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Abstract Topology structural optimization problems
have been usually stated in terms of a maximum stiff-
ness (minimum compliance) approach. The objective of
this type of approach is to distribute a given amount
of material in a certain domain, so that the stiffness of
the resulting structure is maximized (that is, the com-
pliance, or energy of deformation, is minimized) for a
given load case. Thus, the material mass is restricted to
a predefined percentage of the maximum possible mass,
while no stress or displacement constraints are taken
into account. This paper presents a different strategy
to deal with topology optimization: a minimum weight
with stress constraints Finite Element formulation for
the topology optimization of continuum structures. We
propose two different approaches in order to take into
account stress constraints in the optimization formula-
tion. The local approach of the stress constraints im-
poses stress constraints at predefined points of the do-
main (i.e. at the central point of each element). On the
contrary, the global approach only imposes one global
constraint that gathers the effect of all the local con-
straints by means of a certain so-called aggregation
function. Finally, some application examples are solved
with both formulations in order to compare the ob-
tained solutions.
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1 Introduction

Ever since Schmit [29] proposed the revolutionary idea
of designing minimum cost objects or systems by means
of Mathematical Programming techniques, the optimiza-
tion field has experienced a continuous evolution up to
nowadays. This idea was first introduced in structural
analysis by means of sizing and/or shape optimization
formulations and, more recently, by means of topology
optimization formulations [1].

The main idea of topology optimization of struc-
tures is to obtain the optimal distribution of material
in a predefined domain.

In the original statement of this problem the un-
known describing the material distribution is a binary
function associated to solid/void configurations at each
point of the domain when the domain is discretized (i.e.
a FEM mesh is introduced). This approach leads to dis-
crete programming type problems with a large number
of design variables (i.e. one discrete design variable per
element indicating if the cell is either solid or void).
At present time there are no effective universal meth-
ods for solving this kind of problems, which makes this
approach unaffordable in practice.

For this reason, the material distribution is normally
described in terms of a continuum function that can
take all the possible values between the two discrete
limits: 0 (what indicates a void configuration at a given
point) and 1 (what indicates a solid configuration at a
given point). The value of this continuum function is
referred to as the relative density in the vicinity of each
point.

However, at this point it is necessary to define the
structural response of the material being used for in-
termediate values of the relative density. This issue has
been traditionally addressed by applying homogeniza-



2

tion techniques [1,2,3,13,33] over predefined microstruc-
tures of material (SIMP, Hole-in-cell, Rank-2-layered,...).
Then, since the former discrete approach has been re-
placed by the new continuum approach, the resulting
optimization problems can be tackled by means of more
effective Mathematical Programming algorithms, as the
once typically used in structural sizing and shape opti-
mization.

Sizing and shape structural optimization problems
have been mainly written in terms of minimum weight
formulations with non-linear constraints. These con-
straints usually limit the maximum allowable stresses
and displacements [14,19,32]. However, ever since Bendsøe
and Kikuchi proposed the basic concepts of topology
structural optimization in 1988 [1], most of these prob-
lems have been usually stated in terms of minimum
compliance (maximum stiffness) approaches. Essentially,
in this kind of formulations a given amount of material
must be distributed within a given domain while the
stiffness of the resulting structure is maximized (the
compliance is minimized) for a given load case [1,2,3,
26].

The traditional minimum compliance formulations
offer some obvious advantages, since one avoids dealing
with a large number of highly non-linear constraints.
This could be considered crucial, if one takes into ac-
count the large number of design variables that is inher-
ent to this technique in real engineering applications.

However, minimum compliance formulations present
several important drawbacks that could be considered
as relevant as the advantages that they offer. Thus, mul-
tiple load cases can not be considered, and different
solutions are obtained for different restrictions on the
amount of material (sometimes with checkerboard lay-
outs) and the final design could be unfeasible in prac-
tice since stress and displacement constraints are not
imposed at all. Moreover, from a mathematical point
of view, the minimum compliance approach is an “ill-
posed problem”, since the solution oscillates as the dis-
cretization refinement increases [3,17]. Different strate-
gies have been proposed in the search of a proper pro-
cedure to overcome these difficulties. Most of them in-
clude the use of porous materials [2,3] (what calls again
for the concept of relative density that was mentioned
above)

The Solid Isotropic Material with Penalty (SIMP)
formulation [2,3,18,27,28] is the most widely used min-
imum compliance approach at present time. In this for-
mulation, a dimensionless design variable per element
is introduced: the so-called “relative density” of an ele-
ment. This is the complement to one of the porosity and
its value ranges from 0 to 1. Thus, the aim is to obtain
the design variables (and consequently the amount of

porous material that must be distributed within each
element) by minimizing a highly non-linear objective
function (the compliance or deformation energy). The
design is subjected to a single linear constraint, which
is the total amount of material to be used. The total
amount of material is defined by a fixed percentage of
the total domain volume. This percentage is usually
called the “filling factor”.

On the other hand, the SIMP formulation is easy to
implement in a FEM code for structural analysis. More-
over, several explicit procedures have been proposed to
solve the optimization problem efficiently.

Nevertheless, the minimum compliance results may
be questionable, since the final design depends on so
many arbitrary parameters (filling factor, degree of dis-
cretization, applied penalization and stabilization tech-
niques, image filtering processes, etc.)

On the other hand, since the most of structural de-
sign problems include stress and displacement limita-
tions, it seems quite obvious that these criteria should
be mandatorily considered in structural topology op-
timization formulations. In this paper, we follow this
strategy and we propose a different approach that al-
lows the consideration of stress and/or displacement
constraints.

The most intuitive way of taking into account stress
and/or displacement limitations consists of stating one
(or several) constraint(s) of this type at selected points
of the structure. The usual option is to consider stress
constraints at a given point within each finite element
of the mesh (what is usually referred to as the “local
constraints” approach). This formulation has been also
applied in the works of Duysinx [6,7], Pereira [25] or
Yang [32], for example.

