that ∀W = {q,w} ∈ X:

B(W,U) = 0 (18)

with

B(W,U) =

(
q,
∂ρ

∂t

)
Ω

+

(
w,u

∂ρ

∂t

)
Ω

+

(
w, ρ

∂u

∂t

)
Ω

− (∇q, ρu)Ω − (∇w, ρu⊗ u)Ω − (∇ ·w, p)Ω + (∇w, τ )Ω

− (∇∇ ·w, λρ∇ρ)Ω − (∇ ·w, λ∇ρ · ∇ρ)Ω

− (∇(∇ρ ·w), λ∇ρ)Ω (19)

The repeated integration by parts of equation (19) under the assumptions of
sufficient regularity leads to the Euler-Lagrange form of (19)(
q,
∂ρ

∂t

)
Ω

+ (q,∇ · (ρu))Ω +

(
w,

∂(ρu)

∂t

)
Ω

+ (w,∇ · (ρu⊗ u))Ω + (w,∇p)Ω

− (w,∇ · τ )Ω − (w, λρ∇(∆ρ))Ω = 0 (20)
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which implies the weak satisfaction of equations (1.1) and (1.2).

3.2 The semidiscrete formulation

For the space discretization of (19) we make use of the Galerkin method. We
approximate (19) by the following variational problem over the finite element
spaces: find Uh = {ρh,uh} ∈ Xh ⊂ X such that ∀Wh = {qh,wh} ∈ Xh ⊂ X

B(Wh,Uh) = 0 (21)

where Wh and Uh are defined as

Wh = {qh,wh}, qh =
nb∑
A=1

qANA, w
h =

nb∑
A=1

wANA, (22.1)

Uh = {ρh,uh}, ρh =
nb∑
A=1

ρANA, u
h =

nb∑
A=1

uANA. (22.2)

In (22), the NA’s are the basis functions, and nb is the dimension of the discrete
space. Note that the condition Xh ⊂ X mandates our discrete space to be at
least H2-conforming. This requirement is satisfied by a NURBS (Non Uniform
Rational B-Splines) basis of C1-continuity or higher.

3.3 Time discretization and numerical implementation

We integrate in time using the generalized-α method. This method was origi-
nally derived in [18] for the equations of structural dynamics and subsequently
applied to turbulence computations in [2,8,44] and to the Cahn-Hilliard phase-
field model in [35,36].

3.3.1 Time stepping scheme

Let A be the control point index. We denote by ei the ith cartesian basis
vector. Let V and V̇ denote the vector of global degrees of freedom and its
time derivative, respectively. We define the following residual vectors:

RC = {RC
A} (23.1)

RC
A = B({NA, 0}, {ρh,uh}) (23.2)

RM = {RM
Ai} (23.3)

RM
Ai = B({0, NAei}, {ρh,uh}) (23.4)

R = {RC,RM} (23.5)
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The algorithm can be written as: given V̇n, Vn and ∆tn = tn+1−tn, find V̇n+1,
Vn+1, V̇n+αm , Vn+αf

such that

RC(V̇n+αm ,Vn+αf
) = 0, (24.1)

RM(V̇n+αm ,Vn+αf
) = 0, (24.2)

Vn+1 = Vn + ∆tnV̇n + γ∆tn(V̇n+1 − V̇n), (24.3)

V̇n+αm = V̇n + αm(V̇n+1 − V̇n), (24.4)

Vn+αf
= Vn + αf (Vn+1 − Vn). (24.5)

where ∆tn is the current time step size and αm, αf and γ are real-valued
parameters that define the method. Parameters αm, αf and γ are selected
based on considerations of accuracy and stability. Jansen, Whiting and Hul-
bert proved in [44] that, for a model problem, second-order accuracy in time
is achieved if

γ =
1

2
+ αm − αf , (25)

while unconditional stability is attained if

αm ≥ αf ≥ 1/2. (26)

Parameters αm and αf can be parametrized in terms of %∞, the spectral radius
of the amplification matrix as ∆t→∞, as

αm =
1

2

(
3− %∞
1 + %∞

)
, αf =

1

1 + %∞
(27)

Setting γ according to (25), a family of second-order accurate and uncondi-
tionally stable time integration schemes is defined in terms of the parameter
%∞ ∈ [0, 1] which controls high-frequency dissipation [39].

The non-linear system of equations (24) is approximated by using Newton’s
method which leads to a two-stage predictor-multicorrector algorithm.

