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Abstract

Structural topology optimization problems have been traditionally stated and solved
by means of maximum stiffness formulations. On the other hand, some effort has
been devoted to stating and solving this kind of problems by means of minimum
weight formulations with stress (and/or displacement) constraints. It seems clear
that the latter approach is closer to the engineering point of view, but it also leads
to more complicated optimization problems, since a large number of highly non-
linear (local) constraints must be taken into account to limit the maximum stress
(and/or displacement) at the element level. In this paper, we explore the feasibility
of defining a so-called global constraint, which basic aim is to limit the maximum
stress (and/or displacement) simultaneously within all the structure by means of one
single inequality. Should this global constraint perform adequately, the complexity
of the underlying mathematical programming problem would be drastically reduced.
However, a certain weakening of the feasibility conditions is expected to occur when
a large number of local constraints are lumped into one single inequality. With
the aim of mitigating this undesirable collateral effect, we group the elements into
blocks. Then, the local constraints corresponding to all the elements within each
block can be combined to produce a single aggregated constraint per block. Finally,
we compare the performance of these three approaches (local, global and block
aggregated constraints) by solving several topology optimization problems.
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1 Introduction

Structural topology optimization problems have been traditionally set out
in terms of maximum stiffness (minimum compliance) formulations. In this
approach, the goal is to distribute a given amount of material in a certain
region, so that the stiffness of the resulting structure is maximized (the com-
pliance, or energy of deformation, is minimized) for a given load case [1,2].
Even though this approach is quite convenient, it also entails some serious
drawbacks, mainly: multiple load cases can not be considered; self-weight is
normally ignored; the result varies with the amount of material to be dis-
tributed; and the final design could be unfeasible in practice, since no con-
straints are imposed on stresses (and/or displacements). Moreover, the maxi-
mum stiffness problem is essentially ill-posed. Thus, the solution oscillates as
the discretization refinement is increased, what gives raise to mesh-dependent
checkerboard layouts. This difficulty can be partially overcome by introducing
porous materials [I]. But, on a regular basis, a spread porous material distri-
bution is considered an unwanted result. Hence, additional penalization and
stabilization techniques and image filters must be employed to avoid numerical
instabilities and/or unrealistic —or simply useless— final solutions [1].

The authors, as other research groups, are working since a few years in the
possibility of stating this kind of problems by means of a FEM-based minimum
weight with stress (and/or displacement) constraints approach. Obviously, the
physical meaning of this approach is closer to the engineering point of view,
while any kind of constraint under multiple load cases could also be considered.

The basic and most intuitive procedure to preclude excessively high stresses
(and/or excessively large displacements) within all the structure consists in
limiting the maximum stress (and/or displacement) at a series of given points
within each element [3,1]. This is commonly referred to as the “local (state-
ment of ) constraints approach”. Thus, one can easily state quite complete and
realistic optimization problems. The optimized solutions seem to be correct
from the engineering point of view and their appearance could be considered
closer to the engineering intuition than the results provided by the maximum
stiffness approach. Furthermore, neither stabilization techniques nor image
filters seem to be necessary to preclude unwanted final results [1]. However,
this also leads to more complicated optimization problems with much higher
computational requirements, since a large number of highly non-linear (local)
constraints must be taken into account to limit the maximum stress (and/or
displacement) at the element level.

In this paper, we explore the feasibility of defining a so-called global con-
straint, which basic aim is to limit the maximum stress (and/or displacement)
simultaneously within all the structure by means of one single inequality. This



is commonly referred to as the “global (statement of) constraints approach”.
Should this global constraint perform adequately, the complexity of the un-
derlying mathematical programming problem would be drastically reduced.

Nevertheless, the performance of the global constraints approach falls signif-
icantly when a large number of local constraints are lumped into one single
inequality. For this reason, we will finally introduce the so-called “block ag-
gregated (statement of) constraints approach”.

The global constraint formulation that we will use hereafter is based on the
Kreisselmeier—Steinhauser function [5,6,7,8].

