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Abstract

In the last years the authors have developed a numerical formulation based on the
Boundary Element Method for the analysis of grounding systems embedded in uni-
form soils. This approach has been implemented in a CAD system that currently
allows to analyze real grounding grids in real-time in personal computers. The ex-
tension of this approach for the grounding analysis in layered soils is straightforward
by application of the method of images. However in some practical cases the result-
ing series have a poor rate of convergence; consequently, the analysis of real earthing
grids in multilayer soils requires an out of range computational cost.

In this paper we present a CAD system based on this BEM numerical formulation
for grounding analysis in multilayer soils that include an efficient technique based on
the Aitken acceleration in order to improve the rate of convergence of the involved
series expansions. Finally, we show some examples by using the geometry of real
grounding systems.

Keywords: grounding, multilayer soils, BEM, acceleration convergence

1 Introduction

From the beginnings of the large-scale use of electricity, one of the challenging prob-
lems stated have been to obtain the potential distribution in electrical installations
when a fault current is derived into the soil through a grounding system. Tradition-
ally the grounding system refers to the earthing or grounding grid or the “grounded
electrode” as its main element, being the potential distribution on the earth surface
the most important parameter that it is necessary to know in order to design a safe
grounding system.
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In practice, the grounding grid usually consists of a mesh of interconnected cylin-
drical conductors buried to a certain depth of the ground surface (0.5 − 1.0 m), and
supplemented by ground rods vertically thrusted in certain places of the substation
site. Thus, when a fault condition occurs, the grounding grid transports and dissipates
the electrical currents produced into the ground, with the aim of ensuring that a person
in the vicinity of the grounded installation is not exposed to a critical electrical shock,
and also preserving the continuity of the power supply and the integrity of the equip-
ment. To achieve these goals, the equivalent electrical resistance of the system must
be low enough to assure that fault currents dissipate mainly through the grounding
grid into the earth. Moreover, electrical potential values between close points on the
earth surface that can be connected by a person must be kept under certain maximum
safe limits (step, touch and mesh voltages) [1, 2].

In the last four decades, several methods and procedures for the analysis and design
of grounding grids have been proposed: methods based on the professional experi-
ence, on semi-empirical works, on experimental data obtained from scale model as-
says and laboratory tests, and even on intuitive ideas. Unquestionably, these contribu-
tions represented an important improvement in the grounding analysis area, although
some problems have been systematically reported: the large computational costs re-
quired in the analysis of real cases, the unrealistic results obtained when segmentation
of conductors is increased, and the uncertainty in the margin of error [1, 2, 3, 4],
among others.

Maxwell’s Electromagnetic Theory constitutes the starting point to obtain the math-
ematical equations that govern the dissipation of electrical currents into a soil. Never-
theless, although these equations are well-known for years, their application and res-
olution for the computing of grounding grids of large installations in practical cases
present serious difficulties. First, it is obvious that no analytical solutions can be ob-
tained for most of real problems. On the other hand, the characteristic geometry of
grounding systems (a mesh of interconnected bare conductors with a relatively small
ratio diameter-length) makes very difficult the use of numerical methods. Thus, the
use of some widespread numerical techniques commonly applied for solving bound-
ary value problems in engineering, such as finite elements or finite differences, is
extremely costly since it is required the discretization of the domain: the ground ex-
cluding the electrode. Consequently, obtaining sufficiently accurate results should
imply unacceptable computing efforts in memory storage and CPU time.

In the last years, the authors have developed a numerical formulation based on
the Boundary Element Method for the analysis of grounding systems with uniform
soil models[5, 6]. Its implementation in a Computer Aided Design application for
grounding systems allows to analyze real grounding installations in real-time using
conventional personal computers.

Later, we proposed a generalization of the boundary element formulation for groun-
ding grids embedded in layered soils [7, 8]. This is a very challenging problem with
important consequences in the grounding design from the safety point of view [1].
These stratified soil models are frequently used when there are important differences
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in the electrical properties of the soil: for example, when the excavation process during
the construction of the substation produces a layered soil, or as a consequence of a
chemical treatment of the soil applied in the surroundings of the earthing system to
improve the performance of the grounding electrode, or due to the specific geological
characteristics of the substation site.

However the analysis of real grounding grids in multilayer soils requires in some
practical cases an out-of-range computational cost due to the poor rate of convergence
of the series that appear when the method of images is applied to represent the different
layers of soil. This topic becomes the bottleneck of the whole numerical approach. In
this paper we focus our attention on this problem proposing the use of an efficient and
mathematically well-founded extrapolation technique in order to accelerate the rate of
convergence of the involved series expansions.

