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Abstract

Topology optimization of continuum structures is a relatively new branch of the structural
optimization field. Since the basic principles were first proposed by Bendsøe and Kikuchi in
1988, most of the work has been dedicated to the so-called maximum stiffness (or minimum
compliance) formulations. However, since a few years different approaches have been proposed
in terms of minimum weight with stress (and/or displacement) constraints.

These formulations give rise to more complex mathematical programming problems, since a
large number of highly non-linear (local) constraints must be taken into account. In an attempt
to reduce the computational requirements, in this paper, we propose different alternatives to con-
sider stress constraints and some ideas about the numerical implementation of these algorithms.
Finally, we present some application examples.
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1. Introduction

Topology optimization of structures is a relatively recent discipline in the field of structural
optimization. Since the first model was introduced a lot of effort has been dedicated to deal with
this problem. However, most of the works about this topic has been driven to maximum stiffness
formulations due to computational reasons, among other considerations. More recently, different
approaches with stress constraints have been proposed due to the important advantages that they
offer (avoids checkerboard solutions, guarantees the feasibility of the solution, ...). However,
the computational requirements are more restrictive in these formulations since the underlying
optimization problem is much more complicated.

In this paper we present and compare three different approaches of the stress constraints for
the topology optimization of structures problem: the local approach, the global approach and
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the block aggregated approach. We also introduce some important considerations in order to
reduce their computational requirements, and we discuss some theoretical aspects like the mesh
dependency or the singularity phenomena.

2. Topology optimization problem

The minimum weight with stress constraints topology optimization problem can be written,
according to [1], as:

Find ρρρ = {ρe}, e = 1, . . . ,Ne

that minimizes F(ρρρ)
verifying g j(ρρρ) ≤ 0, j = 1, . . . ,m

0 < ρmin ≤ ρe ≤ 1, e = 1, . . . ,Ne

(1)

where the design variable ρe is the relative density of element e (assumed uniform within the
element), F(ρρρ) is the objective function and g j are the stress constraints of the problem. Ne is the
total number of elements in the mesh and m is the number of constraints imposed. The value of
ρmin is slightly higher than zero to avoid numerical difficulties since the stiffness matrix would
become singular. The model of microstructure used is equivalent to the SIMP model (Solid
Isotropic Material with Penalty) but without any penalization (see [1]). The penalization of the
intermediate densities is included in the objective function as

F(ρρρ) =

Ne∑
e=1

(ρe)
1
p

∫
Ωe

γmat dΩ, (2)

where Ωe is the domain of element e, γmat is the density of the material and p ≥ 1 is the penal-
ization parameter of the intermediate densities used to favor a mainly binary (0-1) distribution of
material [1].

3. Stress constraints

In order to consider stress constraints we propose three different formulations: the local
approach, the global approach and the block aggregated approach. The local approach imposes
one stress constraint in the central point of each element of the mesh [1, 2, 3, 4, 5]. This local
stress constraint can be defined as

ge(ρρρ) =

[
σ̂
(
σσσh

e(ρρρ)
)
− σ̂max ϕe

]
(ρe)q ≤ 0 being ϕe = 1 − ε +

ε

ρe
, (3)

where ge is the stress constraint of element e and σ̂ is the reference stress used (usually the Von
Mises criterion) obtained by means of the calculated stress tensor σσσh

e in the central point of the
element. In order to avoid singularity phenomena when the relative density tends to zero, this
constraint has been relaxed by using the function ϕe [2, 6]. The “relaxation parameter” ε usually
takes values between 0.001 and 0.1. In addition, the exponent q allows to deal with constraints
imposed on the homogenized stress tensor (when q = 0) or with constraints imposed on the
effective stress tensor (when q = 1). According to [1] and [3], the use of effective stress reports
important advantages since it reduces the non-linearity of the stress constraints when the relative
density tends to zero.
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The local approach of stress constraints usually requires to impose a high number of con-
straints due to the large number of elements (and design variables) involved. Consequently, this
approach requires very large computing resources. Due to this fact, several alternative formula-
tions have been developed in order to reduce the computing effort required.

We propose to use a global function that aggregates the effect of all the local constraints [3].
This global function was first proposed by Kreisselmeier-Steinhauser (and later used in [7], for
example). Thus, the global constraint can be defined as

GKS (ρρρ) =

1
µ

ln

 Ne∑
e=1

e µ(σ̂∗e − 1)
 − 1

µ
ln(Ne)

 ≤ 0 (4)

being

σ̂∗e =
σ̂
(
σσσh

e(ρρρ)
)

σ̂max ϕe
, (5)

where µ is the aggregation parameter and it usually takes values between 15 and 40 [3, 5]. Values
of µ smaller than 15 allows an excessive violation of the local constraints and, on the other hand,
values of µ higher than 40 produces a highly non-linear function. Ne is the number of stress
constraints aggregated in the global function.

