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This paper presents a shock detection technique based on Moving Least Squares reproducing kernel
approximations. The multiresolution properties of these kinds of approximations allow us to define a wavelet
function to act as a smoothness indicator. This MLS sensor is used to detect the shock waves. When the MLS
sensor is used in afinite volume framework in combinationwith slope limiters, it improves the results obtained
with the single application of a slope-limiter algorithm. The slope-limiter algorithm is activated only at points
where the MLS sensor detects a shock. This procedure results in a decrease of the artificial dissipation
introduced by thewhole numerical scheme. Thus, this newMLS sensor extends the application of slope limiters
to higher-order methods. Moreover, as Moving Least Squares approximations can handle scattered data
accurately, the use of the proposedmethodology on unstructured grids is straightforward. The results are very
promising, and comparable to those of essentially non-oscillatory (ENO) andweighted ENO (WENO) schemes.
Another advantage of the proposed methodology is its multidimensional character, that results in a very
accurate detection of the shock position in multidimensional flows.
ll rights reserved.
© 2010 Elsevier B.V. All rights reserved.
1. Introduction

As it is known, the use of high-order numerical methods for the
resolution of compressible flows on unstructured grids is a very
complex problem, due to the conflict between keeping the high accu-
racy and the stabilization the computations.

Among all the possible techniques to deal with this kind of flows
we can cite Total Variation Diminishing (TVD) methods, essentially
non-oscillatory (ENO) and weighted ENO (WENO) schemes. Another
different approach is given by shock fitting techniques and multi-
resolution methods.

TVD schemes [19,34,59,63] and artificial viscosity methods [34,59]
are based on the same principle: the addition of extra dissipation to
avoid the spurious oscillations near strong gradients. Two of the most
popular TVD techniques are flux-limiter methods and slope-limiter
methods. Flux-limiter methods [51,61,65] are based on the develop-
ment of a single numerical flux from two different fluxes. One of them
(Fl) works well in smooth regions of the flow, and the other one (Fh)
works well near discontinuities. The single flux has to match with (Fl)
in smooth regions and with (Fh) near discontinuities. On the other
hand, slope-limiter methods [4,31,65,67] are based on the limitation
of the gradient of the Taylor reconstruction in generalized Godunov's
methods. The limitation is obtained by decreasing the value of the
gradient near discontinuities or extreme points.

ENO and WENO schemes [1,7,8,13,14,20,21,26,27,53–55,60,73]
approach the problem in a different way. They use adaptive stencils in
the reconstruction procedure based on the local smoothness of the
numerical solution to achieve high accuracy avoiding oscillations near
discontinuities. ENO schemes [20,21,53–55] use one stencil among all
candidate stencils in each time step. WENO schemes [55] use a linear
combination of the candidate stencils to obtain a higher-order
approximation. Improvements of the original WENO scheme are the
mapped WENO scheme [26] and the WENO-Z scheme [7]. Although
ENO and WENO schemes obtain very good results when structured
grids are used, their application to unstructured grids is complicated
due to the difficulties for choosing the appropriate stencil. Extensive
research has been performed in this field [1,8,13,14,27,60,73].

Shock capturingmethods present several issues related to solution
quality, particularly on unstructured grids. A lot of research has been
developed to overcome these problems [17,29,72].

Shockfitting techniques [37,38,50] identify the shockas a singular line
and compute the shock motion and upstream and downstream states
with the Rankine Hugoniot equations. These techniques were proposed
and developed in the 60s, but they were replaced by shock-capturing
techniques. The abovementioned problems of shock-capturingmethods
on unstructured grids may make these methods competitive [43,69].

In the context of high-order numerical methods, Discontinuous
Galerkin (DG) methods [5,9], have attracted the attention of
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Fig. 1. 2D stencil for the MLS reconstruction in interior cells.
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researchers during the past years. These methods present a very
systematic way to increase the order of accuracy of the scheme. In
order to extend the use of DG methods to compressible flows, many
authors have developed techniques to solve flows with shocks by
using limiters [32] or additional viscosity [44], by combining DG with
ENO–WENO schemes [15] or by modifying the classical formulation of
DG [36]. Recently a kind of limiters for DG based on ENO methods
have been developed [46–48,74]. Unfortunately, the treatment of
shocks with DG is still an open problem. When finite element
methods are used to solve flow problems, the streamline-upwind/
Petrov–Galerkin (SUPG) formulation for compressible flows
[24,25,28,52,62] is one of the most prevalent methods.

Another technique to solve shocks is based on the multiresolution
properties of the numerical schemes. Thus, the application of filters
can be used to suppress the oscillations caused by shocks. This ap-
proach has been used in a finite difference framework [6,67], due
to the excellent performance of numerical filters on Cartesian grids.
Other kinds of filters based on the dissipative part of a shock-
capturing scheme have also been used in [2,16,71].