2 Math model of the current dissipation problem

2.1 General equations

The dissipation of electrical currents into the soil can be studied in the framework of
the Maxwell’s Electromagnetic Theory. If one restricts the analysis to the electroki-
netic steady-state response and neglects the inner resistivity of the earthing conductors
(so, potential is assumed constant at every point of the grounding electrode surface),
the 3D problem can be written as

div(σσσσσσσσσσσσσσ) = 0, σσσσσσσσσσσσσσ = −γγγγγγγγγγγγγγ grad(V ) in E;
σσσσσσσσσσσσσσtnnnnnnnnnnnnnnE = 0 in ΓE; V = VΓ in Γ; V → 0, if |xxxxxxxxxxxxxx| → ∞ (1)

where E is the earth, γγγγγγγγγγγγγγ is its conductivity tensor, ΓE is the earth surface, nnnnnnnnnnnnnnE is its
normal exterior unit field and Γ is the electrode surface [5]. Therefore, the solution to
(1) gives potential V and current density σσσσσσσσσσσσσσ at an arbitrary point xxxxxxxxxxxxxx when the electrode
attains a voltage VΓ (Ground Potential Rise, or GPR) with respect to remote earth.
Next, for known values of V on ΓE and σσσσσσσσσσσσσσ on Γ, it is straightforward to obtain the
design and safety parameters of the grounding system [5, 9]. On the other hand,
since V and σσσσσσσσσσσσσσ are proportional to the GPR value [5], from here on it will be used the
normalized boundary condition VΓ = 1.

The most commonly soil model considered in many of the methods proposed for
grounding analysis is the homogeneous and isotropic one, where conductivity γγγγγγγγγγγγγγ is
substituted by an apparent scalar conductivity γ [1, 5]. Obviously, this hypothesis is
valid (and it does not introduce significant errors) if the soil is “essentially uniform”
in all directions in the surroundings of the grounding grid; this model can even be
used with loss of accuracy if the soil resistivity changes slightly with depth. Neverthe-
less, safety parameters involved in the grounding design can strongly vary if the soil
electrical properties change through the substation site, particularly with the depth.
These variations can be due to changes in the material nature, or in the humidity of the
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soil, for example. For this reason, it is necessary to develop more advanced models to
consider variations of the soil conductivity in the surroundings of the grounding site.

Obviously, taking into account all variations of soil conductivity would be mean-
ingless and unaffordable, neither from the economical nor from the technical point of
view. For this reason, more practical soil models have been proposed. A family of
these soil models consists of assuming the soil stratified in a number of horizontal or
vertical layers, defined by an appropriate thickness and an apparent scalar conductiv-
ity that must be experimentally obtained. In fact, it is widely accepted that two-layer
and three-layer soil models should be sufficient to obtain good and safe designs of
grounding systems in most practical cases[1].

In the hypothesis of a stratified soil model formed by C layers with different con-
ductivities, the mathematical problem (1) can be written in terms of the following
Neumann exterior problem

div(σσσσσσσσσσσσσσc) = 0, σσσσσσσσσσσσσσc = −γc gradgradgradgradgradgradgradgradgradgradgradgradgradgrad(Vc) in Ec, 1 ≤ c ≤ C;
σσσσσσσσσσσσσσt

1nnnnnnnnnnnnnnE = 0 in ΓE, Vb = 1 in Γ;
Vc → 0 if |xxxxxxxxxxxxxx| → ∞, σσσσσσσσσσσσσσt

cnnnnnnnnnnnnnnc = σσσσσσσσσσσσσσt
c+1nnnnnnnnnnnnnnc in Γc, 1 ≤ c ≤ C − 1; (2)

where b denotes the layer in which the grounded electrode is buried, Ec is each one
of the soil layers, γc is its scalar conductivity, Vc is the potential at an arbitrary point
in the layer Ec, σσσσσσσσσσσσσσc is its corresponding current density, Γc is the interface between
layers Ec and Ec+1, and nnnnnnnnnnnnnnc is the normal field to Γc[8]. In this paper we restrict the
grounding analysis and examples for two-layer soil models, that is C = 2.

2.2 Integral Expression for Potential and Variational Form

The ratio between the diameter and the length of the conductors of the grounding grids
uses to be relatively small (∼ 10−3). This apparently simple geometry implies serious
troubles in the modellization of the problem in real cases: neither analytical solutions
can be obtained, nor widespread numerical methods (such as finite elements or finite
differences) can be used since the required discretization of the 3D domains Ec (ex-
cluding the grounding electrode) should involve a completely out-of-range computing
effort. For these reasons, we have turned our attention to other numerical techniques
which require only the discretization of the boundaries. With this aim, it is firstly es-
sential to derive an integral expression for potential V in terms of unknowns defined
on the boundary[5, 9].

First of all, we can assumed that the earth surface ΓE and the interfaces Γc between
layers are horizontal (this hypothesis seems sound if we take into account the level-
ling and regularization processes performed in the surroundings of the substation site
during the construction process of the electrical installation).

With this new assumption, the application of the “method of images” and Green’s
Identity to problem (2) yields the following integral expression[8] for potential Vc(xxxxxxxxxxxxxxc)
at an arbitrary point xxxxxxxxxxxxxxc ∈ Ec, in terms of the unknown leakage current density σ(ξξξξξξξξξξξξξξ)
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(σ = σσσσσσσσσσσσσσtnnnnnnnnnnnnnn, where nnnnnnnnnnnnnn is the normal exterior unit field to Γ) at any point ξξξξξξξξξξξξξξ of the electrode
surface Γ ⊂ Eb:

Vc(xcxcxcxcxcxcxcxcxcxcxcxcxcxc) =
1

4πγb

∫ ∫
ξξξξξξξξξξξξξξ∈Γ

kbc(xxxxxxxxxxxxxxc, ξξξξξξξξξξξξξξ)σ(ξξξξξξξξξξξξξξ)dΓ, ∀xxxxxxxxxxxxxxc ∈ Ec, (3)

where integral kernels kbc(xxxxxxxxxxxxxxc, ξξξξξξξξξξξξξξ) are formed by series of infinite terms corresponding
to the resultant images obtained when Neumann exterior problem (2) is transformed
into a Dirichlet one[5, 8, 9]. Depending on the type of the soil model, these series can
have an infinite or a finite number of terms: i.e., for uniform soil models (C = 1),
there are only two summands since there is only one image of the original grid:

k11(xxxxxxxxxxxxxx1, ξξξξξξξξξξξξξξ) =
1

r(xxxxxxxxxxxxxx1, [ξx, ξy, ξz])
+

1

r(xxxxxxxxxxxxxx1, [ξx, ξy,−ξz])
, (4)

where r(xxxxxxxxxxxxxx1, [ξx, ξy, ξz]) indicates the distance from xxxxxxxxxxxxxx1 to ξξξξξξξξξξξξξξ ≡ [ξx, ξy, ξz], being the
point [ξx, ξy,−ξz] the symmetric one of ξξξξξξξξξξξξξξ with respect to the earth surface ΓE . We
assume that the origin of the coordinates system is on the earth surface and the z-axis
is perpendicular to ΓE .

Figure 1: Scheme of a two-layer soil model formed by an upper layer with a thickness
h and conductivity γ1, and a lower layer with conductivity γ2.

In the case of a two-layered soil model (figure 1), the expressions of the integral
kernels kbc(xxxxxxxxxxxxxxc, ξξξξξξξξξξξξξξ) are given by

k11 =
∞∑
i=0

κi

r(xxxxxxxxxxxxxx1, [ξx, ξy, 2iH + ξz])
+

∞∑
i=0

κi

r(xxxxxxxxxxxxxx1, [ξx, ξy, 2iH − ξz])

+
∞∑
i=1

κi

r(xxxxxxxxxxxxxx1, [ξx, ξy,−2iH + ξz])
+

∞∑
i=1

κi

r(xxxxxxxxxxxxxx1, [ξx, ξy,−2iH − ξz])
;

k12 =
∞∑
i=0

(1 + κ)κi

r(xxxxxxxxxxxxxx2, [ξx, ξy,−2iH + ξz])
+

∞∑
i=0

(1 + κ)κi

r(xxxxxxxxxxxxxx2, [ξx, ξy,−2iH − ξz])
;

k21 =
∞∑
i=0

(1− κ)κi

r(xxxxxxxxxxxxxx1, [ξx, ξy,−2iH + ξz])
+

∞∑
i=0

(1− κ)κi

r(xxxxxxxxxxxxxx1, [ξx, ξy, 2iH − ξz])
;
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k22 =
1

r(xxxxxxxxxxxxxx2, [ξx, ξy, ξz])
− κ

r(xxxxxxxxxxxxxx2, [ξx, ξy, 2H+ξz])
+

∞∑
i=0

(1− κ2)κi

r(xxxxxxxxxxxxxx2, [ξx, ξy,−2iH+ξz])
; (5)

In the above expressions, r(xxxxxxxxxxxxxx, [ξx, ξy, ξz]) indicates the distance from xxxxxxxxxxxxxx to ξξξξξξξξξξξξξξ. The other
terms correspond to the distances from xxxxxxxxxxxxxx to the symmetric point of ξξξξξξξξξξξξξξ with respect to
the earth surface ΓE , and to the interface surface between layers. H is the thickness
of the upper layer. Ratio κ is defined in terms of the layer conductivities

κ =
γ1 − γ2

γ1 + γ2

(6)

From expressions (4) and (5), it is clear that singular kernels kbc(xxxxxxxxxxxxxxc, ξξξξξξξξξξξξξξ) for uniform
and two-layer soil models can be written in a general form

kbc(xxxxxxxxxxxxxxc, ξξξξξξξξξξξξξξ) =

lk∑
l=0

kl
bc(xxxxxxxxxxxxxxc, ξξξξξξξξξξξξξξ), kl

bc(xxxxxxxxxxxxxxc, ξξξξξξξξξξξξξξ) =
ψl(κ)

r(xxxxxxxxxxxxxxc, ξξξξξξξξξξξξξξ
l(ξξξξξξξξξξξξξξ))

, (7)

where ψl is a weighting coefficient that depends only on the ratio κ given by (6), and
r(xxxxxxxxxxxxxxc, ξξξξξξξξξξξξξξ

l(ξξξξξξξξξξξξξξ)) is the Euclidean distance between the points xxxxxxxxxxxxxxc and ξξξξξξξξξξξξξξl, being ξξξξξξξξξξξξξξ0 the point ξξξξξξξξξξξξξξ
on the electrode surface (ξξξξξξξξξξξξξξ0(ξξξξξξξξξξξξξξ) = ξξξξξξξξξξξξξξ), and being ξξξξξξξξξξξξξξl (l 6= 0) the images of ξξξξξξξξξξξξξξ with respect
to the earth surface and to the interfaces between layers. Finally, lk is the number of
summands in the series of integral kernels, and it depends on the case being analyzed.