Predictor stage: Set

Vn+1,(0) = Vn, (28.1)

V̇n+1,(0) =
γ − 1

γ
V̇n. (28.2)

where the subscript 0 on the left-hand side quantities is the iteration index of
the nonlinear solver. This predictor was shown to be effective for turbulence
applications [8,44] and for the Cahn-Hilliard phase-field model [35].
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Multicorrector stage: Repeat the following steps for i = 1, 2, . . . , imax

(1) Evaluate iterates at the α-levels

V̇n+αm,(i) = V̇n + αm(V̇n+1,(i−1) − V̇n), (29.1)

Vn+αf ,(i) = Vn + αf (Vn+1,(i−1) − Vn). (29.2)

(2) Use the solutions at the α-levels to assemble the residual and the tangent
matrix of the linear system

K(i)∆V̇n+1,(i) = −R(i) (30)

Solve this linear system using a preconditioned GMRES algorithm (see
Saad and Shultz [56]) to a specified tolerance.

(3) Use ∆V̇n+1,(i) to update the iterates as

V̇n+1,(i) = V̇n+1,(i−1) + ∆V̇n+1,(i), (31.1)

Vn+1,(i) = Vn+1,(i−1) + γ∆tn∆V̇n+1,(i). (31.2)

This completes one nonlinear iteration.

The nonlinear iterative algorithm should be repeated until both residual vec-
tors RC and RM have been reduced to a given tolerance. In transient computa-
tions, we reduce both residuals to 10−3 or 10−4 of its initial value. The tangent
matrix in equation (30) is given by

K =
∂R(V̇n+αm ,Vn+αf

)

∂V̇n+αm

∂V̇n+αm

∂V̇n+1

+
∂R(V̇n+αm ,Vn+αf

)

∂Vn+αf

∂Vn+αf

∂V̇n+1

=αm
∂R(V̇n+αm ,Vn+αf

)

∂V̇n+αm

+ αfγ∆tn
∂R(V̇n+αm ,Vn+αf

)

∂Vn+αf

(32)

where the iteration index i has been omitted to simplify the notation.

Remarks:

(1) The value %∞ = 0.5 has proved an effective choice for turbulence compu-
tations [8] and for the Cahn-Hilliard phase-field model [35]. We adopted
this value for all the computations presented in this paper.

(2) We used the consistent tangent matrix in our computations. Two to four
nonlinear iterations are typically required to reduce the nonlinear residual
to 10−3 of its initial value in a time step. The solution of system (30) to
a tolerance of 10−3 requires normally 30 to 40 GMRES iterations using a
diagonal preconditioner.
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3.3.2 Time-step size adaptivity

Like that of other phase-field models, the solution of the Navier-Stokes-Korteweg
equations experiences fast variations in time due to strong changes in its topol-
ogy. This fact makes the use of time-step size adaptivity attractive. We use
the algorithm proposed by the authors in [35].

4 A new paradigm for refinement of the Navier-Stokes-Korteweg
equations

There is a very limited number of numerical solutions to the Navier-Stokes-
Korteweg equations in the literature (to the best of our knowledge the most
complete study to date is [23]). One of the main reasons for this is Navier-
Stokes-Korteweg equations are only a realistic model if the thickness of the
interfaces is extremely small. The interfaces must be resolved by the compu-
tational mesh, which imposes severe restrictions on any numerical method.
In this paper we propose a new paradigm for refinement according to which
the thickness of the interfaces is adapted to the computational mesh. We
tested this approach on several examples and found a consistent and signifi-
cant improvement over the standard methodology. To introduce the refinement
methodology we begin by deriving a dimensionless form of the Navier-Stokes-
Korteweg equations.

4.1 Dimensionless form of the Navier-Stokes-Korteweg equations

In order to simplify the exposition we will assume for the reminder of the
paper that the Stokes hypothesis is satisfied, that is,

λ = −2

3
µ. (33)

All the physical quantities involved in the Navier-Stokes-Korteweg equations
can be measured using units of measurement that belong to the MLTΘ class,
in which units of mass, length, time and temperature are chosen as fundamen-
tal units. Due to the fundamental principle which states that physical laws
do not depend on arbitrarily chosen units of measurement [3], we can rescale
length, mass, time and temperature by arbitrary positive numbers. Let us
scale the units of measurement of length by L0, mass by bL3