The most usual approach on unstructured grids is to use methods
based on a Taylor reconstruction of the variables with slope limiters.
However, most of the existing slope limiters are only designed for
second order schemes, by limiting the first derivative of the Taylor
reconstruction. The straightforward application of slope limiters to
higher-order schemes by limiting high-order derivatives with the
same coefficients than first derivatives, may result in bad behavior of
the solution. Moreover, slope limiters usually identify regions near
smooth extrema as requiring limitation. As a result, the optimal
higher-order convergence rate of the numerical scheme is reduced,
even in the absence of shocks. In this context, Colella has developed a
limiter for the Piecewise Parabolic Method (PPM) [10] that preserves
accuracy at smooth extrema [11]. Another drawback of slope limiters
is that they avoid the total convergence of the numerical method.
This is due to the fact that even machine-order differences between
neighbor cells may activate the limitation process. A possible way of
improving this behavior is to develop a selective limiting method, by
measuring the smoothness of the solution and switching off the limiter
when the solution may be accurately resolved by the approximation
scheme. With this procedure, optimal higher-order convergence rate
in smooth areas can be recovered. In this context the definition of the
shock detector is a crucial point and several kinds of sensors have been
developed. Among others, we can cite [2,22,30,45,57]. Recently, a 1D
MLS sensor based on the multiresolution properties of the Moving
Least Squares (MLS) [33] approximations has been presented [12].
This procedure can be regarded as an unstructured grid generalization
of the wavelet-based selective filtering proposed in [57] for finite
differences. This procedure preserves the accuracy at smooth extrema
for a numerical scheme with any slope-limiter and it improves the
convergence of the numerical method.

In this work the extension of this technique to multidimensional
problems on unstructured grids is presented and tested. Section 2
presents the fundamentals of Moving Least Squares approximations.
Since the methodology of detection is based on the separation of
scales, Section 3 is devoted to introduceMLS-based filters. In Section 4
theMLS-based sensor for shock detection is presented. In Section 5we
present several numerical examples in both structured and unstruc-
tured grids and for steady and unsteady flows, with the purpose of
showing the performance of the proposed methodology. Finally,
conclusions are drawn.

2. Moving Least Squares reproducing kernel approximations

The methodology proposed in this paper is based in the properties
of the Moving Least Squares (MLS) approximations. This is a well-
know numerical techniquewidely used in themeshless community. A
complete description of the method can be found in [35]. Here, for the
sake of brevity we only recall that the interpolation structure can be
identified as

û xð Þ = ∑
nx

j=1
Nj xð Þuj ð1Þ

where, in analogy to the finite element method, the approximation is
written in terms of theMLS “shape functions”NT(x). To compute these
shape functions for a given point, we need to use a number of its
neighboring points. The number of neighbors depends on the order of
accuracy required. However, the cloud of neighbors must fulfill
certain “good neighborhood” requirements. The definition of the
cloud (theMLS stencil) for each evaluation point is a crucial issue that
requires careful attention. The selection process must be suitable for
general unstructured grids, and the stencil should be as compact as
possible for the sake of computational efficiency and physical
meaning. Note that these stencils are typically centered around the
node, and thus theMLS approximation avoids the spatial bias which is
often found in patch-based piecewise polynomial approximations.
The particles needed for the application of the method are identified
with the centroids of every cell of the grid, as it is shown in Fig. 1. This
stencil is the one we have used in all the examples of this work. More
details can be found in [12].

The MLS shape functions are data independent and, therefore, for
fixed grids they need to be computed only once at the preprocessing
phase.

In the definition of the MLS shape functions, kernel functions play
a crucial role [12,35,41]. It is possible to use different kernels for the
definition of shape functions. We have considered two of them: the
cubic spline kernel and the exponential kernel. The 1D cubic kernel is
given by:

W sð Þ =
1−3

2
s2 +

3
4
s3 s≤ 1

1
4

2−sð Þ3 1 b s≤ 2

0 s N 2

8>>>>><
>>>>>:

ð2Þ

In Eq. (2) s = jxj−x�j
h , and h=kmax(|xj−x*|) with j=1,…, nx�, x* is

the reference point (the point where the MLS-shape functions are
evaluated), and nx� is the number of neighbors of the reference point.
Different values of k affect the behavior of the numerical scheme, and
a value of k between 0.6 and 0.7 is recommended [41].



Fig. 2. 1D transfer function of the exponential kernel (A), and cubic spline kernel (B).
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The exponential kernel may be defined in 1D as:

W x; x�; κx
� �

=
e
−

s
c

� �2

−e
−

dm
c

� �2

1−e
−

dm
c

� �2 ð3Þ

with s=|xj−x*|, dm=max(|xj−x*|), with j=1,…, nx�, c =
dm
2κx

, x is the

position of every cell centroid of the stencil, x* is the reference point

and κx is a shape parameter. A typical value for this parameter is κ=1
(see [41]). A 2D kernel is obtained by multiplying two 1D kernels.
Thus, the 2D exponential kernel is the following:

Wj x; x�;κx;κy
� �

= Wj x; x
�
;κx

� �
Wj y; y�;κy
� �

ð4Þ

In this work, all the examples are computed with a higher-order
finite volume scheme, namely FV-MLS method [12,39–41]. This
method uses MLS approximations to compute the derivatives needed
for the Taylor reconstruction of the variable of hyperbolic terms in a
finite volume framework. Viscous terms of Navier–Stokes equations
are directly computed at integration points. With this approach we
obtain a high-order and centered discretization of the viscous terms.
Themethodology presented in thiswork is easily fitted in aMLS-based
numerical scheme, but may also be used with any other numerical
scheme. In that case, the additional cost introduced compared with
classical slope-limiters techniques is mainly the computation of MLS-
shape functions. We remark that for fixed grids this computation is
performed only at the beginning of the computations as a part of the
preprocess. Thus, the additional cost introduced is very low.