Although it presents some difficulties (which are
fairly easy to solve), this formulation is very robust
and the solutions obtained are very realistic. In ad-
dition, no artificial techniques are required to obtain
adequate solutions. However, it also presents some un-
expected numerical effects when the relative density
tends to zero (e.g. the so-called singularity phenom-
ena). Some of these effects can be easily explained from
a theoretical point of view [5,11]. Therefore, it is nec-
essary to introduce some modifications in the numeri-
cal algorithm in order to relax the singular theoretical
solutions. These modifications are not unique and sev-
eral relaxed approaches have been proposed in order to
avoid the singularity phenomena [5,6]. However, these
relaxation approaches produce highly non-linear func-
tions and give rise to more complicated problems.

On the other hand, it is necessary to take into ac-
count that this approach may require very large com-
puting resources. Moreover, the optimization problem
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becomes, in fact, not only more time consuming but
also more complicated from a numerical point of view
when the number of non-linear constraints is very large.

A number of different techniques have been pro-
posed in an attempt to reduce the number of stress
constraints of the problem, due to the extensive com-
puting effort that is required to obtain optimal solutions
as the number of elements is increased. One of these ap-
proaches consists of stating one or several global func-
tions, which include all the constraints of the local ap-
proach. Thus, the optimization problem becomes easier
to solve since the number of constraints is drastically
reduced. This technique is more recent than the local
approach and it is usually referred to as the “global
stress constraints approach”.

Now the problem is to obtain a function that could
correctly aggregate all the local constraints while pre-
senting good numerical stability condition. In addition,
it should be easily derived and it should adequately rep-
resent the whole set of local constraints. This is clearly
the keypoint of this approach. Following these ideas,
several contributions using global stress functions have
been published (see for example [8]).

In this paper, we present a FEM based minimum
weight with stress constraints (MWSC) approach for
structural topology optimization problems. We have de-
veloped two different approaches: a local constraints
formulation and a global constraint formulation based
on the Kreisselmeier-Steinhauser function [16]. Finally,
we present some application examples that compare
the results obtained with the global and the local ap-
proaches.

2 The structural analysis model

2.1 The Structural Analysis Problem

Let Ωo be a domain occupied by a deformed body. Due
to the applied external loads, the initial body is de-
formed to a new one that corresponds to a new de-
formed domain Ω. Thus, every point P o of the initial
domain Ωo is moved into a different position P in the
deformed domain Ω. Let rrrrrrrrrrrrrro and rrrrrrrrrrrrrr be the coordinates
of points P o and P . Thus, the goal is to obtain the
displacements

uuuuuuuuuuuuuu(rrrrrrrrrrrrrro) = rrrrrrrrrrrrrr(rrrrrrrrrrrrrro)− rrrrrrrrrrrrrro, (1)

where rrrrrrrrrrrrrr(rrrrrrrrrrrrrro) are the final coordinates of the point PPPPPPPPPPPPPP o

once the domain is deformed.
Assuming the linear elasticity hypothesis, which im-

plies small displacements and small displacement gra-

dients, the associated strains εεεεεεεεεεεεεε(rrrrrrrrrrrrrro) and stresses σσσσσσσσσσσσσσ(rrrrrrrrrrrrrro)
can be obtained as

εεεεεεεεεεεεεε = LLLLLLLLLLLLLLuuuuuuuuuuuuuu, σσσσσσσσσσσσσσ = DDDDDDDDDDDDDDεεεεεεεεεεεεεε, (2)

where LLLLLLLLLLLLLL is the differential operator that gives the strains
for known values of the displacements (uuuuuuuuuuuuuu) and DDDDDDDDDDDDDD is the
constitutive matrix of the material [10].

On the other hand, let dΩ be the volume of a differ-
ential region in the vicinity of the point P o. By defini-
tion, the volume occupied within the differential region
is dΩ. Therefore, the structural analysis problem can
be written as
Find uuuuuuuuuuuuuu ∈ Hu

such that a(wwwwwwwwwwwwww,uuuuuuuuuuuuuu) = (wwwwwwwwwwwwww, bbbbbbbbbbbbbb)Ωo + (wwwwwwwwwwwwww, tttttttttttttt)Γ o
σ

∀wwwwwwwwwwwwww ∈ Hw

being a(wwwwwwwwwwwwww,uuuuuuuuuuuuuu) =
∫∫∫

Ωo

(LLLLLLLLLLLLLLwwwwwwwwwwwwww)TDDDDDDDDDDDDDD(LLLLLLLLLLLLLLuuuuuuuuuuuuuu) dΩ,

(wwwwwwwwwwwwww, bbbbbbbbbbbbbb)Ωo =
∫∫∫

Ωo

wwwwwwwwwwwwwwT bbbbbbbbbbbbbb dΩ,

(wwwwwwwwwwwwww, tttttttttttttt)Γ o
σ

=
∫∫

Γ o
σ

wwwwwwwwwwwwwwT tttttttttttttt dΓ

(3)

where uuuuuuuuuuuuuu and wwwwwwwwwwwwww are the trial and the test functions re-
spectively. Hu is the subspace of feasible trial functions,
Hw is the subspace of feasible test functions, bbbbbbbbbbbbbb repre-
sents forces per unit of volume in the domain Ωo and tttttttttttttt
represents forces per unit of area on the surface Γ o.