On the other hand, expression (3) is very important for the solution of the problem
since it allows to obtain the value of the electrical potential at an arbitrary point xxxxxxxxxxxxxxc if
the leakage current density σ is known. Furthermore, it is also possible to compute
the total surge current that flows from the grounding system, its equivalent resistance
and most of the remaining safety and design parameters of a grounding grid [5]. The
leakage current density σ can be obtained by solving the following Fredholm integral
equation of the first kind on Γ

1

4πγb

∫∫
ξξξξξξξξξξξξξξ∈Γ

kbb(χχχχχχχχχχχχχχ, ξξξξξξξξξξξξξξ)σ(ξξξξξξξξξξξξξξ) dΓ = 1, ∀χχχχχχχχχχχχχχ ∈ Γ. (8)

since the integral expression for the potential (3) is also satisfied on the electrode
surface Γ, where the potential value is known by the boundary condition Vb(χχχχχχχχχχχχχχ) =
1, ∀χχχχχχχχχχχχχχ ∈ Γ. Now, a variational form of this integral expression can be obtained by
imposing that it is verified in the sense of weighted residuals, that is, the following
integral identity∫∫

χχχχχχχχχχχχχχ∈Γ

w(χχχχχχχχχχχχχχ)

(
1

4πγb

∫∫
ξξξξξξξξξξξξξξ∈Γ

kbb(χχχχχχχχχχχχχχ, ξξξξξξξξξξξξξξ)σ(ξξξξξξξξξξξξξξ) dΓ− 1

)
dΓ = 0, (9)

must hold for all members w(χχχχχχχχχχχχχχ) of a suitable class of test functions defined on Γ[5, 9].
It is important to remark that the solution of equation (8) only requires obtaining the
leakage current density σ in points of the electrode surface. So, a numerical method
based on the discretization of the boundaries of the domain, such as the BEM [5, 10],
should be the best numerical approach for solving it.
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3 Numerical model based on the BEM

3.1 General 2D approach

The unknown leakage current density σ and the electrode surface Γ can be discretized
in terms of a given set of N trial functions {Ni(ξξξξξξξξξξξξξξ)} defined on Γ and a given set of M
2D boundary elements {Γα}:

σ(ξξξξξξξξξξξξξξ) =
N∑

i=1

σiNi(ξξξξξξξξξξξξξξ), Γ =
M⋃

α=1

Γα, (10)

Now, the integral expression (3) for the potential Vc(xxxxxxxxxxxxxxc) can also be discretized as

Vc(xxxxxxxxxxxxxxc) =
N∑

i=1

σiVc,i(xxxxxxxxxxxxxxc); Vc,i(xxxxxxxxxxxxxxc) =
M∑

α=1

lV∑
l=0

V αl
c,i (xxxxxxxxxxxxxxc); (11)

V αl
c,i (xxxxxxxxxxxxxxc) =

1

4πγb

∫∫
ξξξξξξξξξξξξξξ∈Γα

kl
bc(xxxxxxxxxxxxxxc, ξξξξξξξξξξξξξξ)Ni(ξξξξξξξξξξξξξξ) dΓ

α; (12)

where lV represents the number of summands to consider in the evaluation of the series
of kernels until convergence is achieved (lV = lk if this number is finite).

Finally, variational form (9) is reduced to the following LSE for a given set of N
test functions {wj(χχχχχχχχχχχχχχ)} defined on Γ:

N∑
i=1

Rjiσi = νj (j = 1, . . . , N)

Rji =
M∑

β=1

M∑
α=1

lR∑
l=0

Rβαl
ji , νj =

M∑
β=1

νβ
j ,

(13)

being

Rβαl
ji =

1

4πγb

∫∫
χχχχχχχχχχχχχχ∈Γβ

wj(χχχχχχχχχχχχχχ)

∫∫
ξξξξξξξξξξξξξξ∈Γα

kl
bb(χχχχχχχχχχχχχχ, ξξξξξξξξξξξξξξ)Ni(ξξξξξξξξξξξξξξ)dΓ

αdΓβ, (14)

νβ
j =

∫∫
χχχχχχχχχχχχχχ∈Γβ

wj(χχχχχχχχχχχχχχ)dΓβ, (15)

where lR represents the number of summands to consider in the evaluation of the series
of kernels until convergence is achieved (lR = lk if this number is finite).

Solution of the linear system (12) provides the values of the current densities σi

(i = 1, . . . , N) leaking from the nodes of the grid. However, In practice, the 2D
discretization required to solve the above stated equations in real problems implies an
extremely large number of degrees of freedom. In addition, the coefficient matrix in
(13) is full and the computation of each contribution (14) requires double integration
on a 2D domain[5, 9] and, in the case of kernels given by infinite series, an extremely
high number of evaluations of terms of the kernel. For these reasons, it is essential
to introduce some additional simplifications in the BEM approach to decrease the
computational cost.
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3.2 Approximated 1D BEM approach

With this aim, and taking into account the real geometry of grounding grids in most
of electrical substations, one can assume that the leakage current density is constant
around the cross section of the cylindrical electrode (hypothesis of “circumferential
uniformity”) [1, 5, 8].