Since the MLS sensor presented in this work is based in the
separation of the high-frequency content of the solution, it is worth to
start with a brief exposition of MLS filtering.

3. MLS-based filters

The development of explicit numerical filters has attracted the
attentionof researchers of thefield of turbulence, particularly in the case
of Large-Eddy simulation (LES). LES methodology needs a separation
between the different scales of the flow, and this separation may be
performed with explicit numerical filters. The use of the Reproducing
Kernel Particle Method (RKPM)) as a filter for turbulence problems was
proposed in [68]. Thus, aMLS approximation of a variable can be seen as
a low-passfilteringof the variable. FollowingEq. (1)wewrite for a given
variable Φ:

P
ΦI = ∑

n

j=1
Nj xð ÞΦj ð5Þ

where n is the number of neighbors of the stencil of cell I, and we use
the notation ¯ to indicate a filtered variable.

The filter properties are analyzed by the study of its transfer
function, that is, a mathematical model that indicates the answer of a
system for a certain input. In this case, the input is the nodal value of
the variable. The answer is the result of applying aMLS approximation
to the nodal values of the variable. Then, the transfer function
associated to Eq. (5) is:

Ĝ κð Þ = ∑
n

j=1
Nj xð Þeiκ xj−xIð Þ ð6Þ

Ĝ(κ) is determined by the number of points of the stencil, the kind
of basis and the kernel function used to build theMLS shape functions.

In Fig. 2 we plot the transfer function of MLS filters with kernels
Eqs. (2) and (3) for different values of its parameters. In that figure, a
value of Ĝ=1 indicates no filtering. We note that we can vary the
properties of theMLS-based filter bymodifying the shape parameter κ
for the exponential kernel or the k parameter in case of the cubic
spline. This is the basis of the proposed MLS-based sensor.

4. MLS-based shock detection method

Slope-limiters are a usual technique to build TVD methods. It is
commonly used with second-order finite volume schemes. In order to
keep the stability of the numerical scheme when the flow is not
smooth, a slope-limiter limits the Taylor reconstruction of a high-
order finite volume scheme as follows:

U xð Þ = U I + χI∇U I⋅ x−xIð Þ ð7Þ

χI is a parameter between 0 and 1 computed with some slope-limiter
algorithm. A straightforward extension to higher-order Taylor
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reconstructions is to use the same value of χI to limit all the
derivatives:

U xð Þ = U I + χI ∇U I⋅ x−xIð Þ + …ð Þ ð8Þ

However, slope-limiters are developed for second-order schemes
and this straightforward extension to higher-order schemes presents
problems. Then, the use of a higher-order scheme with slope limiters
does not guarantee a more accurate solution. Thus, we need to
introduce improvements in the limitation technique, in order to use
slope limiters with higher-order methods efficiently. A possible
methodology is selective limiting, that is, we only use the slope-
limiter in those points where necessary. Even though slope limiters
algorithms have some kind of detection, they are not very accurate
and machine-error differences of the variable between cells can
activate the slope-limiter. As a result, the order of the numerical
scheme is not optimal even in smooth flows.

An efficient selective limiting procedure requires the development
of more accurate techniques of detection. The detector must be able to
detect strong gradients and decide if the slope-limitermust be applied
at a certain point. That is, the detector is a smoothness indicator. Such
an indicator can be developed by using the multiresolution properties
of MLS shape functions. An interesting property of Reproducing
Kernel methods is its connection with wavelets [35]. Wavelets are
defined by a wavelet function and a scale function. Thus, it is possible
to define a wavelet function from MLS shape functions.

A MLS approximation reads:

uh xð Þ = ∑
nI

j=1
ujN

h
j xð Þ ð9Þ

The approximated solution uh(x) keeps all the resolutions and
properties of the solution u(x), up to scale h (smoothing length). It is
possible to think in MLS shape functions as the h-scale function of a
wavelet, where h is the scale parameter. We recall that the value of
h depends on the value of the kernel parameter k (see Eq. (2)). From
the Fig. 2 we observe that a smaller value of h involves a finer-scale
solution. In the following, we show how to obtain a wavelet function
from MLS shape functions.

Let's consider a function u(x), and let's define two sets of MLS
shape functionsNh(x) andN2h(x), computedwith different smoothing
lengths h and 2h (or two different shape parameters κx). Thus, we
obtain an h-approximation and a 2h-approximation (or a κH-scale and
κL-scale, where the index H means high resolution and index L means
low resolution). In the following, we continue the exposition with the
κH-scale and κL-scale notation, and the scale parameter is κ.

MLS reconstructions with a different level of resolution of U read
as:

UκH xð Þ = ∑
nI

j=1
U jN

κH
j xð Þ; UκL xð Þ = ∑

nI

j=1
U jN

κL
j xð Þ ð10Þ

we remark that κH-scale and κL-scale approximations correspond to
the high and low-resolution approximations.