2.2 The Structural Analysis Problem with Relative
Density

Now, let the domain Ωo be occupied by a porous ma-
terial. Let ρ(rrrrrrrrrrrrrro) be the relative density of the material
(0 ≤ ρ(rrrrrrrrrrrrrro) ≤ 1) at point PPPPPPPPPPPPPP o of material coordinates rrrrrrrrrrrrrro.
For a given distribution of (porous) material, defined by
the relative density field ρ(rrrrrrrrrrrrrro), the goal is to compute
the displacements

uuuuuuuuuuuuuu(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ) = rrrrrrrrrrrrrr(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ)− rrrrrrrrrrrrrro. (4)

Let dΩ be the volume of a differential region in the
vicinity of the point P o. By definition, the volume oc-
cupied by the porous material within the differential
region dΩ is ρ(rrrrrrrrrrrrrro)dΩ. Therefore, the structural analy-
sis problem with relative density can be written as [17]

Given ρ(Ωo)

find uuuuuuuuuuuuuu ∈ Hu

such that a(wwwwwwwwwwwwww,uuuuuuuuuuuuuu) = (wwwwwwwwwwwwww, bbbbbbbbbbbbbb)Ωo + (wwwwwwwwwwwwww, tttttttttttttt)Γ o
σ
∀wwwwwwwwwwwwww ∈ Hw

being a(wwwwwwwwwwwwww,uuuuuuuuuuuuuu) =
∫∫∫

Ωo

(LLLLLLLLLLLLLLwwwwwwwwwwwwww)TDDDDDDDDDDDDDD(LLLLLLLLLLLLLLuuuuuuuuuuuuuu) ρ dΩ,

(wwwwwwwwwwwwww, bbbbbbbbbbbbbb)Ωo =
∫∫∫

Ωo

wwwwwwwwwwwwwwT bbbbbbbbbbbbbb ρ dΩ,

(wwwwwwwwwwwwww, tttttttttttttt)Γ o
σ

=
∫∫

Γ o
σ

wwwwwwwwwwwwwwT tttttttttttttt dΓ

(5)
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The modifications required to include the effect of the
relative density in a standard structural FEM formula-
tion only consist of taking into account the effect of the
relative density in the integration. In fact, once the dis-
placements are known, the strain and stress fields are
computed with the same expressions (2). The calcula-
tions required to compute the stresses and strains do
not depend on the material distribution. However, we
must exclude the case in which the relative density is
locally null, since the concepts of displacement, strain
and stress become meaningless.

It is important to remark the physical meaning of
the stress σσσσσσσσσσσσσσ(rrrrrrrrrrrrrro) computed by means of expressions (2):
it represents the homogenized stress tensor of the de-
forming body. However, we recall that in the vicinity
of each point there are probably regions occupied by
material, as well as empty ones. Therefore, if we try to
analyse the internal balance of forces in a finite sub-
domain, we should operate with the so-called “effective
stress”, by multiplying the stress σσσσσσσσσσσσσσ(rrrrrrrrrrrrrro) by the relative
density ρ(rrrrrrrrrrrrrro).

2.3 The Finite Element Numerical Model with
Relative Density

Let ρe be the relative density of element number e,
which is assumed constant within the element. Let ρρρρρρρρρρρρρρ =
{ρe} (e = 1, . . . , Ne) be the vector of relative densities
(design variables of the topology optimization prob-
lem). For a given value of ρρρρρρρρρρρρρρ, the structural analysis
problem requires to obtain the displacements in the dis-
cretized space. Thus,

uuuuuuuuuuuuuuh(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ) = uuuuuuuuuuuuuup(rrrrrrrrrrrrrro) +
N∑

i=1

ΦΦΦΦΦΦΦΦΦΦΦΦΦΦi(rrrrrrrrrrrrrro)ααααααααααααααi(ρρρρρρρρρρρρρρ), (6)

where ααααααααααααααi is the vector of nodal displacements of the
node i. The functions ΦΦΦΦΦΦΦΦΦΦΦΦΦΦ are the shape functions used
to discretize the geometry of the structure and the dis-
placement field when the element formulation is isopara-
metric.

Thus, the goal is to

find αααααααααααααα(ρρρρρρρρρρρρρρ)

such that
N∑

i=1

KKKKKKKKKKKKKKji(ρρρρρρρρρρρρρρ)ααααααααααααααi(ρρρρρρρρρρρρρρ) = ffffffffffffff j(ρρρρρρρρρρρρρρ), j = 1, ..., N,
(7)

where ffffffffffffff j(ρρρρρρρρρρρρρρ) is the vector of external forces.
The required terms of the system (7) are given by

KKKKKKKKKKKKKKji(ρρρρρρρρρρρρρρ) =
Ne∑
e=1

KKKKKKKKKKKKKKe
ji(ρe),

ffffffffffffff j(ρρρρρρρρρρρρρρ) =
∫∫

Γ o
σ

ΦΦΦΦΦΦΦΦΦΦΦΦΦΦT
j tttttttttttttt dΓ +

Ne∑
e=1

ffffffffffffffe
j(ρe),

(8)

being the elemental contributions

KKKKKKKKKKKKKKe
ji(ρe) =

∫∫∫

Ee

(LLLLLLLLLLLLLLΦΦΦΦΦΦΦΦΦΦΦΦΦΦj)TDDDDDDDDDDDDDD(LLLLLLLLLLLLLLΦΦΦΦΦΦΦΦΦΦΦΦΦΦi) ρe dΩ,

ffffffffffffffe
j(ρe) =

∫∫∫

Ee

(
ΦΦΦΦΦΦΦΦΦΦΦΦΦΦT

j bbbbbbbbbbbbbb− (LLLLLLLLLLLLLLΦΦΦΦΦΦΦΦΦΦΦΦΦΦj)TDDDDDDDDDDDDDD(LLLLLLLLLLLLLLuuuuuuuuuuuuuup)
)

ρe dΩ.

(9)

Once the solution αααααααααααααα(ρρρρρρρρρρρρρρ) to problem (7) is found, we can
compute at any arbitrary point rrrrrrrrrrrrrro ∈ Ωo the approxi-
mated values of the displacements according to (6). The
strains and stresses can be obtained as

εεεεεεεεεεεεεεh(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ) = LLLLLLLLLLLLLLuuuuuuuuuuuuuuh(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ), (10)

σσσσσσσσσσσσσσh(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ) = DDDDDDDDDDDDDDεεεεεεεεεεεεεεh(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ). (11)

Notice that these values are still computed in the usual
way although the relative density is being considered.
Therefore, if we wish to adapt an existing FEM nu-
merical model of structural analysis as a component
of a topology optimization system, we only have to
modify the computation of the elemental contributions
(9). Moreover, the required adjustment is quite simple,
since we only need to introduce the relative density in
the integration. Furthermore, this correction is fairly
straightforward, since we assume that the relative den-
sity is constant within each element. Thus, we only have
to multiply the original results by the corresponding
relative density of each element.