Consequently, if we denote L the whole set of axial lines of the buried conductors,
ξ̂ξξξξξξξξξξξξξ the orthogonal projection over the bar axis of a given generic point ξξξξξξξξξξξξξξ ∈ Γ, φ(ξ̂ξξξξξξξξξξξξξ) the
electrode diameter, P (ξ̂ξξξξξξξξξξξξξ) the circumferential perimeter of the cross section in ξ̂ξξξξξξξξξξξξξ, and
σ̂(ξ̂ξξξξξξξξξξξξξ) the approximated leakage current density at this point (assumed uniform around
the cross section), we can derive an approximated expression for potential (3) as,

V̂c(xxxxxxxxxxxxxxc) =
1

4γb

∫
bξξξξξξξξξξξξξξ∈L

φ(ξ̂ξξξξξξξξξξξξξ) k̄bc(xxxxxxxxxxxxxxc, ξ̂ξξξξξξξξξξξξξ) σ̂(ξ̂ξξξξξξξξξξξξξ) dL, ∀xxxxxxxxxxxxxxc ∈ Ec (16)

being k̄bc(xxxxxxxxxxxxxxc, ξ̂ξξξξξξξξξξξξξ) the average of the integral kernel kbc(xxxxxxxxxxxxxxc, ξ̂ξξξξξξξξξξξξξ) in the cross section in ξ̂ξξξξξξξξξξξξξ:

k̄bc(xxxxxxxxxxxxxxc, ξ̂ξξξξξξξξξξξξξ) =

∫
ξξξξξξξξξξξξξξ∈P (

bξξξξξξξξξξξξξξ)

kbc(xxxxxxxxxxxxxxc, ξξξξξξξξξξξξξξ)dP. (17)

Now, the variational identity (9) will not hold, because the leakage current is not
exactly uniform around the cross section and boundary condition V1(χχχχχχχχχχχχχχ) = 1, χχχχχχχχχχχχχχ ∈ Γ
will not be strictly satisfied at every point χχχχχχχχχχχχχχ on Γ. For it, restricting the class of trial
functions to those with circumferential uniformity (i.e., w(χχχχχχχχχχχχχχ) = ŵ(χ̂χχχχχχχχχχχχχ) ∀χχχχχχχχχχχχχχ ∈ P (χ̂χχχχχχχχχχχχχ)),
we obtain the new variational form

1

4γb

∫
bχχχχχχχχχχχχχχ∈L

φ(χ̂χχχχχχχχχχχχχ) ŵ(χ̂χχχχχχχχχχχχχ)

[∫
bξξξξξξξξξξξξξξ∈L

φ(ξ̂ξξξξξξξξξξξξξ) ¯̄kbb(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) σ̂(ξ̂ξξξξξξξξξξξξξ) dL

]
dL =

∫
bχχχχχχχχχχχχχχ∈L

φ(χ̂χχχχχχχχχχχχχ) ŵ(χ̂χχχχχχχχχχχχχ) dL,

(18)
which it must be verified for all functions ŵ(χ̂χχχχχχχχχχχχχ) of a suitable class of test ones defined
on L, where integral kernel ¯̄kbb(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) is given by

¯̄kbb(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) =

∫
χχχχχχχχχχχχχχ∈P ( bχχχχχχχχχχχχχχ)

[∫
ξξξξξξξξξξξξξξ∈P (

bξξξξξξξξξξξξξξ)

kbb(χχχχχχχχχχχχχχ, ξξξξξξξξξξξξξξ) dP

]
dP. (19)

In contrast to integral equation (9), the resolution of (18) requires the discretization
of the whole set of axial lines L of the grounded conductors. Thus, the unknown
approximated leakage current density σ̂ and the axial lines L can be discretized if we
consider a set of n trial functions {N̂i(ξ̂ξξξξξξξξξξξξξ)} defined on L, and a set of m 1D boundary
elements {Lα}:

σ̂(ξ̂ξξξξξξξξξξξξξ) =
n∑

i=1

σ̂i N̂i(ξ̂ξξξξξξξξξξξξξ), L =
m⋃

α=1

Lα, (20)

Now, it is possible to discretize the approximated potential (16)

V̂c(xxxxxxxxxxxxxxc) =
n∑

i=1

σ̂i V̂c,i(xxxxxxxxxxxxxxc); V̂c,i(xxxxxxxxxxxxxxc) =
m∑

α=1

lV∑
l=0

V̂ αl
c,i (xxxxxxxxxxxxxxc); (21)
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V̂ αl
c,i (xxxxxxxxxxxxxxc) =

1

4γb

∫
bξξξξξξξξξξξξξξ∈Lα

φ(ξ̂ξξξξξξξξξξξξξ) k̄l
bc(xxxxxxxxxxxxxxc, ξ̂ξξξξξξξξξξξξξ) N̂i(ξ̂ξξξξξξξξξξξξξ) dL

α, (22)

where lV represents the number of summands to consider in the evaluation of the series
of kernels until convergence is achieved (lV = lk if this number is finite).

Finally, the variational form (18) is also reduced to a LSE for a given set of n test
functions {ŵj(χ̂χχχχχχχχχχχχχ)} defined on L:

n∑
i=1

R̂jiσ̂i = ν̂j (j = 1, . . . , n)

R̂ji =
m∑

β=1

m∑
α=1

lR∑
l=0

R̂βαl
ji , ν̂j =

m∑
β=1

ν̂β
j ,

(23)

where

R̂βαl
ji =

1

4γb

∫
bχχχχχχχχχχχχχχ∈Lβ

φ(χ̂χχχχχχχχχχχχχ) ŵj(χ̂χχχχχχχχχχχχχ)

∫
bξξξξξξξξξξξξξξ∈Lα

φ(ξ̂ξξξξξξξξξξξξξ) ¯̄kl
bb(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) N̂i(ξ̂ξξξξξξξξξξξξξ) dL