Then, the wavelet function can be written as:

Φ xð Þ = NκH xð Þ−NκL xð Þ ð11Þ

On the other hand, κH-scale solution may be expressed as the sum
of its low-scale (UκL(x)) and high-scale (Ψ(x)) complementary parts,
as

UκH xð Þ = UκL xð Þ + Ψ xð Þ ð12Þ
with

Ψ xð Þ = ∑
nI

j=1
U jΦj xð Þ = ∑

nI

j=1
U j N

κH xð Þ−NκL xð Þ� � ð13Þ

The low-scale UκL(x) can be further decomposed using the same
rationale.

Function Ψ(x) is a smoothness indicator of U(x). If the value of
Ψ(x) in a cell is greater than a threshold value, the limiter is activated,
but it remains deactivated in the rest of the cells. We use the function
Ψ(x) as a sensor to detect shock waves.

This procedure can be regarded as an unstructured grid generaliza-
tion of the wavelet-based selective filtering proposed by Sjögreen and
Yee for finite differences [57]. In fact, Eq. (13) is a high-pass filtering.

As a practical note, typical values for the filter length are k=0.7 for
the computation of the Nh(x) MLS shape functions if the cubic kernel
is used and κL=1 and κH=6 for the exponential kernel.

However, to complete the methodology we need to define the
value of Ψ(x) for which we consider the solution as non-smooth and
the slope-limiter has to be activated. Thus, it is needed to define the
threshold value of the MLS sensor from which the limiter is switched
on. Several choices are available in the literature [6,45]. Following [45]
we consider here the density as the reference variable, but it is
possible to use the same procedure for the rest of variables. Then, we
define the threshold value from the gradient of the reference variable
in cell I.

Tυ = Clcj∇ρjI AIð Þ1d =M ð14Þ

AI is the size (area in 2D) of the control volume I, d is the number of
dimensions of the problem, Clc is a parameter, andM is the free stream
Mach number. If Clc=0, there is no selective limiting, and the usual
slope-limiter algorithm is used in the whole domain of computation.
We have included a Mach number scaling in order to reduce the
variability of the Clc parameter. This scaling reduces the problem
dependency of theMLS sensor, but in general it is problem dependent.
In our experience, a good initial guess is Clc=0.32. Note that it is also
possible to use a local Mach number instead the free-stream Mach
number for the scaling.

Thus, the slope-limiter algorithm is activated when the following
condition is verified:

jΨρj = j ∑nI
j=1

ρj NκH
j xð Þ−NκL

j xð Þ
� �j N Tυ ð15Þ

The effect of selective limiting is shown in Fig. 3, where we plot the
effect of the variation in the parameter Clc on the dispersion properties
of the third-order FV-MLS scheme [41]. The aim of this figure is to
show the behavior of selective-limiting and not describing the
behavior of the scheme in the resolution of multidimensional Euler
equations. It is obtained for the approximation of the derivative of
u = sin 2π;w xð Þ= Lð Þ. As we vary w, higher frequencies have to be

solved. We compute the Ψ function as Ψ = ∑
nI

j=1
uj NκH

j xð Þ−NκL
j xð Þ

� �
.

When |Ψ| is bigger than the threshold value defined for the variable u,
the limiter is activated. We have used the slope-limiter developed by
Barth and Jespersen [4], but any other slope-limiter may be used. It is
observed that the effect of the slope-limiter is to transform the
dispersion properties of the numerical scheme in those of a lower
order scheme. It is also observed that a smaller value of the Clc
parameter results in an activation of the limiter for lower wavenum-
bers. Thus, Clc=0 is equivalent to keeping the slope-limiter always
active.

We note that in the proposed detection algorithm, we use all the
cells of the stencil to determine if a shock is present in the flow. This
fact gives our approach a multidimensional nature that we believe



Fig. 3. Dispersion of the third-order FVMLS scheme with selective limiting for different
values of Clc parameter. On the top we show the result with the threshold value defined
from the gradient of the reference variable in cell I. On the bottom, we plot a zoom of the
curve. BJ-limiter refers to Barth and Jespersen limiter [4].
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improve the accuracy in the detection of shocks for multidimensional
flows. We also note that the methodology proposed here improves
the way of detecting the shock of a given slope-limiter technique.
However, once the limiter is active, the process of limiting is the same
than the one of the original limiter.
Fig. 4. Isolines of the Abgrall function given by Eq. (16).
4.1. Detection tests

In this sectionwe check the ability of the proposedmethodology to
detect the discontinuities in a 2D data distribution. Data distribution is
built from the Abgrall function [1,42]:

u x; yð Þ =
f x− cot

ffiffiffi
π
2

q
y

� �
x≤ cos πy

2

f x + cot
ffiffiffi
π
2

q
y + cos 2πyð Þ

� �
x N

cos πy
2

8><
>: ð16Þ
with

f rð Þ =

−r sin 3π
2
r2

� �
r≤−1

3

j sin 2πrð Þj jrjb 1
3

2r−1 + 1
6
sin 3πrð Þ r≥1

3

8>>>>><
>>>>>:

ð17Þ

A plot of the Abgrall function is shown in Fig. 4.
We apply the MLS-based shock detection methodology to the

function (16) on a unstructured grid. In Fig. 5 we plot the detection for
different choices of the threshold value definition.

In order to guarantee the stability in general grids, we activate the
slope-limiter in all the cells of the stencil of Iwhen the condition given
by Eq. (15) is verified in the cell I. The application of this methodology
to the Abgrall function (16) obtains the results we plot in Fig. 6.