This approach reduces enormously the computing effort required but it also leads to a loss of
information in the sensitivity analysis due to the constraints aggregation.

For this reason, we also propose a different strategy that establishes groups of elements that
we call blocks (figure 1). Each block contains approximately an equal number of elements.

Figure 1: Example of block definition

The main idea of this approach is to impose one global constraint over the elements of each
block. The global function used is the KS function proposed in (4). Thus,

Gb
KS (ρρρ) =

1
µ

ln

∑
e∈Bb

e µ(σ̂∗e − 1)
 − 1

µ
ln(Nb

e )

 ≤ 0, (6)

where Nb
e is the number of elements aggregated in block b and Bb is the set of elements in block

b.
This approach allows to define the number of blocks to use and consequently the number of

stress constraints. Thus, this formulation is more general than the local one or the global one and
includes them as a particular case [5, 8].
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The number of blocks used and the shape of the blocks are the most important features of
this formulation. However, we have observed in practice that the shape of the blocks does not
have a considerable influence on the final solution. The number of blocks and the aggregation
parameter are much more relevant.

In the application examples presented in this paper, the elements of each block present cor-
relative numbers in the finite element mesh. This block definition algorithm usually produces
deformed long blocks for the most usual finite element meshes used in topology optimization of
structures. More compact procedures for the block definition (like the observed in figure 1) could
lead to a more efficient problem. However, as it was mentioned before the shape of the blocks is
not a critical issue.

4. Mesh dependency

The most usual formulations in topology optimization are subjected to mesh dependency phe-
nomena. The origin of these phenomena is based on the fact that the original discrete statement
is ill-posed. This problem is partially overcome by using a porous material with a predefined
microstructure of material [1]. The most usual microstructure of material is the SIMP model
(Solid Isotropic Material with Penalty). However, the use of the SIMP model does not guarantee
the mesh independency. In maximum stiffness formulations, mesh dependency phenomena are
directly associated to checkerboard layouts since the refinement of solutions with checkerboard
distributions of material artificially increases the stiffness of the solutions. Thus, the refinement
of the mesh increases the stiffness of the solution although the material distribution does not
change substantially.

Minimum weight with stress constraints approaches (like the proposed in this paper) avoid
checkerboard layouts due to the stress constraints and consequently mesh dependency phenom-
ena are also removed. However, the refinement of the mesh usually produces more complicated
distributions of material in local areas of the domain. These distributions slightly reduce the
objective function but increases enormously the complexity of the solution. Consequently, these
solutions are unwanted in practice and it is necessary to introduce some modifications to obtain
solutions with a more reduced number of elements (trusses).

The most usual techniques developed to deal with the mesh dependency phenomena are, ob-
viously, associated to maximum stiffness formulations. In order to avoid these mesh dependency
phenomena, several procedures have been proposed: image filtering techniques [9], constraints
over the gradient of the design variables [10], perimeter constraints [11], ... All these techniques
perform well-posed formulations for the maximum stiffness topology optimization problem.

In this paper we introduce a penalization on the perimeter of the structure in order to reduce
the complexity of the optimum solutions. Thus, the influence of the perimeter is included as a
penalization in the objective function defined in section 2. The perimeter function presented is
based on the total variation function (TV) proposed by Haber, et al. [11]:

TV(ρ) =

∫
Ω\ΓJ

‖∇ρ‖ dΩ +

∫
ΓJ

|< ρ >| dΓJ (7)

where Ω =
⋃
α Ωα being Ωα the set of disjointed regions (finite elements) that defines the

whole structure domain Ω. The expression |< ρ >| indicates the absolute difference of relative
density between two neighbour disjunct regions Ωα (finite elements).
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If we impose that the relative density is constant for each element, the first term of equation
(7) is null and the objective function of the topology optimization problem can be defined as:

F =

Ne∑
i=1

∫
Ωi

(ρi)1/pdΩi + η
∑
ΓJ

|< ρ >| LJ (8)

where LJ is the length of the frontier between two contiguous elements and η is the weight
factor between the cost of the structure and the perimeter. This weight factor can be determined
by taking into account the values of the objective function and the perimeter. This factor is
determined as a reduced percentage of the relation between the initial weight of the structure
and the initial perimeter. This percentage usually varies from 1 % to 5 %. High values of
this percentage avoids the generation of trusses in the optimal solution. Thus, great areas with
intermediate densities appear. On the other hand, low values introduce an insignificant effect of
the perimeter penalization.