In addition, the first order sensitivity analysis of the
elemental contributions (9) (i.e., the first order deriva-
tives of these contributions with respect to the relative
densities of the elements) is immediate. Most of these
derivatives are null, since the contribution of each ele-
ment does not depend on the relative densities of the
other elements. Moreover, the first order derivative of
each contribution with respect to the relative density
of the corresponding element can be easily obtained by
just eliminating the relative density in the integration.
This is equivalent to evaluate each element contribu-
tion type (9) for a value of the relative density ρe = 1.
Consequently, all the second and higher order deriva-
tives of elemental contributions (9) are obviously null.
These facts greatly simplify the sensitivity analysis of
the problem.

We conclude that with the proposed strategy we
do not have to modify the source code at the lower
level for adapting an existing FEM code into a topol-
ogy optimization system. In practice, only slight adjust-
ments must be implemented in the data flow between
the higher level routines. In fact, any conventional code
should contain all the basic tools to perform the re-
quired new computations and the associated sensitivity
analysis.
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3 Minimum weight with stress constraints
formulation

3.1 Optimization Problem

The optimization problem can be formulated from a
generic point of view as
Minimize F (ρρρρρρρρρρρρρρ) = Cost(ρρρρρρρρρρρρρρ)

subject to: gj(ρρρρρρρρρρρρρρ) ≤ 0 j = 1, ..., m

0 < ρmin ≤ ρe ≤ 1, e = 1, ..., Ne

ρmin = 0.001 (usually)

(12)

where F (ρρρρρρρρρρρρρρ) is the objective function and gj(ρρρρρρρρρρρρρρ) are the
stress constraints. The minimum value of the relative
density (ρmin = 0.001) is the most common value in
the bibliography [2,3]. Other values of ρmin could be
considered but they give similar results.

3.2 Statement of the objective function

The objective function can be defined as

F (ρρρρρρρρρρρρρρ) =
Ne∑

i=1

∫

Ωi

(ρi)
1/p

γmat dΩ (13)

where the parameter p is a penalty parameter which
aim is to avoid intermediate densities in the optimized
solution [23,24]. If no penalization is used (p = 1) the
objective function to be minimized is the total weight
of the structure. This is the most common situation,
but some examples with different penalization param-
eter will be also presented in this paper to force 0-1
solutions. Physically, a value of the parameter less than
1 gives preference to the intermediate densities. A value
of the parameter higher than 1 penalizes the interme-
diate densities.

It is very important to remark that the problem
stated according to (12) is highly non-linear. In addi-
tion, it is also non-convex even without using any penal-
ization of the intermediate densities. However, as it can
be observed in the application examples, the solutions
obtained with this formulation are very appropriate and
realistic.

3.3 Statement of the Stress Constraints

The statement of the stress constraints is based on the
values σσσσσσσσσσσσσσh(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ) computed by means of (6), (10) and
(11). These values are used in the local stress con-
straints approach and in the global stress constraint
approach in order to define optimization problems with
suitable and feasible structural solutions. We present
these two different approaches and discuss their advan-
tages and disadvantages.

3.3.1 Local stress constraints

The value of the local constraints approach is computed
by limiting the maximum value of the local stress ob-
tained by means of the Finite Element formulation (6),
(10) and (11). Moreover, the material failure is usu-
ally checked according to stress failure criteria (e.g. Von
Mises criterion). These criteria usually consider a “ref-
erence stress”, based on the homogenized stress tensor,
to test the failure of the material. Thus, the maximum
allowable values of this “reference stress” σ̂(σσσσσσσσσσσσσσh) at each
point rrrrrrrrrrrrrro

j can be considered by introducing the following
inequalities:

gj(ρρρρρρρρρρρρρρ) = σ̂
(
σσσσσσσσσσσσσσh(rrrrrrrrrrrrrro

j , ρρρρρρρρρρρρρρ)
)
− σ̂max ≤ 0, or

gj(ρρρρρρρρρρρρρρ) = σ̂min − σ̂
(
σσσσσσσσσσσσσσh(rrrrrrrrrrrrrro

j , ρρρρρρρρρρρρρρ)
)
≤ 0,

(14)

where σ̂max and σ̂min are the corresponding upper and
lower limits of the stress failure criterion used.

Consequently, this approach requires to manage a
huge number of highly non-linear constraints, which
deals with a very complicated optimization problem.
We have solved this optimization problem by using a
Sequential Linear Programming algorithm (based on
the Simplex Method) to obtain the search direction
and a Quadratic Line Search algorithm to obtain the
advance factor [19,21]. Thus, all the first order deriva-
tives of the objective function and of the constraints
must be computed in order to obtain the search direc-
tion. In addition, the first and the second order direc-
tional derivatives of the objective function and of the
constraints must be computed in order to obtain the
advance factor.

The required Sensitivity Analysis is developed fol-
lowing the general formulation proposed in [20]. The
full set of first order derivatives of the stress constraints
are computed by means of the adjoint state method,
while the first and second order directional derivatives
are computed by means of the direct differentiation
method. In both cases, the implemented procedures
are exact from the analytical point of view (i.e., no
finite difference approximations are performed). Fur-
thermore, both the computing time and the required
amount of data storage are minimized. In practice, most
of the computing effort and the amount of data storage
involved in the sensitivity analysis are devoted to com-
puting the full set of first order derivatives of the stress
constraints.

On the other hand, the stress constraints approaches
usually present the so called “singularity phenomena”.
The optimum solution is a singular point, from a the-
oretical point of view, of the feasible solutions [5,11].
Cheng and Jiang [4] explained the nature of this phe-
nomenon, which is due to the discontinuous nature of



6

the stresses when the density tends to zero. The stress
constraints become meaningless when the relative den-
sity is exactly null. However, the stress constraints may
become violated when the relative density tends to zero.
Numerical optimization algorithms are not able to de-
tect this fact and, consequently, the optimal solution
may not be reached. They do not remove all the mate-
rial (although this may be the optimum solution) be-
cause the stress constraint may become violated as the
relative density gets closer to zero. Thus, the stress con-
straints present a discontinuity at zero density.