0, time by L0/
√
ab

and temperature by θc. Let us denote by φ̂ the value of the physical quantity
φ in the new system of units. Thus, the Navier-Stokes-Korteweg equations in
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the new system of units read as:

∂ρ̂

∂t̂
+ ∇̂ · (ρ̂û) = 0 (34.1)

∂(ρ̂û)

∂t̂
+ ∇̂ · (ρ̂û⊗ û+ p̂I)− 1

Re
∇̂ · τ̂ − Ca2ρ̂∇̂(∆̂ρ̂) = 0 (34.2)

p̂ =
8

27

θ̂ρ̂

1− ρ̂
− ρ̂2 (34.3)

τ̂ = ∇̂û+ ∇̂T û− 2

3
∇̂ · ûI (34.4)

where

Re =
L0b
√
ab

µ
and Ca =

√
λ/a

L0

(35)

are the Reynolds number and the capillarity number, respectively.

Likewise, the dimensionless free energy is defined as

Ê(ρ̂, ρ̂û) = E(ρ, ρu)(L3
0ab

2)−1 =
∫

Ω̂

(
Ŵ (ρ̂) +

1

2
Ca2|∇̂ρ̂|2 +

1

2
|û|2

)
dx̂ (36)

where

Ŵ (ρ̂) =
8

27
θ̂ρ̂ log

(
ρ̂

1− ρ̂

)
− ρ̂2. (37)

In what follows we will use the dimensionless form of the Navier-Stokes-
Korteweg equations. For notational simplicity we will omit the hats on the
dimensionless variables.

4.2 Refinement methodology

The capillarity number defined in (35) expresses the ratio between a character-
istic length scale of the Navier-Stokes-Korteweg equations and the arbitrary
length scale L0. This suggests that Ca is related to the thickness of the in-
terfaces. We performed a number of one-dimensional numerical simulations
which indicated that Ca scales as the thickness of the interfaces.

We propose a refinement methodology that adapts the thickness of the inter-
faces to the computational mesh. We think of Ca as a regularizing parameter
that should be as small as possible (we are assuming that the interfaces are
always unresolved by the computational mesh, which unfortunately, is a very
realistic hypothesis). The parameter Ca is linearly scaled to the mesh, so the
phase-field model converges to its corresponding sharp-interface model as we
refine the grid. The ultimate objective of this methodology is to obtain the
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best approximation to the sharp-interface model for a given mesh. This con-
cept has already been successfully used by the authors for the Cahn-Hilliard
phase-field model [35].

Therefore, we propose to scale the capillarity number as

Ca =
h

L0

(38)

where h is a characteristic length scale of the spatial mesh. Equation (35) and
fundamental arguments from dimensional analysis imply that the product of
Re and Ca must be a constant. Thus, we propose to scale Re as

Re = αCa−1 (39)

where α = b
√
bλ/µ is a constant whose magnitude is of the order of one for

typical values of b, λ and µ (see [23]). Using the scaling (38) for the capillarity
number, we obtain

Re = α
L0

h
(40)

which shows that the Reynolds number must be also adapted to the compu-
tational mesh.

We illustrate the proposed methodology with an example. For this example
we take

α= 2 (41)

h=
1

2
max
i

√
Ai (42)

where Ai is the area of the ith element of the computational mesh.

In this example we start the computation with a non-equilibrium solution and
let the simulation evolve until the steady state is reached. Our computational
domain is Ω = [0, 1]× [0, 1]. Boundary conditions are doubly periodic and we
use C1 quadratic elements. For the temperature, we take the value θ = 0.85. In
Figure 3, we compare the solutions using the standard refinement methodology
(refine the mesh, while the constitutive parameters are kept constant) with
the solutions using the proposed refinement methodology (the constitutive
parameters are adapted to the mesh). On the right hand side of Figure 3, the
parameters Re and Ca are adapted to the computational mesh using scalings
(38), (39), (41) and (42). On the left hand side of Figure 3, only the mesh
changes from top to bottom and the parameters Re and Ca remain fixed to
the value that corresponds to an uniform mesh comprised of 2562 elements.
On the top row, the mesh is 642, on the second row, the mesh is 1282 and on
the bottom row, the mesh is 2562. We observe that the proposed refinement
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methodology significantly reduces the mesh dependence of the solution. The
only difference between the solutions on the right hand side of Figure 3 is the
thickness of the interface.