5. Optimization algorithm

According to the approaches introduced in the previous section, the topology optimization
of structures with stress constraints leads to mathematical programming problems type (1) with
a large number of highly non-linear constraints type (3), (4) or (6) and a non linear objective
function. An improved SLP algorithm with quadratic line-search seems to be a right choice to
solve this kind of problems [1, 4, 12]. Thus, the linear approximation to problem (1) is stated
(with additional side constraints) and solved at each iteration by means of the Simplex method
[13]. This algorithm has demonstrated to work properly even if the global approach is used (only
one constraint) [14]. The inactive constraints are disregarded, with the aim of saving computa-
tional resources. The required sensitivity analysis can be computed analytically. Full set of first
order derivatives of the stress constraints are obtained via the adjoint variable method in order to
reduce the computational effort. These derivatives are involved in the calculation of the search
direction by means of the Simplex Algorithm. However, the second order directional derivatives
of the stress constraints are computed analytically via a direct differentiation technique [5]. With
this procedure, directional derivatives of all the stress constraints can be obtained although the
full set of first order derivatives has not been calculated. Directional derivatives are required to
develop a directional second order Taylor expansion used in the Quadratic Line Search.

6. Parallel computing

The computational effort required to solve the optimization problem proposed in [1] means
an important limitation to this technique nowadays. However, some computational performances
can be developed in order to reduce the computing time.

In section 5 some fundamental aspects about sensitivity analysis have been introduced in
order to reduce the computational effort required. However, a better performance of this method-
ology can be obtained by computing the required derivatives in parallel. The number of con-
straints is usually very large for the local approach and the computation of the full set of first
order derivatives of each stress constraint can be obtained separately. Thus, the computation of
the first order stress sensitivities can be done in parallel by using all the available processors.

The parallelization of the full first order sensitivity analysis produces a very good speed-
up for the local approach of stress constraints, reaching almost the maximum theoretical value.
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However, to obtain an adequate performance of the whole process it is also necessary to paral-
lelize the optimization algorithm.

The Simplex algorithm is an iterative procedure and, consequently, the parallelization of the
whole process is not possible. On the other hand, the modification of the matrix of the problem at
each inner iteration usually requires more than 95 % of the total computing time of the algorithm
and can be easily parallelized. As it was expected, the speed-up of this algorithm is worse than
the one obtained for the sensitivity analysis. Figure 2 shows the total speed-up obtained for the
cantilever beam example [15] with 7200 elements and 7200 stress constraints by using the local
approach. The parallel code was developed by using OpenMP directives in a Fortran source
code. The calculations were carried out in a computing node with four dual core processors.
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Figure 2: Total speed-up

7. Application examples

In this section, we present two structural problems frequently analyzed in topology opti-
mization: the Michell beam with a centered load and the MBB beam. These examples are 2D
structures in plane stress but we show three dimensional figures by assuming the relative density
to be the thickness to better understand the solutions obtained.

7.1. Michell beam with a central force
The first example corresponds to the topology optimization of the Michell beam with a central

load. Only the right half of the structure is analyzed due to the symmetry (see figure 3).
This example is a validation problem since the theoretical solution was proposed by Michell

in 1904 [16]. Figure 4 shows the optimal material distribution for the topology optimization
problem proposed.

The structure proposed is 1 cm thick and the total load applied is P=25 kN distributed into 4
elements around the central point of the domain. This example is solved with the local approach
of the stress constraints using an initial mesh of 1800 eight-node quadrilateral elements. In this
case it is not necessary to use neither the global constraint approach nor the block aggregation of
the stress constraints since the size of the problem is not a limitation in computational terms.

Figure 5 shows the optimum solution obtained with the local approach of the stress con-
straints.

This optimal solution can be used to obtain a new refined mesh by removing the elements
with relative density smaller than ρ ≤ 0.002 and by dividing each one of the rest of the elements
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Figure 3: Geometry and applied loads of the Michell beam example

Figure 4: Analytic optimal solution proposed by Michell [16]

in four new ones (Figure 6 left). Figure 6 (right) shows the solution obtained with this refined
mesh. This refinement technique allows to solve larger problems with a reduced number of
elements and, consequently, with smaller computing resources.

Table 1 shows the most important parameters of the problem. The optimal volume of material
and the optimal weight obtained with the formulation proposed are also presented and compared
with the optimal ones obtained by Michell in [16]. In addition, the CPU time has been also
analyzed in order to show the computational effort required.