This fact can be observed in some theoretical truss
optimization problems such as that proposed by Cheng
and Guo [5,12]. Furthermore, it has been demonstrated
that singularity phenomena must be also considered in
other fields of structural optimization [6,23].

For example, this phenomenon happens when one
section of a structure subjected to the maximum bend-
ing moment increases its height by adding porous ma-
terial in the maximum stress edges (figure 1). When
the relative density of this new added material is de-
creased the stress becomes higher than the maximum
allowable. However, when the material is completely re-
moved the solution becomes feasible again because the
constraint is removed. The optimum is to remove all
the added material but the numerical algorithm is not
able to detect this singularity [23].

Fig. 1 Rectangular beam subjected to horizontal bending mo-
ment [23].

Consequently, the formulation needs to be relaxed
in order to avoid this undesiderable situation. In this
paper, we propose a different formulation based on the
contributions of Duysinx and Cheng [5,6] and Navar-

rina [22]. Following these ideas, we propose the follow-
ing statement of the local stress constraints:

gj(ρρρρρρρρρρρρρρ) =
[
σ̂
(
σσσσσσσσσσσσσσh(rrrrrrrrrrrrrro

j , ρρρρρρρρρρρρρρ)
)
− σ̂max

]
ρ(rrrrrrrrrrrrrro

j)
q ≤ 0, or

gj(ρρρρρρρρρρρρρρ) =
[
σ̂min − σ̂

(
σσσσσσσσσσσσσσh(rrrrrrrrrrrrrro

j , ρρρρρρρρρρρρρρ)
)]

ρ(rrrrrrrrrrrrrro
j)

q ≤ 0,
(15)

where q is an exponent that takes the value q = 0 if
constraints are imposed on the homogenized stress ten-
sor or q = 1 if constraints are imposed on the effective
stress tensor.

If the material being used presents an equal response
under tensile and compressive forces (e.g. steel) the Von
Mises failure criterion can be used. Thus, the stress
constraints (15) can be reduced to only one stress con-
straint. This stress constraint can be formulated as

gj(ρρρρρρρρρρρρρρ) =
[
σ̂
(
σσσσσσσσσσσσσσh(rrrrrrrrrrrrrro

j , ρρρρρρρρρρρρρρ)
)
− σ̂max

]
ρ(rrrrrrrrrrrrrro

j)
q ≤ 0. (16)

A more general formulation to impose local stress
constraints which avoids singularity phenomena can be
obtained by relaxing the formulation according to [6].
Thus,

gj(ρρρρρρρρρρρρρρ) =
[
σ̂
(
σσσσσσσσσσσσσσh(rrrrrrrrrrrrrro

j , ρρρρρρρρρρρρρρ)
)
− σ̂max ϕj

]
ρ(rrrrrrrrrrrrrro

j)
q ≤ 0, (17)

where ϕj is the “stress relaxation coefficient” obtained
by:

ϕj = 1− ε +
ε

ρ(rrrrrrrrrrrrrro
j)

. (18)

The “relaxation parameter” ε usually varies from 0.001
to 0.1, and its value is reduced when the solution gets
closer the optimum during the optimization process.
The effect of the “stress relaxation coefficient” can be
observed in figure 2. As we have mentioned before, the

Fig. 2 Stress relaxation coefficient (ϕj)

exponent q permits the multiplication of the constraint
by the relative density in order to avoid some singular-
ities. This topic has been extensively analysed by the
authors and it can be found in [23].
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On the other hand, the ε-relaxation introduces some
unexpected effects in the formulation. Thus, Stolpe and
Svanberg explained that the trajectories to the opti-
mum produced by the relaxed approach are not unique
and they depend on the initial design [31]. This fact
makes the problem non-convex and much more compli-
cated. However, the solutions obtained with this formu-
lation are suitable if appropriate values of the “relax-
ation parameter” ε are used.

Now we can study this singularity phenomenon by
means of the relaxed formulation proposed in (17) and
(18).

Figures 3 and 4 show the effect of using an exponent
q = 0 and q = 1 respectively. These figures have been
obtained by using a parameter η = 0.1 (see figure 1).
In addition, a “stress relaxation coefficient” (ϕj) is also
considered to test different possibilities of the best value
of these coefficients.

Fig. 3 Stress constraint (17) with q = 0.

Fig. 4 Stress constraint (17) with q = 1.

The two possibilities should work properly and usu-
ally produce similar solutions. However, in some specific

situations, we have observed that the exponent q = 1
produces better results.

3.3.2 Global stress constraint

The global stress constraint approach is a relatively re-
cent field in topology optimization of continuum struc-
tures. This approach implies the substitution of all the
local constraints by only one constraint that includes
all of them. This approach presents obvious advantages
since the optimization problem is much easier to solve
compared with the local approach because only one
constraint has to be considered. In addition, the cal-
culus of the sensitivity analysis requires much smaller
computational effort. Thus, the data storage amount
and the computing time are decreased.

The keystone of this approach is the global function
that aggregates all the local constraints into one single
global constraint. In this paper we propose a global for-
mulation based on the Kreisselmeier-Steinhauser func-
tion as it was used by Martins and Poon [16] in aero-
structural optimization. However, we have introduced
some simple modifications to solve a number of numer-
ical effects observed from the original one. Thus, the
proposed global function of constraints aggregation can
be formulated as

GKS (ρρρρρρρρρρρρρρ) =
1
µ

ln




Ne∑

j=1

e
µ

(
σ̂j − σ̂max

σ̂max

)
 (19)

where σ̂j = σ̂j

(
σσσσσσσσσσσσσσh(rrrrrrrrrrrrrrj

o, ρρρρρρρρρρρρρρ)
)

are the local stresses consid-
ered in the previous formulation and σ̂max is the maxi-
mum allowable stress according to the failure criterion
considered. Thus, the parameter µ does not depend on
the stress units and the exponent of the global func-
tion becomes dimensionless. In addition, this modifi-
cation also avoids the numerical overflow because the
exponent does not take too large values when the local
constraints become violated.