In Figures 4 and 5 we plot cutlines of the solutions obtained using both
methodologies. The cutlines correspond to the steady state solutions for y =
0.5 on different meshes. In both cases, we sample the solution at knots and plot
it using piecewise linear interpolation. Figure 4 corresponds to the standard
approach and Figure 5 to the proposed methodology. The proposed approach
is clearly superior to the standard refinement methodology. In Figure 5 the
solutions are monotone and the layers are captured in an accurate and stable
way.

This example shows the potential of the proposed approach to successfully deal
with problems where the characteristic length scale of the continuous phase-
field model is unresolved by the computational mesh. We believe that with
this technique phase-field modeling, which has been used heretofore primarily
in scientific studies, may become a practical engineering technology.

Remarks:

(1) The scaling (39) that we impose to keep the solution invariant under mesh
refinement has been repeatedly suggested by the physics community [51].
They derived the scaling (39) by studying the existence and stability of
traveling wave solutions of the Korteweg-de Vries and modified Korteweg-
de Vries equations [37].

(2) The idea that higher-order terms of phase-field models must fulfill a scal-
ing relationship with lower-order terms seems to be growing in the phase-
field community. For another study suggesting so, see [15].

5 Numerical examples for the isothermal Navier-Stokes-Korteweg
equations

In this section we present several numerical examples in two and three dimen-
sions, including static and dynamic equilibrium phenomena.

For all the examples we select the physical parameters Ca and Re using the
scaling (38), (39) and (41) with L0 = 1. For the characteristic length of the
mesh we do not take the value (42), but a safer choice. We use the value

h = max
i
V

1/d
i (43)

where d is the number of spatial dimensions of the problem and Vi is the
volume (d = 3) or area (d = 2) of the ith element of the computational mesh.
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(a) Standard. The mesh is 642 (b) Proposed. The mesh is 642

(c) Standard. The mesh is 1282 (d) Proposed. The mesh is 1282

(e) Standard. The mesh is 2562 (f) Proposed. The mesh is 2562

Fig. 3. Comparison of the proposed and standard refinement techniques. We plot
steady state solutions of a model problem on uniform meshes comprised of 642

(a)–(b), 1282 (c)–(d) and 2562 (e)–(f) C1 quadratic elements. On the left-hand side
we plot the solution using the same parameters Re and Ca for all meshes. The
dependence of the solution on the mesh size is apparent. On the right-hand side we
plot the solutions adapting Re and Ca to the resolution of the computational mesh.
The topology of the solution is invariant with respect to the mesh size. The only
difference in the solutions on the right-hand side is the thickness of the interfaces.
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Fig. 4. Cutlines (restrictions to the line y = 0.5) of the solutions presented on
the left-hand side of Figure 3. We sample the solution at knots and plot it using
piecewise linear interpolation. Symbols in the plot correspond to knot locations.
The solutions correspond to the standard refinement methodology (Re and Ca are
independent of the mesh size). The dependence of the solution on the mesh size is
apparent.
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Fig. 5. Cutlines (restrictions to the line y = 0.5) of the solutions presented on
the right-hand side of Figure 3. We sample the solution at knots and plot it using
piecewise linear interpolation. Symbols in the plot correspond to knot locations. The
solutions correspond to the new refinement methodology (Re and Ca scale with the
mesh size). All the solutions are monotone and the only difference between them is
the thickness of the interfaces.
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The fact that we use the same scaling for all the examples shows the robustness
of our approach.

We use the value θ = 0.85 for the temperature in all the computations. This
value leads to a non-monotone pressure profile that makes two-phase flow
possible.

We also use C1 quadratic elements for all the examples.

5.1 Evolution to static equilibrium in two dimensions

In this example we present the evolution of three vapor bubbles toward static
equilibrium. Our computational domain is the square Ω = [0, 1] × [0, 1]. We
use periodic boundary conditions in all directions. We employ a uniform mesh
comprised of 2562 C1-quadratic elements.

At the initial time, we set three vapor bubbles at points C1 = (0.75, 0.50),
C2 = (0.25, 0.50) and C3 = (0.40, 0.75). The radii of the bubbles are R1 = 0.10,
R2 = 0.15 and R3 = 0.08, respectively. We regularize the interfaces using
hyperbolic tangent profiles. Thus, the initial condition for the density may be
written as,

ρ0(x) = −0.15+0.25

[
tanh

(
d1(x)−R1

2Ca

)
+ tanh

(
d2(x)−R2

2Ca

)
+ tanh

(
d3(x)−R3

2Ca

)]
(44)

where di(x) is the Euclidean distance between x and Ci, i = 1, 2, 3. The value
of the initial density ranges approximately from 0.1 to 0.6. These values are
close to the equilibrium states for the water-vapor and water phases, respec-
tively. The initial condition is plotted in Figure 6(a). We set a zero velocity
field at the initial time.