2 The Optimization Problem

In terms of a FEM-based minimum weight with stress (and/or displacement)
constraints formulation, the topology optimization problem can be written
as [1]

Find p={pe}, e=1,...,N,
that minimizes F(p) (1)
verifying gi(p) <0, j=1...,

m
0<pmin <pe<1l, e=1,....N,

where the design variable p, is the relative density of element number e (what
is assumed constant within the element) and N, is the total number of elements
in the mesh. Thus, if df) is the volume of a differential region within element
number e, the volume occupied by the porous material within the differential
region will be p.dS2. The lower limit for the relative density (p,ni,) is introduced
to preclude the entire hollowing out of the elements (since the concepts of
displacement, strain and stress become meaningless and the stiffness matrix
could even be singular in such a case).

The objective function is defined as

Ne

Flp) = 3 (p0)? [ s 2 2

e=1

where €, is the element number e, 7,4 is the density of the material (assumed
constant), and p > 1 is a tuning parameter that can be adjusted to favor a
mainly compact distribution of material (since the intermediate values of the
relative density are increasingly penalized as the value of p grows) [4].



It seems quite obvious that any kind of constraint could be taken into account
in the above stated optimization problem. For the seek of simplicity, further
discussion and examples are restricted to considering stress constraints type

T min < 8(0?(p)> and /or 8(0?(p)> < Grmazs (3)
where o;”(p) are the FEM-computed components of the stress tensor at each
given point P; for the actual values of the relative densities p. The details
on the FEM formulation for the structural analysis problem with relative
density can be found in [1]. Finally, 6(o) is the reference stress expression
that corresponds to the failure criteria being used (which values are limited).

In the 2D examples presented in this paper we consider materials with equal
tensile and compressive strength limits. Thus, (o) is the Von Mises reference
stress expression and G4, is the elastic stress limit of the material [1]. Then
the constraints considered in (1) can be written as

9i(p) = 3(«?? (p)) — Omaz < 0. (4)

3 Local Statement of Stress Constraints

Without losing generality, let’s suppose that one stress constraint is imposed
at one given point per element. Then, the optimization problem takes the form

Find p={p.}, e=1,...,N,
that minimizes F(p) (5)
verifying ge(p) <0, e=1,..., N,

0<pmin<pe<1l, e=1,...,N,
This is commonly referred to as the “local (statement of) constraints ap-
proach”.

However, stress constraints type (4) can exhibit the so-called “singularity phe-
nomena”, that is due to the discontinuous nature of the stress when the relative
density tends to zero [9]. Briefly, reaching the optimum could call for remov-
ing all the material within a certain element €2.. However, the corresponding
restriction type (4) could be more severely violated as we get closer to the
optimum (that is, for decreasing values of p. slightly greater than 0), since the
stress could rise as the material is being removed (until the element is com-
pletely hollowed out). Under these conditions, the gradient of the constraint
would be negative in the vicinity of the optimum. Thus, any consistent non lin-
ear programming algorithm would try to increase the relative density instead



of reducing it, what precludes convergence to the exact solution of the prob-
lem [1]. Singularity phenomena have also been observed in some theoretical
truss optimization problems [10] and in other fields of structural optimization
[3]. For this reason, statements type (4) are not fully satisfactory and they
must be rewritten some way. Following the ideas of several authors [3,1,10] we
propose the alternative statement for the local stress constraint

:(p) = [a (040)) ~ 1 goe] (0)7 <0, ©)

being
€
Ye=1—e+—. (7)
Pe
When ¢ = 0, limits are imposed on the stress. When ¢ = 1, limits are imposed
on the so-called effective stress [1], what helps to remove some singularities.

On the other hand, the value of the “relaxation parameter” ¢ € [0.001,0.1]
must be reduced as we approach the optimum during the optimization process.

The solutions to problems type (5) with constraints type (6) seem to be correct
from the engineering point of view and their appearance could be considered
closer to the engineering intuition than the results provided by the maximum
stiffness approach [1]. Furthermore, neither stabilization techniques nor im-
age filters seem to be necessary to preclude unwanted final results. However,
these optimization problems are much more complicated and they have much
higher computational requirements than the ones emerging from the maxi-
mum stiffness approach, since we have to deal now with a large number of
highly non-linear constraints type (6).