The parameter µ is just a tuning coefficient which
intends to penalize the failure to satisfy the local con-
straints. In theory, global function (19) tends to the
value maxj{(σ̂j−σ̂max)/σ̂max} as the parameter µ tends
to infinity. This is the key idea that allows us to ag-
gregate all the local constraints into one single global
constraint. Therefore, the global constraint will not ad-
equately represent the corresponding whole set of lo-
cal constraints if the value of µ is not large enough.
However, when the value of µ is too large the problem
becomes unstable due to the increasing non-linearity
of the global function and the intrinsic numerical inac-
curacy of the involved computations. In addition, some
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undesirable computational conditions (such as overflow)
are more likely to occur.

The maximum value of the global function can be
obtained by taking the maximum value of all the local
constraints (σ̂j − σ̂max = 0, j = 1, ..., Ne). Thus,

GKSmax
=

1
µ

ln(Ne), (20)

where Ne is the total number of local stress constraints
considered. Then, the global constraint that substitutes
all the local constraints type (16) can be expressed as

GKS (ρρρρρρρρρρρρρρ)−GKSmax ≤ 0, (21)

which is equivalent (in theory) to the whole set of lo-
cal constraints type (16) as the parameter µ tends to
infinity. Thus, for large enough values of the parameter
µ, global constraint (21) should perform adequately by
replacing the whole set of local constraints.

In addition, this formulation can be corrected to
avoid the singularity phenomena explained in the previ-
ous section. Furthermore, only simple modifications in
the calculus of the global function and in the sensitiv-
ity analysis should be carried out. Thus, the singularity
phenomena in the global stress function can be avoided
by redefining (19) as follows:

GKS (ρρρρρρρρρρρρρρ) =
1
µ

ln




Ne∑

j=1

e
µ

(
σ̂j

σ̂max ϕj
− 1

)
 (22)

where ϕj has been previously defined in (18). The global
formulation is based on the relaxation of the local con-
straints contributions to the aggregation function. Thus,
the relaxation of the global function has been taken into
account by using the relaxed approach of the local stress
constraints proposed.

Now, problem (12) is stated as a constrained opti-
mization problem with a single highly non-linear con-
straint. The objective function is the weight or the cost
of the structure (13). In addition, a penalization factor
such as that proposed in (13) is also considered accord-
ing to the value of the intermediate density penalization
parameter.

Consequently, we have turned our attention to “bar-
rier function” type optimization algorithms. We have
tested different types of “barrier functions” (logarith-
mic and inverse) obtaining similar results.

The resulting problem can be solved by using uncon-
strained optimization algorithms. However, it is very
important to take into account the non-linearity of the
global function and, of course, the non-linearity of the
“inverse barrier function” (φ). Due to this fact, the most
appropriate technique to solve this problem would be
a second order Newton or Quasi-Newton type method.

However, these techniques require to store an approxi-
mation to the Hessian matrix. In practice, this approx-
imation is not advisable in topology optimization due
to the large number of design variables involved.

The iterative modification of the solution is obtained
in two steps. The first step finds the direction of mod-
ification of the design. The second step searches the
advance factor in the search direction previously ob-
tained.

We use the conjugate gradient method proposed by
Fletcher-Reeves [9] in order to obtain the search direc-
tion because it only requires to store a small number of
values.

Once the search direction has been obtained, the ad-
vance factor is computed by using second order direc-
tional derivatives of the objective function and that of
the constraints (such as that proposed in [20]) in order
to avoid the “zig-zag” phenomenon near the optimum
solution.

4 Numerical examples

We present some examples with different structural con-
figurations. The proposed examples are solved with the
local constraints approach and the global constraints
approach. Then, the results obtained with both formu-
lations are compared.

The proposed examples herein are two dimensional
structures solved in plane stress under different load
conditions and support configurations. However, we draw
three dimensional structures by assuming that the rela-
tive density is the thickness of each element. This is not
strictly true because the physical meaning of the rela-
tive density is not the thickness. The relative density
means the material state of each element of the mesh.
However, we represent the solution with this assump-
tion because it is easier to visualize a three dimensional
figure than a two dimensional one.

4.1 Local constraints formulation

We present three examples solved with the local con-
straints formulation. Each one of these examples has
been solved with different values of the coefficients (ε, q

and p) presented in the formulation to show their effect.
The problems proposed are two-dimensional structures
solved in plane stress with 1 m of thickness.

4.1.1 L-shape beam

The first example is a L-shape beam 1 m long and 1
m high (figure 5). This beam is supported along the
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upper edge. A vertical force of 4 103 kN is applied at
the mid point of the right vertical edge distributed on
two elements. The thickness of the structure is 1 m. In
addition, self weight is also considered.

The beam is made of steel with an elastic limit of
σe=230 MPa and a Young Module of Ee = 2.1 105 MPa.
The Poisson value is ν = 0.3 and the mass density is
γmat = 76.5 kN/m3.

The finite element mesh consists of 1024 quadrilat-
eral elements.

Fig. 5 L-shape beam (units in meters).

Figure 6 shows the solution of the L-shape beam
without any penalization of the intermediate densities.
As can be observed, extensive areas with intermediate
densities appear without penalization. However, if the
intermediate densities are penalized, the final design
tends to solid-void configurations. This fact can be ob-
served in figure 7.

This solution (figure 7) is very similar to the solu-
tions obtained by Duysinx and Bendsøe [6] or Pereira
et Al. [25]. In addition, it is also similar to the ana-
lytical solution obtained by Lewinsky et al. [15] for L-
shape beams. It is important to remark that the total
weight of the solutions obtained by penalizing inter-
mediate densities (figure 7) is slightly higher than the
total weight of the solution without penalization (figure
6) because of the dependency of the objective function
on the penalization parameter.

4.1.2 Large beam with small height

The second example (figure 9) is a 40 m long and 1
m high beam. The horizontal deformation is not re-
stricted. A vertical force of 104 kN is applied at the
center of the left span distributed onto the upper edges
of two contiguous elements. The material has the same
properties as in example 1 and self weight is also consid-
ered. The finite element mesh consists of 72×15 = 1080
elements and the thickness is 1 m. In addition, no pe-
nalization of the intermediate densities has been used.