We note that the increase in the number of cells marked by the
MLS sensor is alleviated by using the “detection” algorithm of each
slope limiter in addition to our proposed MLS-sensor. Thus, although
the slope-limiter is active it does not mean that χI=0, because once a
cell has been marked by the MLS sensor the slope limiter decides if
this cell is limited or not, and the amount of limiting to perform.

The multidimensional nature and multiresolution features of the
Moving Least Squares approximations allow a very accurate detection
of the position of the discontinuity. In the following section, this will
be further shown with several representative simulations.

5. Representative simulations

5.1. 1D test. Shu–Osher problem

As a first example, we consider the test number 8 of the 1D
problems that Shu and Osher presented in [56]. We solve the 1D Euler
equations in [−5, 5], with 400 cells. Initial conditions are (ρ, υ, p)=
(3.857, 2.629, 10.333) if xb−4 and (ρ, υ, p)=(1+0.2sin(5x), 0, 1) if
x≥−4. The density ρ is the reference variable for the selective
limiting procedure. We use the Barth and Jespersen slope-limiter with
and without selective limiting, with a parameter Clc=0.32, and a
Mach number value corresponding to the state 1.

In Fig. 7 we plot the results for the density. The reference solution
has been computed on a 3200 elements grid, with the second-order
FV-MLS scheme and the slope-limiter active everywhere. We also plot
the absolute value of function Ψ and the threshold value Tυ.



Fig. 6. Detection test for the Abgrall function (16) on an unstructured grid. We plot the
result with the definition of the threshold value based on the gradient, for a value of
Clc=0.32. We mark the cells of the stencil of I when the detector activates the slope-
limiter in cell I.

Fig. 5. Detection test for the Abgrall function (16) on an unstructured grid. We plot the
results with the definition of the threshold value based on the gradient with Clc=0.2
(left) and Clc=0.32 (right). Marked cells are the cells where the slope-limiter algorithm
would be activated. As expected, if we increase the value of Clc parameter, the weaker
discontinuities are progressively not detected.
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The results improve considerably when the MLS sensor is applied
with the slope limiter. We note that these results are comparable to
those obtained with ENO and WENO schemes [56].

5.2. 2D tests. Subsonic flow past a NACA 0012 profile

One of the main drawbacks of slope limiters is the limiting in
smooth regions. In these regions limiting is not needed, and the
introduction of additional numerical dissipation reduces the accuracy
of the numerical scheme. In this example we check this effect with the
computation of a smooth flow, and we show the improvement
achieved when the MLS sensor is used with the slope limiter.

We solve the Euler equations for a subsonic 2D flow past a NACA
0012 profile. Freestream Mach number is M=0.63 and the angle of
attack is α=2°. These flow conditions result in a smooth flow passing
the profile. Drag and lift coefficients computed with the hodographic
method are CD=0 and CL=0.335. The grid is unstructured with
quadrilateral elements. We have placed 128 cells on the profile (64 on
each face), and the total number of elements is 5322. The limiter of
Barth and Jespersen (BJ) is used with the third order FV-MLS method.
In Fig. 8 we show Mach isolines for the computations with and
without MLS sensor with Clc=0.32. In figure A, shaded cells indicate
the cells marked by the MLS sensor, where the slope limiting
algorithm is active. In figure B, colored cells are the cells where the
BJ limiter is active without the MLS sensor. Color scale indicates the
value of χI in those cells. We note that the BJ limiter is limiting
although there is not any shock wave in the solution. Thus, the BJ
limiter introduces an additional amount of numerical viscosity that is
unnecessary, ant it causes anomalies in the Mach number lines close
to the profile. When the MLS sensor is used, these anomalies
disappear. Note that it is possible to reduce the number of cells
marked by the MLS-sensor by increasing the value of the Clc
parameter.

In order to check the grid-independence of the selective-limiting
procedure, we compute the same problem in a refined grid, with
12,243 control volumes, from which 256 are placed on the profile
(128 on each face). We use the same parameters than in the coarser
grid. The Mach lines are drawn in Fig. 9. We note that even in this
refined grid, the anomalies in the Mach number close to the surface of
the profile are clear when only the BJ limiter is used.

In Table 1 we show the drag and lift coefficients. The drag
coefficient, CD, is in this example an indicator of the dissipation
introduced by the numerical scheme. The improvement when the
MLS sensor is used is evident.

As it is known, the use of slope limiters may result in convergence
problems. The limiter is active even for machine error differences
between the values of the variable in adjacent cells, and it causes the
impossibility of convergence under a certain value of the residual. In
Fig. 10 we plot the evolution of the residual of the density. We note
the improvement with the use of MLS sensor. As the MLS sensor
reduces the number of cells where limiter is active, in general it
obtains a better behavior of the convergence. We note that the
convergence for the coarser grid when the MLS sensor is used, is
better than the convergence with a finer grid without the MLS sensor.
5.3. 2D test. Transonic flow past a NACA 0012 profile

In this section we solve the 2D Euler equations for a transonic flow
past a NACA 0012 profile. The freestreamMach number isM=0.8 and
the angle of attack is α=1.25°. We use the same grid as in the



Fig. 7. Shu–Osher problem, 400 cells. (A) second-order FV-MLS scheme and limiter active everywhere, (B) third-order FV-MLS scheme and limiter active everywhere. Panel (C) shows
the results for the third-order FV-MLS, BJ limiter with MLS sensor Clc=0.32, and in figure (D) we plot the wavelet function |Ψ| and threshold value.
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previous example. We have used the fourth-order FV-MLS method
with the BJ limiter. When the MLS sensor is used, the value of the
parameter is Clc=0.32.