4 Global Statement of Stress Constraints

We explore now the feasibility of limiting the stress simultaneously within all
the structure by means of one single inequality. Should this be possible, the
optimization problem would reduce to

Find p={pe}, e=1,..., N,
that minimizes F(p) (8)
verifying G(p) <0,

0<pmin§p6§17 6217'--7Ne
This is commonly referred to as the “global (statement of) constraints ap-
proach”. Obviously, if the so-called global constraint G(p) performs adequately,
the complexity of the mathematical programming problem and the associated



computational requirements (both the data storage and the computing time)
would be drastically reduced in comparison with (5).

Therefore, the essential point is to define an adequate procedure for aggregat-
ing all the local constraints in a single global one. The global constraint for-
mulation that we present hereafter is based on the Kreisselmeier—Steinhauser
function [0,7,8], that is mainly being used at present in aero-structural opti-
mization. Furthermore, we have introduced some modifications that improve
the numerical performance of the resulting global constraint. The proposed
global constraint takes the form

Grs(p [ ln(Ze e _1>—1ln(Ne)

<0 9)

being

e 3<a’;(p)) | 0

o, = —
Umax 906

The use of the normalized reference stress ¢} is intended to rescale the ar-

guments of the exponential terms. In addition, it helps to prevent a possible

overflow condition to occur.

On the other hand, p is a tuning parameter that penalizes the failure to satisfy
the local constraints. In theory, global constraint (9) becomes equivalent to the
constraint with highest value in each iteration as u tends to infinity. However,
when the value of p is too large, global constraint (9) can become too difficult
to manage, both for practical and theoretical reasons. Thus, for increasing
values of 1 the non-linearity of the global constraint function is boosted; and
overflow conditions are more likely to occur. Consequently, it becomes more
difficult to obtain a reasonably good numerical solution to problem (8). On
the other hand, global constraint (9) will not adequately represent the corre-
sponding whole set of local constraints if the value of i is not large enough.
In such a case, the solution to problem (8) will not be satisfactory. Therefore,
it is extremely important to assign a correct value to parameter pu.

Figures 1 and 2 depict the value of the global constraint for different values
of parameter p in different conditions. In Figure 1, 55 = 0.90 at 50% of the
elements. The curves compare the values of the global constraint for different
values of 67 (assumed all equal) at the remaining elements. In Figure 2, 67 =
0.90 at the elements in which the corresponding local constraint is satisfied,
and o) = 1.10 at the elements in which the corresponding local constraint is
violated. The curves compare the values of the global constraint for a growing
percentage of violated local constraints. The plotted results can help to make
a decision on how to adjust the correct value of parameter p. When g is not
large enough, the global constraint could be satisfied although most of the
local constraints were violated. On the other hand, it seems that it would not



be necessary to take large values of p. On a regular basis, it seems reasonable
to adjust the value of p between 20 and 30, or between 15 and 40 as much.

Global constraint (G,)

Aggregation parameter (u)

Figure 1. Global constraint versus p for a growing value of o7.
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Figure 2. Global constraint versus p for a growing % of violated constraints.

A certain loss of strictness is expected to occur in the fulfillment of the feasi-
bility conditions when a large number of local constraints are lumped into one
single inequality by means of the global constraints approach. For this reason,
we will introduce a more suitable class of global type constraints by grouping
the elements into blocks.



5 Block Aggregated Statement of Stress Constraints

Let us group the N, elements into a relatively small number N, of blocks or
groups of elements { B, },—1 n,. As a general rule, we should group the elements
taking into account its proximity in such a way that all the resulting blocks will
contain a similar number of elements (see Figure 3). Then, the local constraints

[
. \ .