Fig. 6 Local approach with q=1, ε = 0.01 and p = 1
(F=18.0% Fo)

This example is very interesting because the solutions
presented in figure 10 without any relaxation (ε = 0)
and figure 11 with ε = 0.005 do not agree with the
solutions obtained by means of maximum stiffness for-
mulations. This fact can be easily checked by solving
the same problem with the interactive application of
the TOPOPT homepage [30]

The solutions obtained with maximum stiffness ap-
proaches change significantly with the value of the con-
straint (the maximum quantity of material to be used).
If the maximum quantity of material to be used is
smaller than 50 % of the material available in the do-
main, the maximum stiffness solution corresponds to
a material distribution in the left span. In this situ-
ation the left span is full of material, while the right
one is void. However, this solution is unfeasible because
in some points the material failure stress is exceeded
according to the loads applied and the material prop-
erties.

Furthermore, if the maximum quantity of material
to be distributed is greater than 50 % of the maximum
possible in the domain of the structure, the maximum
stiffness solution corresponds to a material distribution
in the two spans. In this situation, the left span (50 % of
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Fig. 7 Local approach with q=1, ε = 0.01 and p = 4
(F=19.2% Fo)

Fig. 8 Normalized stress state of the L-shape beam solution with
the local approach (p = 4, q = 1, ε = 0.01)

the maximum volume of the structure) is almost full of
material and the rest is distributed into the right one.

Thus, in this formulation the value of the material
constraint influences considerably on the final topol-
ogy of the structure although the applied loads do not
change. The solution obtained with the minimum weight
formulation with stress constraints presents a material
distribution in both spans to avoid the structural fail-
ure. If no material is distributed in the right span, the

Fig. 9 Large beam with small height (units in meters)

Fig. 10 Local approach solution with q=1, ε = 0.000, p = 1
(F=23.5% Fo)

Fig. 11 Local approach solution with q=1, ε = 0.005, p = 1
(F=22.8% Fo)

maximum stress does not satisfy the material failure
criterion and, consequently, the solution is not feasi-
ble. Thus, the minimum weight with stress constraints
formulation produces adequate material distributions
and guarantees the feasibility of the solution. In addi-
tion, this solution varies with the applied loads and the
material failure stress, which is more realistic than a
volume constraint.

4.1.3 Beam with large height

The third example is a 40 m long and 15 m high beam
(figure 12). The external load is a force of 6 105 kN
distributed onto the upper edges of two contiguous el-
ements and applied at a distance of 1/3 of the total
length from the left support. In addition, self weight is
also considered. The material has the same properties
as in example 1. We have used a mesh with 30× 15 =
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450 rectangular elements. In addition, no penalization
of the intermediate densities has been used.

Figure 13 shows the solution to this example by us-
ing an exponent q=1 and without any relaxation (ε =
0). Figure 14 shows the solution to this example with a
relaxation parameter ε = 0.005 and q = 1.

As can be seen, the results obtained using our ap-
proach (MWSC) are the expected ones from an engi-
neering point of view since they are very similar to an
arch (figures 13 and 14).

Fig. 12 Beam with large height (units in meters)

Fig. 13 Local approach solution with q=1, ε = 0.000, p = 1
(F=16.7% Fo)

This example shows a high reduction of the objec-
tive function because most of the elements of the mesh
are void at the end of the optimization process. If we
take into account this fact we can refine the mesh by
dividing each element into four new elements and elim-
inating all the voids. With this refining process, it is
possible to compute the same problem by using a small

Fig. 14 Local approach solution with q=1, ε = 0.005, p = 1
(F=16.1% Fo)

Fig. 15 Normalized stress state of the beam with large height
solution with the local approach (q = 1, p = 1, ε = 0.005)

number of elements and constraints. Consequently, the
new initial solution is shown in figure 16 and the new
material distribution is shown in figure 17. It is impor-
tant to remark the huge reduction of computing effort
since only 808 elements are required to solve the prob-
lem. However, if the void elements are not removed,
1800 elements and constraints are required.

Fig. 16 Initial solution of the refined mesh (q=1)
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Fig. 17 Local approach solution of the refined mesh with q=1,
ε = 0.005 (F=17.0% Fo)

In table 1 the stress state is analysed via the value
of the most violated constraint of each example. It can
be observed that, in general, the stress constraints are
not violated and the most violated constraint is only
slightly exceeded. This fact is very important because
it guarantees the feasibility of the obtained solution.
In figures 8 and 15, the stress state of all the elements
can be checked. We have used normalized stresses by
dividing each stress by the maximum allowable stress
in order to simplify the pictures.

Table 1 Summary of the local approach examples

q ε p Niter
F
Fo

max

{
Gj

σ̂j

}

Fig. 6 1 0.010 1 130 18.00 % 2.32 %
Fig. 7 1 0.010 4 150 19.20 % 1.45 %

Fig. 10 1 0.000 1 150 23.50 % 1.00 %
Fig. 11 1 0.005 1 150 22.80 % 0.64 %

Fig. 13 1 0.000 1 100 16.70 % 6.48 %
Fig. 14 1 0.005 1 150 16.10 % 1.85 %
Fig. 17 1 0.005 1 111 17.00 % 4.30 %

4.2 Global constraint formulation

In this section, we show some of the previous exam-
ples solved with the global approach to compare the
obtained results with both formulations (the local and
the global). The global constraint formulation aggre-
gates all the local constraints with a global function

that penalizes the most violated constraints in order to
make them feasible. Thus, the global constraints formu-
lation is less strict than the local formulation because it
does not guarantee the feasibility of the solution from
the local constraints point of view. In addition, the local
constraints formulation requires less tuning parameters.

In general, the solutions obtained with both formu-
lations (local and global) are very similar, although they
are not identical, due to the aggregation of the stress
constraints.

However, when the number of design variables (and
constraints) increases, the computing time of the local
approach becomes prohibitive. On the other hand, the
computing time and the data storage amount required
by the global approach are much smaller.