In Fig. 11 we plot the Mach number contours and the cells where
the MLS sensor detects a shock and it activates the slope-limiter
(shaded cells). In these cells, the slope-limiter algorithm is applied as
usual. In Fig. 12we plot the cells where (χ≠1), that is, the cells where
the slope-limiter is limiting. A red color indicates χ=0 (a first-order
scheme). A blue color indicates a value of χ close (but not equal) to
one. We observe that the limiter is active in most of the surface of the
profile (even in cells far from the shock) when only the BJ limiter is
applied. However, when the slope-limiter is used linked with the MLS
sensor, the numerical scheme does not introduce dissipation in cells
far from the shock.

When the MLS sensor is used the higher-order reconstruction is
recovered in cells adjacent to the wall, upstream and downstream
from the shock, because the slope-limiter is not active. This effect is
shown in Fig. 13, where we plot the entropy values at the cells close to
the profile. Entropy generation in smooth zones of the solutionmay be
considered as an indicator of the numerical dissipation introduced by
the numerical scheme. It is clear the decreasing in the entropy with
the selective limiting procedure.

On the other hand, the lift and drag coefficients are shown in
Table 2. The results obtained with the MLS sensor are closer to the
reference values from the Advisory Group for Aerospace Research and
Development (AGARD) [3] in a computation on a structured grid. The
lower value of drag coefficient shows the less dissipative behavior of
the resulting scheme.We also note that the fourth-order methodwith
BJ limiter without selective limiting presents a more dissipative
behavior than the second-order method with BJ limiter. This is an
effect of using the same value of the parameter χI for the limitation of
high-order derivatives.

We compute the same problem with the BJ limiter and the MLS
sensor on a refined grid (the same one we used in the previous case),



Fig. 8. Subsonic flow past a NACA 0012 profile, Mach=0.63, α=2 degrees. We plot the
Mach isolines for the BJ limiter withMLS sensor (A), and for the BJ limiter (B). In panel A
shaded cells indicate the cells marked by the MLS sensor, where the slope limiting
algorithm is active. In panel B, colored cells are the cells where the BJ limiter is active
without the MLS sensor. Color scale indicates the value of χI in those cells. Red value is
χ=0, that is, a first order scheme, and blue is χ close (but not equal) to one. Mach
anomalies for the BJ limiter are clearly seen.

Fig. 9. Subsonic flow past a NACA 0012 profile, Mach=0.63, α=2°. Results on the
refined grid. We plot the Mach isolines for the BJ limiter with MLS sensor (A), and for
the BJ limiter (B). In panel A shaded cells indicate the cells marked by the MLS sensor,
where the slope limiting algorithm is active. In panel B, colored cells are the cells where
the BJ limiter is active without the MLS sensor. Color scale indicates the value of χI in
those cells. Red value is χ=0, that is, a first order scheme, and blue is χ close (but not
equal) to one. Mach anomalies for the BJ limiter are clearly seen. Red value is χ=0, that
is a first order scheme, and blue is χ close (but not equal) to one. Mach anomalies for
the BJ limiter are clearly seen.
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with the same parameters. The MLS-based selective limiting captures
correctly the shocks, as it is shown in Fig. 14.

In Fig. 15 we show the pressure coefficient (Cp) for different
schemes, and we compare it with a reference solution computed on
the refined grid, with a second-order FV-MLS method and the BJ
limiter.
Table 1
Subsonic flow past a NACA 0012 profile, Mach=0.63, α=2°. Drag (CL) and lift (CD)
coefficients.

Numerical scheme CL CD

Hodographic method 0.335 0
3rd order+BJ limiter (coarse grid) 0.318 5.29E−03
3rd order+BJ limiter+MLS sensor (coarse grid) 0.328 1.24E−03
3rd order+BJ limiter (refined grid) 0.327 1.14E−03
3rd order+BJ limiter+MLS sensor(refined grid) 0.329 1.63E−04
5.4. 2D shock-wave–vortex interaction

In this examplewe show a 2D shock-wave–vortex interaction. This
interaction appears in many situations, such as the flow past
supersonic aircrafts. In these kinds of flows the shock–vortex
interaction leads to performance deterioration. Moreover, the study
of these interactions is important to predict the generation of noise
[49,58].

The setup of this problem is the following, and we show it
schematically in Fig. 16: a vortex is convected by a subsonic stream
toward a stationary plane shock wave. When the vortex arrives, it
distorts the shock wave. The distortion will depend on the relative
strengths of the vortex and the shock. Following [23] we assume that
the effect of Reynolds number on the physical phenomena during
shock–vortex interactions is negligible, and we use the 2D Euler
equations to model the problem.
The computational domain is the rectangle [0, 4]×[−1, 1]. The
shock wave is plane and stationary, and it limits a supersonic region
(−) upstream from the shock and a subsonic region (+) downstream
from the shock. It is placed at x=0.5.