‘Bb

Figure 3. Block definition within the Finite Element mesh.

corresponding to all the elements within each block could be combined to
produce a single inequality per block. Should this be done, the optimization
problem would reduce to

Find p=1{pe} e=1,...,N,
that minimizes F(p) (1)
verifying G*(p) <0, b=1,..., N,

0<pmin <pe<1l, e=1....N,

We will refer to the latter as the “block aggregated (statement of) constraints
approach”. Obviously, if the so-called block aggregated constraints G°(p) per-
form adequately and the number of blocks N, is much smaller than the number
of elements N,, the complexity of the mathematical programming problem
and the associated computational requirements (both the data storage and
the computing time) would be drastically reduced in comparison with (5).

Again, the essential point is to define an adequate procedure for aggregating
all the local constraints within each block into a single inequality. Thus, the
block aggregated constraint formulation that we propose is just an adaptation
of (9) and takes the form

Ces(p) = Lﬁm(z e MO —”) —om(V) <0 (1)

e€eBy,

where N? is the number of elements contained in block b. As it was mentioned



before, the use of the normalized reference stress ¢ is intended to rescale the
arguments of the exponential terms. In addition, it helps to prevent a possible
overflow condition to occur. Again, it is extremely important to assign a cor-
rect value to parameter p, and the same considerations that were previously
exposed apply to this case.

It seems quite obvious what this strategy seeks for: we expect to retain the
advantages of the global constraints approach, and at the same time we ex-
pect to mitigate its undesirable collateral effects by limiting the number of
constraints being aggregated. Therefore, a large number of elements should
not be grouped within each block.

For N, = 1 problem (11) reduces to the global constraints approach (8),
while for N, = N,, problem (11) reduces to the local constraints approach (5)
taking ¢ = 0 in expression (6). Therefore, as the number of blocks is raised we
expect the results to be more precise, at the expense of growing computational
requirements.

For a moderate, well adjusted number of blocks we expect the quality of the
results to be as good as the ones given by the local constraints approach, with
a significantly lower computational cost.

5.1 Block Definition

The correct grouping of the elements could be a key issue, and it could deter-
mine both the quality of the final results and the corresponding computational
cost, and even the viability of the optimization process itself.

In the examples presented hereafter in this work the blocks have been created
by just grouping the elements with correlative indexes in the Finite Element
mesh. But there is not a reason why this strategy should be preferred to any
other. In fact, this choice could produce most likely non-regular and deformed
and/or non-connected patterns, even in the case of structured rectangular
meshes. It is obvious that different techniques could be proposed to create
more compact, well-shaped blocks, by grouping the elements in accordance
with its proximity. On the other hand, a simple random draw would probably
lead to a less biased distribution of the elements within the blocks.

In the numerical examples presented in this paper we have observed that the
distribution of elements into blocks has only a slight influence over the final
results. In our experience, the number of blocks being defined (and, thus, the
number of elements aggregated into each block) and the value of parameter u
in expression (9) play a much more important role than the strategy adopted
for aggregating the elements into a certain number of blocks for a given mesh.



It remains to be known whether this is a critical point in general or not, and
further research should be devoted to this line in a close future.

6 Optimization Algorithms

In practice, the local constraints approach leads to mathematical program-
ming problems type (5) with a large number of highly non-linear constraints
type (6). An improved SLP algorithm with quadratic line-search seems to be
the right choice to solve this kind of problems [1,11,12]. Thus, the linear ap-
proximation to problem (5) is stated (with additional side constraints) and
solved at each iteration by means of the Simplex method [13]. The inactive
constraints are disregarded, with the aim of saving computational resources.
Even though the obtained results are quite promising [1,12], both the data
storage and the computing time associated to stating and solving the under-
lying linear programming problems grow very fast with the number of elements
N.. This fact severely restricts the applicability of the technique.

On the other hand, the global constraints approach leads to mathematical
programming problems type (8) with only one highly non-linear constraint
type (9). To solve this kind of problems we propose the modified inverse barrier
function

1
,r)=F l—r———|. 13
olpr) = F) |17 ) 03)
In comparison with the standard definition [14], the inverse of the global con-

straint in the above expression is multiplied times the objective function. We
recall that the expression of Gks(p) type (9) is non-dimensional, unlike the
expression of F'(p) type (2). The rescaling introduced by this product improves
the numerical conditioning of the problem, while possible dimension conflicts
are prevented. Furthermore, it helps to adequately calibrate the value of the
so-called barrier parameter r.