αdLβ, (24)

ν̂β
j =

∫
bχχχχχχχχχχχχχχ∈Lβ

φ(χ̂χχχχχχχχχχχχχ) ŵj(χ̂χχχχχχχχχχχχχ) dLβ. (25)

In contrast with the 2D boundary element general formulation, the number of ele-
mental contributions needed to state the system of linear equations (23) and the num-
ber of unknowns σi are now significantly smaller for a given level of mesh refinement.
In spite of the important reduction in the computational cost, extensive computing is
still necessary mainly because of the circumferential integration on the perimeter of
the electrodes that are involved in the integral kernels. In previous works we have pro-
posed the approximated evaluation of these circumferential integrals by using specific
quadratures [5]: thus, kernel (17) can be computed as

k̄bc(xxxxxxxxxxxxxxc, ξ̂ξξξξξξξξξξξξξ) =

lV∑
l=0

k̄l
bc(xxxxxxxxxxxxxxc, ξ̂ξξξξξξξξξξξξξ) (26)

being

k̄l
bc(xxxxxxxxxxxxxxc, ξ̂ξξξξξξξξξξξξξ) = π φ(ξ̂ξξξξξξξξξξξξξ)

ψl(κ)

r̂(xxxxxxxxxxxxxxc, ξ̂ξξξξξξξξξξξξξ
l(ξ̂ξξξξξξξξξξξξξ))

; r̂(xxxxxxxxxxxxxxc, ξ̂ξξξξξξξξξξξξξ
l) =

√
|xxxxxxxxxxxxxxc − ξ̂ξξξξξξξξξξξξξl|2 +

φ2(ξ̂ξξξξξξξξξξξξξ)

4
(27)

and kernel (19) can be obtained as

¯̄kbb(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) =

lR∑
l=0

¯̄kl
bb(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) (28)

being

¯̄kl
bb(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) = π2 φ(ξ̂ξξξξξξξξξξξξξ)φ(χ̂χχχχχχχχχχχχχ)

ψl(κ)̂̂r(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξl(ξ̂ξξξξξξξξξξξξξ))
; ̂̂r(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξl) =

√
|χ̂χχχχχχχχχχχχχ− ξ̂ξξξξξξξξξξξξξl|2 +

φ2(ξ̂ξξξξξξξξξξξξξ) + φ2(χ̂χχχχχχχχχχχχχ)

4

(29)
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The final result is an approximated 1D formulation in which the coefficients of the
equations system only requires integration on 1D domains, i.e. the axial lines of the
electrodes [5].

Different choices of the sets of trial and test functions allow to derive specific nu-
merical approaches. In this paper, we have selected a Galerkin type one, where the
matrix of coefficients is symmetric and positive definite [5, 9, 11]. On the other hand,
the authors have derived a highly efficient analytical technique to evaluate the co-
efficients of the linear system of equations for Point Collocation and Galerkin type
weighting in uniform soil models. Since the 1D approximated expressions for the
terms V̂ αl

c,i and R̂βαl
ji in (22) and (24) are formally equivalent to those obtained in the

case of uniform soil models, their computation can also be performed analytically by
using the above mentioned techniques [5, 9].

4 Convergence acceleration techniques of the series

Series involved in the calculus of kernels (26) and (28) have a poor rate of conver-
gence particularly when the ratio κ —given by (6)— is close to +1 or -1; that is, when
there are important differences between the electrical properties of the two layers of
soil: these are the most interesting cases. It is important to remark that the increase in
the computing cost by the use of multilayer soil models is justified when conductivi-
ties drastically vary since two-layer (or in general multilayer) models produce results
noticeably different from those obtained by using a uniform soil model.

Kernels (26) and (28) appear in the computing of potential terms (21) and in the
computing of matrix coefficients terms (23). Of course, both terms are important and
the series involved in each computations have a similar rate of convergence. However
in practice computing potential distribution on the earth surface usually is the bottle-
neck of the complete process of grounding analysis, since it is necessary to compute
the potential in an extremely high number of points on the earth surface in order to ob-
tain high-quality results and to compute the safety parameters of the grounding grid:
for a substation site of an approximated area of 40.000 m2 it is necessary to compute
the value of potential in approximately 50.000 points by using formula (21). If we
take into account that expression (21) can also be rewritten as

V̂c(xxxxxxxxxxxxxxc) =

lV∑
l=0

(
n∑

i=1

σ̂i

m∑
α=1

V̂ αl
c,i (xxxxxxxxxxxxxxc)

)
(30)

where lV represents the number of summands to consider in the evaluation of the series
of kernels until convergence is achieved, it is clear that obtaining potential distribution
on earth surface could break off the design process due to the scale factor of the num-
ber of points if lV >> 1. For this reason we have focused our attention to develop a
technique for accelerate the convergence of the series involved in the potential values
computing.

10



Figure 2: Scheme of a punctual source of current with intensity I buried to a depth d
in a two-layer soil formed by an upper layer with a thickness h and conductivity γ1,
and a lower layer with conductivity γ2.
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Figure 3: Potential on earth surface produced by a punctual current source buried to a
depth d in a two-layer soil of thickness of the upper layer h (d > h): Results depending
on the number of images computed for a κ = −0.98 (in blue) and κ = −0.998 (in red)
for a ratio r̃ = 0 (point on the earth surface over the vertical of the punctual source)
and h̃ = 0.25.
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Figure 4: Potential on earth surface produced by a punctual current source buried to a
depth d in a two-layer soil of thickness of the upper layer h (d > h): Results depending
on the number of images computed for a κ = −0.98 (in blue) and κ = −0.998 (in
red) for a ratio r̃ = 1 (point on the earth surface to a distance d over the vertical of the
punctual source) and h̃ = 0.25.