Upstream conditions are the following:

ρ−s = 1 ð18Þ

p−s = 1 ð19Þ

M−
s = 1:2 ð20Þ

with M−
s = u−

s =
ffiffiffiffi
γ

p
. Downstream conditions are computed from the

upstream conditions by writing the stationarity condition for the
shock.



Fig. 10. Subsonic flow past a NACA 0012 profile, Mach=0.63, α=2. Convergence
history for the residual of the density for selective limiting and the BJ limiter.

Fig. 12. Transonic flow past a NACA 0012 profile, Mach=0.8, α=1.25°. We plot the
cells where the BJ limiter is limiting (χ≠1). A red value isχ=0, whereas a blue color is
χ close (but not equal) to one. On the bottom we plot a zoom of the profile. We observe
that with the use of the MLS-based shock detection technique, the numerical scheme
does not introduce dissipation in cells far from the shock.
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Vortex is defined as a Taylor vortex with uniform and constant
entropy:

u0 x; yð Þ = −υmax
y−yυ0

rυ
exp

1−ξ2

2

 !
ð21Þ

v0 x; yð Þ = υmax
x−xυ0
rυ

exp
1−ξ2

2

 !
ð22Þ

ρ0 x; yð Þ = 1−γ−1
2

M2
υ exp 1−ξ2

� �� � 1
γ−1 ð23Þ
Fig. 11. Transonic flow past a NACA 0012 profile, Mach=0.8, α=1.25°. Shaded cells
indicate the cells where the MLS-based detector detects a shock and the slope-limiter is
activated. On the bottom we plot a zoom of the profile.
p0 x; yð Þ = 1
γ

1−γ−1
2

M2
υ exp 1−ξ2

� �� � γ
γ−1 ð24Þ
Fig. 13. Transonic flow past a NACA 0012 profile, Mach=0.8, α=1.25°. Entropy
generation on the surface of the profile. S0 is the freestream entropy. Selective limiting
reduces the entropy generation. The use of a fourth order scheme with BJ limiter does
not decrease the generation of entropy.



Table 2
Transonic flow past a NACA 0012 profile, Mach=0.8, α=1.25°. Lift (CL) and drag (CD)
coefficients.

Numerical scheme CL CD

2nd order+BJ limiter (coarse grid) 0.341 2.465E−02
4th order+BJ limiter (coarse grid) 0.342 2.486E−02
4th order+BJ limiter+MLS sensor (coarse grid) 0.343 2.317E−02
4th order+BJ limiter+MLS sensor (refined grid) 0.349 2.24E−02
AGARD reference [3] 0.347 2.221E−02

Fig. 16. Schematic representation of the 2D shock-vortex interaction.
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where ξ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−xυ0ð Þ2 + y−yυ0ð Þ2

q
= rυ. Vortex radius is rυ=0.075

and the vortex is initially placed at (xυ0, yυ0)=(0.25, 0). Vortex Mach
number is defined as Mυ = υmax = c

−
s = υmax =

ffiffiffiffi
γ

p
, where υmax is the

maximum rotation velocity of the vortex. It indicates the strength of
the vortex and c is the speed of sound. In this example we take
Mυ=0.32 corresponding to a moderate strength vortex.

We solve the problem on a grid with 200×200 elements, in the
region [0, 2]×[−1, 1]. The region [2, 4]×[−1, 1] is an absorbing layer
based on grid stretching to avoid reflections on the exit of the domain
Fig. 14. Transonic flow past a NACA 0012 profile, Mach=0.8, α=1.25°. Results for the
refined grid. We plot the cells where the MLS sensor detects a shock and the slope-
limiter is activated (shaded cells).

Fig. 15. Transonic flow past a NACA 0012 profile, Mach=0.8, α=1.25°. Pressure coefficient
with selective limiting. (B) Fourth order FV-MLS method with BJ limiter. (C) Second order F
FV-MLS method with BJ limiter on a refined grid. Some points of the reference solution hav
[40]. We have used the MLS-based shock detection scheme with
threshold value based on the gradient and stencil limiting. In this case,
even though the value of the Clc=0.32 gives good results, better
results are obtained with a value of coefficient is Clc=0.48, with a
reference Mach number of 1.2.

Wedefine the acoustic pressurefluctuationp′=(p−ps
+)/ps−, so it is

measured with respect to the undisturbed pressure level behind the
shock (ps+) and normalized by the undisturbed pressure ahead of the
shock (ps−). This variable allows us to analyze the sound generation
produced in the shock–vortex interaction. In Fig. 17 we plot the
evolution of the acoustic pressure fluctuation for several non-dimen-
sional times τ=(t− t0)cs+/rυ. Non-dimensional time τ=0 corresponds
to the instantwhen the center of the vortex goes through the shock.We
note that with this definition, negative times are allowed.