We know from classical physics that the equilibrium of a vapor bubble in
an isothermal and isobaric system is unstable [12]. In this example, the larger
bubble sets the equilibrium pressure. Under that pressure, the smaller bubbles
are unstable and, as a consequence, vanish. The larger bubble evolves to a
static equilibrium. The dynamic process can be observed in Figure 6, where
the evolution of density is depicted. In Figure 7 we plot the evolution of the
pressure. Although for a given time, the pressure ranges approximately from
1.838 ·10−3 to 2.298 ·10−2, the extreme values are reached within the interfaces
and, as a consequence, are not physically relevant. We are primarily interested
in the pressure difference between the vapor and liquid phases, which is very
small compared to the whole range of variation of the pressure (at the steady
state the pressure inside the bubble is approximately 1.85455 · 10−2, while
outside the bubble it is approximately 1.78861 · 10−2). For this reason, we use
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(a) Initial condition (b) t ≈ 4.0627

(c) t ≈ 9.3248 (d) Steady state

Fig. 6. Evolution of the density from an initial condition with three vapor bubbles.
The mesh is comprised of 2562 C1-quadratic elements.

a non-uniform color scale to plot the pressure. In Figure 7 we observe that
smaller bubbles have higher inside pressures, which is the expected result.

In Figure 8 we plot the evolution in time of the free energy. There are two
significant variations of the free energy that correspond to the times at which
the smaller bubbles vanish. The free energy is decreasing for all times, which
indicates that our numerical scheme is performing well. Diehl reported in [23]
that most numerical schemes lead to non-monotone energy profiles.

In Figure 9 we plot the evolution of the time step size. The time step size ranges
over an order of magnitude, which makes the use of adaptivity attractive. We
observe two significant variations of the time step size that correspond to the
times at which the smaller bubbles vanish. At those times, the time step is
reduced by an order of magnitude, reflecting that a significant physical event
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(a) Initial condition (b) t ≈ 4.0627

(c) t ≈ 9.3248 (d) Steady state

Fig. 7. Evolution of the pressure from an initial condition with three vapor bubbles.
The mesh is comprised of 2562 C1-quadratic elements.

(the disappearance of a bubble) is taking place.

Remarks:

(1) The assumption of constant temperature is adequately accurate for this
problem. We ran this example using the non-isothermal equations and
found negligible variations of the temperature both in space and time.

(2) Numerical solutions to a similar problem can be found in [23], where
a discontinuous Galerkin formulation is employed. Our solutions are at
least of the same quality as those reported in [23].

(3) Our time stepping-scheme enabled us to integrate the equations for very
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Fig. 8. Static equilibrium in two dimensions. Evolution of the free energy. There are
two significant variations of the free energy that correspond to the times at which
the smaller bubbles vanish. The free-energy is decreasing for all times. The mesh is
comprised of 2562 C1-quadratic elements.
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Fig. 9. Static equilibrium in two dimensions. Evolution of the time step. There are
two significant variations that correspond to the times at which the smaller bubbles
vanish. The mesh is comprised of 2562 C1-quadratic elements.

long times, where the solutions where considered steady, at a reasonable
computational cost. However, we plot the evolution of the free energy
and the time step size only up to much earlier times in order to make the
presentation clearer. This is done throughout the paper.
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5.2 Coalescence of two bubbles in two dimensions

The previous example illustrated the behavior of several vapor bubbles when
they are far away from each other. We observed that the smaller bubbles
vanish because they are unstable under the pressure imposed by the largest
bubble. When two vapor bubbles are close enough (at a distance of the order
of magnitude of the thickness of the interfaces) the process is different. Both
bubbles merge into a single vapor region that evolves to a circular shape with
the equilibrium curvature.