4.1 Convergence of the potential calculus in the case of a punctual
current source

The starting point in the derivation of our proposal for acceleration of the convergence
of the series consists in studyng the upper bound of the error when the potential is
computed in the ground surface. Thus, let be a punctual source of current with inten-
sity I buried to a depth d in a two-layer soil formed by an upper layer with a thickness
h and conductivity γ1, and a lower layer with conductivity γ2 (Figure 2).

The potential V on the ground surface is given by the following two expressions
depending on the position of the source[12, 13, 14]: If it is placed in the upper layer,
then d < h, and potential is given by

V (r) =
I

2πdγ1

 1√
r̃2 + 1

+
∞∑

n=1

 κn√
r̃2 + (2nh̃− 1)2

+
κn√

r̃2 + (2nh̃+ 1)2

 ;

(31)
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being r̃ = r/d and h̃ = h/d. If the punctual source is in the lower layer, then d > h,
and potential is given by

V (r) =
I

2πdγ2

∞∑
n=0

(1− κ)κn√
r̃2 + (2nh̃+ 1)2

; (32)

Figures 3 and 4 shows the potential (32) for two different situations. The values
of the parameters have been chosen similar to real geometric configurations: i.e., h̃ =
h/d = 0.25 corresponds to d = 1 m and h = 0.25 m, κ = −0.98 corresponds to the
case of γ1 = 10−4 mho/m and γ2 = 10−2 mho/m, and κ = −0.998 corresponds to the
case of γ1 = 10−5 mho/m and γ2 = 10−2 mho/m. (The value of intensity I has been
chosen I = 2πdγ2 in order to represent directly the series in all graphics).

In both formulae, κ is the ratio between conductivities, given by (6).
Now if we denote εN the absolute error produced in the calculus of the potential by

computing N terms of the series (that is, by using the first N images), then it is given
by εN = V − V N , being V the exact value and V N the approximation by computing
N terms:

εN = V − V N =
I

2πdγ1

∞∑
n=N

 κn√
r̃2 + (2nh̃− 1)2

+
κn√

r̃2 + (2nh̃+ 1)2

 ; if d < h

(33)
This error is upper bounded by

|εN | <

∣∣∣∣∣∣ I

πdγ1

(1− κ)κN√
r̃2 + (2h̃− 1)2

∣∣∣∣∣∣ ; if d < h (34)

and consequently the common-logarithm of |εN | is linear dependent with N

log |εN | < log |A|+N log |κ|; if d < h (35)

where A depends on geometric parameters, and it is a constant value for every poten-
tial calculus. If d > h, the absolute error is given by

εN = V − V N =
I

2πdγ2

∞∑
n=N

(1− κ)κn√
r̃2 + (2nh̃+ 1)2

; if d > h (36)

and its upper bound is

|εN | <

∣∣∣∣∣∣ I

2πdγ2

κN√
r̃2 + (2h̃+ 1)2

∣∣∣∣∣∣ ; if d > h (37)

and consequently the common logarithm of |εN | is again linear dependent with N

log |εN | < log |B|+N log |κ|; if d > h (38)
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Figure 5: Absolute error in the potential computing on earth surface produced by
a punctual current source buried to a depth d in a two-layer soil of thickness of the
upper layer h (d > h): Results depending on the number of images computed for a
κ = −0.98 (in blue) and κ = −0.998 (in red) for ratios r̃ = 0 and h̃ = 0.25.

where B depends on geometric parameters, and it is a constant value for every poten-
tial calculus. Figures 5 and 6 shows the evolution of absolute error in the computation
of potential —expression (36)— for different cases. The linear dependency of the
log-error is clear when the number of images increases as predicted by formulae (37)
and (38).

As we can observe from expressions (35) and (38), the upper bound of the absolute
error (in logarithmic scale) is linear with N . Both are very important results. If the
potential is computed by using two different numbers of terms of the series (namely
N1, N2), the Richardson extrapolation allows to conclude that εN2 = εN1κ

(N2−N1),
that is, a geometric convergence is achieved since |κ| < 1. This expression is useful
to obtain extrapolated values for the electrical potential (V E). For example, if N2 =
N1 + 1 then

V E =
V N2 − κV N1

1− κ
(39)

Furthermore, and due to this geometric convergence, the Aitken acceleration can
also be used to obtain an improved value of potential, by using the computed values of
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Figure 6: Absolute error in the potential computing on earth surface produced by
a punctual current source buried to a depth d in a two-layer soil of thickness of the
upper layer h (d > h): Results depending on the number of images computed for a
κ = −0.98 (in blue) and κ = −0.998 (in red) for ratios r̃ = 1 and h̃ = 0.25.

the potential with three different numbers of terms of the series (namely N1, N2 and
N3, satisfying N1 < N2 < N3 and N3 − N2 = N2 − N1, being V N1 , V N2 and V N3

the computed values for each case). Thus, the Aitken acceleration allows to obtain a
expression for computing an improved value of potential (V ?):

V ? =
V N1V N3 − V N2V N2

V N1 + V N3 − 2V N2
(40)

This formula is very simple and easy to use: for a given point on the ground surface,
three values of the potential (32) should be computed by using N1, N2 and N3 number
of terms of the series (for example, with 5, 10 and 15 images) and then it is computed
the improved value V ? by using the Aitken acceleration given by (40). Figures 7 and
8 shows the potential values and the extrapolated potential ones versus the number of
images. It is important to remark the good quality of the extrapolated values obtained
with a few number of images. (As in the previous graphics, the value of intensity I
has been chosen I = 2πdγ2 in order to represent directly the series).