With this example we show that the MLS-based shock detection
methodology proposed in this paper can detect and follow the
evolution of a non-stationary shock wave. Except in the cells where a
shock wave is detected, the numerical scheme keeps its maximum
accuracy. In Fig. 17 it is seen how the shock wave is distorted when
the vortex goes through it. The detector follows the shock-wave
evolution. Our results agree with the solutions obtained by other
authors [6,18] with different numerical methods.
for different schemes, and detail of the shock zones. (A) Fourth order FV-MLS method
V-MLS method with BJ limiter. (D) Reference solution computed with the second order
e been skipped for clarity.

http://dx.doi.org/10.1016/j.cam.2009.08.067


Fig. 17. 2D shock-vortex interaction. We plot the acoustic pressure fluctuation for different non-dimensional times τ=(t− t0)cs+/rυ. Non-dimensional time τ=0 corresponds to the
instant when the center of the vortex goes through the shock. We shade the cells in which the MLS-based sensor detects the shock. It is observed that the proposed methodology is
able to follow the evolution of the shock.
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Fig. 18. Grid for the Mach 3 wind tunnel problem. Detail near the corner.
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5.5. Mach 3 wind tunnel with a step

In this section we solve the problem proposed in [70]. A Mach 3
supersonic flow across a wind tunnel of 1 length unit wide and 3
length units long. A step is located 0.6 length units from the inflow,
and it is 0.2 length units wide. Along the walls of the tunnel, a slip wall
boundary conditions have been placed. Inflow and outflow boundary
conditions are used at the entrance and the exit. We set ρ=1.4, p=1
as initial values of density and pressure, and the velocity is set to
υx=3, υy=0. With a value of gamma γ=1.4, this setup corresponds
to a Mach 3 flow. We solve the problem with the third-order FV-MLS
scheme, by using the same parameters as in previous sections.
Following [27], the singularity point at the corner is managed by
Fig. 19. Mach 3 wind tunnel problem. Density contours (top) and limited cells (bottom
refining the mesh in this region. Thus, the same numerical scheme is
used in the whole domain. The limiter proposed in [31] has been used
in this example. The MLS sensor is used, with a parameter of
Clc=0.32. We set the biggest size of the elements away from the
corner as Δx = Δy = 1

160
. Size of elements near the corner is one-half

that. A paving algorithm has been used to build the mesh. A detail of
the grid is plotted in Fig. 18.

In Fig. 19 we plot the contours of density at time t=4.0 (top), and
the cells where the limiter is activated (bottom).

The results obtained agree with the results of [27] on an equivalent
triangular grid. Finally, we also note that the grid used in this example
is strongly non-uniform. Even on this grid the methodology is able to
obtain accurate results.
), Δx = Δy = 1
160

. We plot 30 density contours from 0.32 to 6.15 at time t=4.0.



Fig. 20. Double Mach reflection. Density contours (top) and limited cells (bottom), Δx = Δy = 1
200

, t=0.2. We plot 30 equally spaced contour lines, from 1.5 to 21.5.
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5.6. Double Mach reflection

The last numerical example is the double Mach reflection problem
[70]. A shock wave is moving horizontally against an edge that is
inclined. This configuration is equivalent to a diagonal shock wave
that moves into a reflecting wall. The domain is the rectangle
[0,4]×[0,1]. A Mach 10 right-moving shock is initially placed at
x0 = 1

6
. It is inclined 60°. The lower boundary mimics the wedge. For

x≥x0 it is a reflecting wall. For xbx0 we impose the exact postshock
condition. At the top boundary the flow values are imposed to
describe the exact motion of the inclined shock. We use the limiter of
Van Albada [64] with the MLS sensor. The reference Mach number is
M=10. In this case a value of Clc=0.32 leads to an excess of marked
cells and then to a very dissipative solution. Thus, we use a value of
Clc=0.5. The size of the elements is Δx = Δy = 1

200
, in order to

compare with the results of [27]. In Fig. 20 we plot the density
contours of the region [0, 3]×[0, 1] and the limited cells for a time
t=0.2. We plot 30 equally spaced contour lines, from 1.5 to 21.5. It is
seen that, again, the detector follows correctly the contours of the
strong shock. The region of theMach stems is almost free of limitation.
Fig. 21. Detail of the region arou
The results compare verywell with the results of [27] on an equivalent
uniform triangular gridwith a third orderWENO scheme. In Fig. 21we
show a detail of the Mach stems.

6. Conclusions

A multidimensional shock detection technique based on the
Moving Least Squares method that may be used in both structured
and unstructured grids has been presented. Multiscale properties of
MLS are used to separate the high scale components of the solution in
order to develop aMLS-basedwavelet function of a reference variable.
This function is used as a sensor for shock waves. When the MLS
sensor is bigger than a threshold the slope-limiter algorithm is
switched on. The threshold value is a problem-dependent parameter.
However, in our experience a value of Clc=0.32 is a good guess, in
terms of accuracy and robustness. Moreover, this approach presents a
multidimensional nature very convenient for the detection of shocks
in multidimensional flows. Several numerical examples have been
presented. The results obtained are comparable to those obtained by
ENO and WENO schemes. However, the main interest of this new
nd the double Mach stems.
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technique relies on the possibility of application with unstructured
grids. In those grids, the results are very promising. The proposed
methodology clearly improves the results obtained by usual slope
limiters by decreasing the number of cells limited. The method is
robust and it allows us keeping the maximum accuracy of the scheme
in smooth regions, including smooth extrema. Another important
advantage of the proposed methodology is that it improves the
convergence of the numerical method when slope-limiters are used.
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