Thus, it is more appropriate to use the global con-
straints approach when the number of elements (and
constraints) is very large. The computing effort required
by the local approach becomes prohibitive and even un-
affordable when the refinement of the mesh is increased.
On the other hand, the local approach imposes a more
strict control over stress constraints and gives better re-
sults. Consequently, the refinement technique proposed
in the third example of the local constraints approach
is a very good solution to reduce the size of the prob-
lem without loosing precision. This size reduction al-
lows us to decrease much of the computing time and
the amount of data storage when the local constraints
approach is used.

4.2.1 L-shape beam

This example solves the same problem proposed in fig-
ure 5. We use the material properties and the dimen-
sions proposed in the local approach solution. If we
compare the solutions obtained by means of the local
approach (figures 6 and 7) and the solutions obtained by
means of the global approach (figures 18 and 20), the
results are very similar with insignificant differences.
The final topology of the structure is essentially equiv-
alent. In addition, the weight reduction is also similar.

4.3 Large beam with small height

This example solves the large beam with small height
proposed in figure 9. Thus, we use the geometry, the
material properties and the loads proposed in the local
approach.

The solutions obtained by means of the global con-
straint formulation (figures 22 and 23) and the local
constraints formulation (figures 10 and 11) are very sim-
ilar. However, the weight reduction obtained with the
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Fig. 18 Global approach with µ=20, p=1, ε=0.01 (F=15.9% Fo)

Fig. 19 Normalized stress state of the L-shape beam solution
with the global approach (p=1, ε=0.01)

global approach is slightly greater than that obtained
with the local approach due to the aggregation of the
constraints.

4.3.1 Beam with large height

This example solves the beam with large height pro-
posed in figure 12. Thus, we use the geometry, the ma-
terial properties and the applied loads proposed in the

Fig. 20 Global approach with µ=20, p=4, ε=0.01 (F=17,6% Fo)

Fig. 21 Normalized stress state of the L-shape beam solution
with the global approach (p=4, ε=0.01)

local approach. The Finite Element mesh has 30×15 =
450 rectangular elements.

The solutions obtained by means of the global con-
straint formulation (figures 24 and 26) and the local
constraints formulation (figures 13 and 14) are simi-
lar. The structural topology is equivalent but the global
approach does not strictly satisfy the local stress con-
straints. The weight reduction is also similar for both
formulations, but it is slightly greater in the global
approach solution due to the aggregation of the con-
straints.
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Fig. 22 Global approach with µ=20, p=1, ε=0.02 (F=17.0% Fo)

Fig. 23 Global approach with µ=20, p=4, ε=0.02 (F=17.5% Fo)

Fig. 24 Global approach with µ=10, p=1, ε=0.005
(F=18,0% Fo)

Table 2 shows the results obtained with the global
approach for different values of the most important pa-
rameters. In addition, it is possible to compare the nu-
merical results of the two approaches, local and global,
by comparing the results of the tables 1 and 2. As can be
observed in table 2, the local stress constraints are more

Fig. 25 Normalized stress state of the beam with large height
solution with the global approach (p = 1, ε=0.005)

violated when the global constraints approach is used.
This fact is easily explained due to the aggregation of
all the local constraints and the corresponding loss of
accuracy. However, the obtained results seem to be cor-
rect because the topologies obtained via the global con-
straints approach are quite similar to the ones obtained
via the local approach. In addition, the stress state can
improve if the parameter µ is increased at the end of
the optimization process. This modification makes the
problem even more non-linear but it also makes the so-
lution more feasible from a local stress constraints point
of view.

Fig. 26 Global approach with µ=10, p=4, ε=0.005
(F=18,3% Fo)

Fig. 27 Normalized stress state of the beam with large height
solution with the global approach (p = 4, ε = 0.005)



15

Table 2 Summary of the global approach examples

µ ε p Niter
F
Fo

max

{
Gj

σ̂j

}

Fig. 18 20 0.010 1 351 15.90 % 13.98 %
Fig. 20 20 0.010 4 593 17.60 % 9.22 %

Fig. 22 20 0.020 1 453 17.00 % 13.35 %
Fig. 23 20 0.020 4 345 17.50 % 11.61 %

Fig. 24 10 0.005 1 200 20.29 % 1.13 %
Fig. 26 10 0.005 4 200 18.30 % 0.52 %

5 Conclusions

We have presented two different approaches to solve
minimum weight structural topology optimization prob-
lems with stress constraints: the local constraints ap-
proach and the global constraints approach.

In both cases, the structural analysis formulation
is based on a conventional FEM approach with simple
modifications.

In the local constraints approach, a constraint is im-
posed at a given point within each element. This gives
rise to an optimization problem involving a very large
number of highly non-linear constraints. In addition, a
relaxation technique is presented in an attempt to avoid
the singularity phenomena.

The global constraints approach is based on the
function proposed by Kreisselmeier and Steinhauser [16].
This function aggregates all the local constraints and
highly penalizes the most violated ones. In addition,
this formulation permits the consideration of a relaxed
version of the constraint in a similar way as we proposed
for the local constraints approach.

The presented optimization approach does not re-
quire stabilization techniques. When the local formu-
lation is used, no artificial parameters are required. In
the global constraints approach, it is necessary to use
some artificial coefficients with a clear physical interpre-
tation. Thus, it is very easy to understand the meaning
of these coefficients and their best values to use. Inter-
mediate densities are not usually penalized. However,
when the intermediate densities are penalized, the so-
lutions become truss like structures as it was expected.

The objective function and the constraints have a
clear physical interpretation from an engineering point
of view. In addition, another kind of constraints can
be used (displacements, vibration frequencies) and sev-
eral load cases can be analysed simultaneously with this
formulation.

The proposed formulation is very robust, especially
when the local stress constraints approach is consid-
ered. However, this approach imposes a large number of

non-linear constraints and, consequently, requires large
data storage and large computing time. The global ap-
proach loses some control over the local constraints.
However, it allows us to consider more refined meshes
with a large number of elements.
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