Figures 9 and 10 shows the number of images necessary to compute the potential if
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no extrapolation is used versus the number of images if extrapolation is used. It is also
represented the relative error in the potential value. Note that the number of images
required would be extremely specially when |κ| ≈ 1 (i.e., κ = −0.998) where the rate
of convergence of the series is very poor.
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Figure 7: Potential values and potential improved values by using the Aitken acceler-
ation (40) on earth surface produced by a punctual current source buried to a depth d
in a two-layer soil of thickness of the upper layer h (d > h) computed for a κ = −0.98
(in blue) and κ = −0.998 (in red) for ratios r/d = 0 and h/d = 0.25.

4.2 Application of the convergence acceleration of the series to the
grounding analysis by the Boundary Element Method

The idea presented in the previous section was the starting point for developing a
more efficient computational way for obtaining potential in layered soil models. In
the numerical approach based on the Boundary Element Method, the absolute error
(εN ) produced in the calculus of the potential by using expression (30) and computing
N terms of the series, it is given by εN = V̂ ∞c (xxxxxxxxxxxxxxc)− V̂ N

c (xxxxxxxxxxxxxxc), being V̂ ∞c (xxxxxxxxxxxxxxc) the exact
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Figure 8: Potential values and potential improved values by using the Aitken acceler-
ation (40) on earth surface produced by a punctual current source buried to a depth d
in a two-layer soil of thickness of the upper layer h (d > h) computed for a κ = −0.98
(in blue) and κ = −0.998 (in red) for ratios r/d = 1 and h/d = 0.25.

value and V̂ N
c (xxxxxxxxxxxxxxc) the approximation by computing N terms:

εN = V̂ ∞c (xxxxxxxxxxxxxxc)− V̂ N
c (xxxxxxxxxxxxxxc) =

∞∑
l=N

(
n∑

i=1

σ̂i

m∑
α=1

V̂ αl
c,i (xxxxxxxxxxxxxxc)

)
(41)

Now substituting (22) and (27) in (41), it is possible to rewrite the previous expression
as

εN = V̂ ∞c (xxxxxxxxxxxxxxc)− V̂ N
c (xxxxxxxxxxxxxxc) =

∞∑
l=N

ψl(κ)Φl
c(xxxxxxxxxxxxxxc) (42)

where Φl
c(xxxxxxxxxxxxxxc) represents the contribution to the potential calculus of the image l (it is

important to remark that Φl
c(xxxxxxxxxxxxxxc) is not a function of κ). Finally it can be shown the

upper bound of the absolute error is given by an expression of the form

|εN | <
∣∣ΨκN

∣∣ (43)

where Ψ depends on geometric parameters, and it is a constant value for every poten-
tial calculus. This result is formally equivalent to the one obtained in the study of the
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Figure 9: Number of images versus the number of images necessary for potential
improved values by using the Aitken acceleration (40) on earth surface produced by
a punctual current source buried to a depth d in a two-layer soil of thickness of the
upper layer h (d > h) computed for a κ = −0.98 (in blue) and κ = −0.998 (in red)
for ratios r/d = 0 and h/d = 0.25. It is also represented the potential relative error.

punctual source (and given by (37)), so we can use expression the Aitken acceleration
given by (40) to obtain improved values of the potential.

This methodology of computing interpolated values of the potential has been im-
plemented in the Computer Aided Design system for grounding analysis based on the
approach proposed in sections 2. and 3. and based on the Boundary Element Method.
Consequently, the computation of potential by using expression (21) is programmed
in such way as new terms of the series (corresponding to new images) are added,
the improved values are also computed. The rise of computational cost due to this
extra-calculus is completely irrelevant and the convergence is quickly achieved.

The improvement in the rate of convergence of the series is remarkably and the
CPUtime required in the postprocessing stage of the grounding analysis of a real case
is reduced in a factor of two orders of magnitude on average for two-layer soil models
of κ very closer to −1.
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Figure 10: Number of images versus the number of images necessary for potential
improved values by using the Aitken acceleration (40) on earth surface produced by
a punctual current source buried to a depth d in a two-layer soil of thickness of the
upper layer h (d > h) computed for a κ = −0.98 (in blue) and κ = −0.998 (in red)
for ratios r/d = 1 and h/d = 0.25. It is also represented the potential relative error.

5 Conclusions

In this paper, we have revised the mathematical and numerical model for grounding
analysis in two-layered soil models. Furthermore it has been presented for the first
time a methodology for the acceleration of the convergence of the series involved in
the computing of potential, which is the larger bottleneck in the computational cost of
the numerical approach. Nowadays, we are working in the application of acceleration
techniques in the computing of matrix coefficients of the LSE of the BEM approach.
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