To simulate this physical phenomenon we set two vapor bubbles at the initial
time. The centers of the bubbles are located at points C1 = (0.40, 0.50) and
C2 = (0.78, 0.50). Their radii are R1 = 0.25 and R2 = 0.10, respectively. We
regularize the interfaces using hyperbolic tangent profiles, which leads to the
initial condition for the density

ρ0(x) = 0.10 + 0.25

[
tanh

(
d1(x)−R1

2Ca

)
+ tanh

(
d2(x)−R2

2Ca

)]
(45)

where again di(x) is the Euclidean distance between x and Ci, i = 1, 2, and
the values of the density range approximately from 0.1 to 0.6. The initial
condition is plotted in Figure 10(a). The velocity field at the initial time is set
to zero.

In Figure 10, we plot the evolution of density in time. This solution shows the
ability of the model to represent fast variations in the topology of the solution.

Figure 11 shows the evolution of the pressure (we use again a non-uniform
color scale). We observe that when the two bubbles coalesce (Figure 11(b))
the smaller one has a larger inside pressure. That pressure difference drives
the fast topology variation that happens afterwards (this is in agreement with
the current knowledge about bubble coalescence; see, for example, [33].) At
the steady state the pressure inside the bubble is approximately 1.85825 ·10−2,
while outside the bubble it is 1.81005 · 10−2.

In Figure 12 we plot the evolution in time of the free energy. Again, the
free energy at the discrete level is monotone. The most significant variation
corresponds to the time at which the two bubbles merge. In Figure 13 we plot
the evolution of the time step size.

Remark:

According to the Young-Laplace equation, the pressure difference between
the vapor and liquid phases at equilibrium is inversely proportional to
the radii of the bubbles. The proportionality constant depends only on
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(a) Initial condition (b) t ≈ 2.5189

(c) t ≈ 5.1362 (d) Steady state

Fig. 10. Coalescence of two vapor bubbles. Evolution of the density. The mesh is
comprised of 2562 C1-quadratic elements.

the capillarity number, and, as a consequence, it is the same in the two
previous numerical examples (sections 5.1 and 5.2). Therefore, the Young-
Laplace equation mandates

∆p1R1 = ∆p2R2 (46)

where ∆p1 and ∆p2 are, respectively, the pressure difference between
the vapor and liquid phases in the first and second numerical examples
and R1, R2 are their corresponding bubble radii. In a diffuse interface
representation of the liquid-vapor flow we need some procedure to define
the radii of the bubbles. We define the boundary of the bubble as the
set of points where the pressure takes on the value 0.353 (approximately
the average of the maximum and minimum values taken by the density).
Then, we fit a circumference to those points utilizing a least squares

24



(a) Initial condition (b) t ≈ 2.5189

(c) t ≈ 5.1362 (d) Steady state

Fig. 11. Coalescence of two vapor bubbles. Evolution of the pressure. The mesh is
comprised of 2562 C1-quadratic elements.

approximation. Using this procedure in the two previous examples, we
obtained

∆p1 ≈ 6.594 ·10−4; ∆p2 ≈ 4.820 ·10−4; R1 ≈ 0.19835; R2 ≈ 0.27140
(47)

which implies that the Young-Laplace equation is satisfied with a relative
error of approximately 1.74 · 10−4.
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Fig. 12. Coalescence of two vapor bubbles. Evolution of the free energy. There is a
significant variation of the free energy that corresponds to the time at which the two
bubbles merge. The free energy is decreasing for all times. The mesh is comprised
of 2562 C1-quadratic elements.
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Fig. 13. Coalescence of two vapor bubbles. Evolution of the time step. The mesh is
comprised of 2562 C1-quadratic elements.

5.3 Evolution to static equilibrium in three dimensions

This example is the three dimensional counterpart of that presented in sec-
tion 5.1. Our computational domain is Ω = [0, 1]3. At the initial time, we
set three vapor bubbles with centers at points C1 = (0.75, 0.50, 0.25), C2 =
(0.30, 0.50, 0.50) and C3 = (0.40, 0.75, 0.70). The radii of the bubbles are
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R1 = 0.10, R2 = 0.20 and R3 = 0.08, respectively. We regularize the in-
terfaces using hyperbolic tangent profiles. Thus, for the density we take the
initial condition

ρ0(x) = −0.15+0.25

[
tanh

(
d1(x)−R1

2Ca

)
+ tanh

(
d2(x)−R2

2Ca

)
+ tanh

(
d3(x)−R3

2Ca

)]
(48)

with the usual notation. The velocity is zero at the initial time.

In Figure 14 we plot the evolution of the density in time. The physical process
is the same as in section 5.1. In Figure 15 we plot isosurfaces of density for
two different times. We also plot the streamlines from the center of the three
bubbles. The color of the streamlines and the boundaries represents velocity
magnitude.