7



Figure 5: Michell beam solution with the local approach of the stress constraints, [ε = 0.004, p = 2, η = 0.005]

Figure 6: Refined mesh of the MBB beam obtained by removing all the elements of the solution proposed in figure 5
with ρe ≤ 0.002 (left). Optimal solution obtained by using the local approach of the stress constraints and the refined
mesh, [ε = 0.005, p = 2, Ne = 1688, η = 0.005] (right)

7.2. MBB beam

The second example corresponds to a classic MBB-type beam with sliding supports [15].
Only half of the structure is analyzed due to the symmetry. Figure 7 shows the dimensions
of the domain and the position of the external load. Self-weight is considered. The domain
of the structure is discretized in Ne = 120 × 40 = 4800 eight-node quadrilateral elements. The
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Michell Beam
with a central load

Local Approach
Fig. 5

Local App. Rem.
Fig. 6 (right)

Number of elements 1800 1688
Number of iterations 406 404

Penalization (p) 2 2
Relaxation (ε) 0.004 0.005

Final weight (kN) 2.02 10−3 2.16 10−3

Final Volume (m3) 2.64 10−5 2.82 10−5

Theoretical Volume (m3) 2.79 10−5 2.79 10−5

Computing time (s×103) 47.2 91.9

Table 1: Summary of the most important parameters and results of the Michell beam with a central load problem

material being used is steel with density γmat = 7650 kg/m3, Young’s modulus E = 2.1 105 MPa,
Poisson’s ratio ν = 0.3 and elastic limit σ̂max = 230 MPa. The thickness of the structure is 1 m

This example is solved with the three formulations of stress constraints proposed in section
3 in order to compare the solutions obtained with them. Figures 7 (right), 8 (left) and 8 (right)
show the solutions obtained with the local, the global and the block aggregated approaches of
the stress constraints.

Figure 7: Geometry of the MBB beam example (left) and MBB solution with the local approach of the stress constraints,
[ε = 0.01, p = 4, η = 0] (right)

Table 2 shows the most important parameters of the problem and the minimum weight ob-
tained in the optimal solution. In addition, the CPU time has been also analyzed in order to show
the computational effort required with all the formulations in order to analyze and compare them.

8. Conclusions

Structural Topology optimization with stress constraints is not a usual branch in the topology
optimization field. However, these formulations offer important advantages versus maximum
stiffness approaches since they avoid checkerboard layouts and present a more realistic objective
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Figure 8: MBB solution with the global approach of the stress constraints, [ε = 0.01, p = 4, µ = 40, η = 0] (left) and
with the block aggregated approach of the stress constraints, [ε = 0.02, p = 4, µ = 40, Nb

e = 60, η = 0] (right)

MBB beam
Local Appr.
Fig. 7 right

Global Appr.
Fig. 8 left

Block Aggr.
Fig. 8 right

Number of elements 4800 4800 4800
Number of constraints 4800 1 80
Number of iterations 182 772 1005

Penalization (p) 4 4 4
Relaxation (ε) 0.01 0.01 0.02

Aggregation (µ) - 40 40
Final/Initial weight 15.41 % 13.62 % 14.24 %

Computing time (s×103) 759.9 4.1 38.4

Table 2: Summary of the most important parameters and results of the MBB beam problem

function from an engineering point of view. In addition, the feasibility of the final solutions is
guaranteed.

In this paper we propose three different formulations to impose stress constraints. The most
usual and reliable procedure is the local approach of stress constraints since one stress constraint
per element is imposed. However, this methodology introduces a large number of constraints in
the optimization problem when fine FEM meshes are used.

Due to this fact, two additional procedures are analyzed in order to reduce the computational
effort required: the global approach and the block aggregated approach. The global approach
imposes only one global constraint that aggregates the effect of all the local constraints. On the
other hand, the block aggregation of elements is a more general methodology that includes both
previous formulations as a particular case.

Thus, if a large number of design variables is used, the block aggregation of elements is the
most appropriate technique due to computational considerations. However, if the computing time
is not too much restrictive the local approach is the most reliable formulation.

This paper also addresses some important considerations in order to reduce the computation
effort required since parallelization techniques have been introduced. In addition, a perimeter
penalization was introduced in the objective function in order to simplify the solutions obtained.

Finally, it is important to remark that minimum weight with stress constraints formulations
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produce fully satisfactory results versus maximum stiffness approaches. Consequently, maxi-
mum stiffness formulations should be replaced by minimum weight with stress constraints for-
mulations since they offer very important advantages and the computational effort required is not
a drastic limitation nowadays.
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