In Figure 16 we plot the evolution of the free energy, which is decreasing at
all times. The two main physical events that take place in this simulation,
namely, the disappearance of two vapor bubbles, occur at the times when the
time step size is reduced by our algorithm (see Figure 17).

Remark:

Since we are assuming that the temperature is constant, the isosurfaces
of density may also be thought of as isosurfaces of entropy or pressure.

5.4 Coalescence of two bubbles in three dimensions

This example is the three dimensional counterpart of that presented in sec-
tion 5.2. Our computational domain is Ω = [0, 1]3. At the initial time, we
set two vapor bubbles with centers at points C1 = (0.40, 0.50, 0.60), C2 =
(0.75, 0.50, 0.50). The radii of the bubbles are R1 = 0.25, R2 = 0.10, respec-
tively. We regularize the interfaces using hyperbolic tangent profiles. Thus, for
the density we take the initial condition

ρ0(x) = 0.10 + 0.25

[
tanh

(
d1(x)−R1

2Ca

)
+ tanh

(
d2(x)−R2

2Ca

)]
(49)

with the usual notation. The velocity is zero at the initial time.

In Figure 18 we plot the evolution of the density in time. The physical process
is the same as in section 5.2. In Figure 19 we plot isosurfaces of density for
two different times. We also plot the streamlines from the center of the two
bubbles. The color of the streamlines and the boundaries represents velocity
magnitude.

27



(a) Initial condition (b) t ≈ 0.81012

(c) t ≈ 1.1424 (d) Steady state

Fig. 14. Static equilibrium in three dimensions. Evolution of the density from an ini-
tial condition with three vapor bubbles. The mesh is comprised of 1283 C1 quadratic
elements.

In Figure 20 and 21 we plot the evolution in time of the free energy and the
time step, respectively.

6 Conclusions and future developments

This paper deals with the numerical simulation of the Navier-Stokes-Korteweg
equations, a phase-field representation of water/water-vapor two-phase flow.
We have developed a numerical formulation based on isogeometric analysis.
Our formulation permits straightforward treatment of the third-order partial-
differential operator that represents capillarity.
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(a) t ≈ 0.81012

(b) t ≈ 1.1424

Fig. 15. Static equilibrium in three dimensions. We represent streamlines from the
center of the three vapor bubbles and isosurfaces of density. The color of the stream-
lines and the boundaries represents velocity magnitude. The mesh is comprised of
1283 C1 quadratic elements.
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Fig. 16. Static equilibrium in three dimensions. Evolution of the free energy. The
mesh is comprised of 1283 C1-quadratic elements.
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Fig. 17. Static equilibrium in three dimensions. Evolution of the time step. There
are two significant variations that correspond to the times at which the smaller
bubbles vanish. The mesh is comprised of 1283 C1-quadratic elements.

We have also introduced a new refinement methodology that desensitizes the
numerical solution to the computational mesh. Using this technique we found
a consistent and significant improvement over the standard methodology.

Finally, we have presented several numerical examples in two and three di-
mensions, which illustrate the effectiveness and robustness of our numerical
formulation.
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(a) Initial condition (b) t ≈ 0.53500

(c) t ≈ 1.4654 (d) Steady state

Fig. 18. Coalescence of two bubbles in three dimensions. Evolution of the density.
The mesh is comprised of 1283 C1 quadratic elements.

From the point of view of applications, future efforts should be devoted to the
development of a generalized theory for air/water/water-vapor flows, which
may be applicable to water mists used to fight fires. From the mathematical
point of view, we believe that the Navier-Stokes-Korteweg equations may be
generalized so that they reflect the difference between the viscosity of water
and water-vapor.
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(a) t ≈ 0.53500

(b) t ≈ 1.4654

Fig. 19. Coalescence of two bubbles in three dimensions. We represent streamlines
from the center of the two vapor bubbles and isosurfaces of density. The color of
the streamlines and the boundaries represents velocity magnitude. The mesh is
comprised of 1283 C1 quadratic elements.
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Fig. 20. Coalescence of two bubbles in three dimensions. Evolution of the free energy.
The mesh is comprised of 1283 C1-quadratic elements.
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Fig. 21. Coalescence of two bubbles in three dimensions. Evolution of the time step.
The mesh is comprised of 1283 C1-quadratic elements.
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