In addition, it is convenient to include the side constraints of the design vari-
ables into the barrier function too, in order to avoid false convergence situa-

tions due to the possible truncation of the search direction. With this aim, we
define the modified barrier function (including side constraints) as

1 % ( 1 N 1 )] (14)
—r ,
GKS(P) : e—=1 Pmin — Pe Pe — 1

where 7; is the barrier parameter corresponding to the side constraints.

gb(par):F(p) L=

10



Then, the quasi-unconstrained non-linear programming problem

Find p=1{pe} e=1...,N,
that minimizes ¢(p,r), (15)
verifying 0<pmin <pe<1l, e=1,....N,

is solved by means of the Fletcher-Reeves conjugate gradient method [14],
which performance is improved by using a complementary quadratic line-
search (where we take again the side constraints into account). On a regular
basis, both the data storage and the computing time associated to stating and
solving the underlying quasi-unconstrained non-linear programming problems
grow linearly with the number of elements N,. This fact expands the applica-
bility of the technique far beyond the possibilities of the local approach.

Finally, the block aggregated constraints approach leads to mathematical pro-
gramming problems type (11) with a moderate number of highly non-linear
constraints type (12). Therefore, the improved SLP algorithm with quadratic
line-search that was previously mentioned seems to be —once more— the right
choice to solve this kind of problems [!1].

7 Sensitivity Analysis

The three above presented approaches require to perform a full first order
sensitivity analysis at each iteration. This is a critical issue that could com-
promise the viability of the whole optimization process, since the computing
effort devoted to the sensitivity analysis could become absolutely unaffordable.
In this work, the first order derivatives are computed by means of an analytical
implementation of the adjoint state method [15,16,17]. Thus, we avoid storing
a large amount of intermediate results while the computing effort devoted to
solving linear systems is minimized.

On the other hand, the three approaches require an additional second order
directional sensitivity analysis at each iteration. This is always done by means
of an analytical implementation of the direct differentiation method [15,16,17],
since data storing and computing time are not critical issues at this point.

Overall, we could say that the computational cost for the sensitivity analysis
is indeed expected to be much lower (or even negligible) in the case of the
global constraints approach than in the case of the local constraints approach.
For a moderate number of blocks, the computational cost of the sensitivity
analysis in the case of the block aggregated constraints could be up to a few
times higher than in the case of the global constraints approach, but still
much lower than in the case of the local constraints approach. The same
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considerations apply to the amount of data storage that is required, although
the difference between the global approach and the block aggregated approach
is less significant in this case.

8 Numerical Examples

The examples presented below have been solved by means of the three pro-
posed approaches (local constraints, global constraints and block aggregated
constraints) in order to compare the obtained solutions and their correspond-
ing computing effort.

Actually, all the examples are two-dimensional. However, the solutions are
represented as 3D solids in order to facilitate the understanding of the results,
being the false thickness proportional to the relative density at each point.

8.1 L-shape Beam

The first example corresponds to an L-shape beam. The upper edge is built
into the roof. Figure 4 shows the dimensions of the domain and the position
of the external load. Self-weight is also considered. The L-shaped domain
(1 m thick) containing the structure is discretized in N, = 6400 eight-node
quadrilateral elements. The material being used is steel with density Y,ar =
7650 kg/m?, Young’s modulus E = 2.1 10> MPa, Poisson’s ratio v = 0.3 and
elastic limit &,,,,, = 230 MPa.

£
(=3
o
S
P=410°kN
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Figure 4. Example 1: L-shape beam. Domain definition and external loads.

Figure 5 shows the solution obtained by means of the local constraints ap-
proach for p = 4, ¢ = 1 and ¢ = 0.02. Figure 6 shows the solution obtained
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by means of the global constraints approach (right) for p =4, ¢ =1, ¢ = 0.02
and p = 20. Figure 7 shows the solution obtained by means of the block ag-
gregated constraints approach for p =4, ¢ =1, ¢ = 0.02, p = 20, N, = 100
and N’ = 64. As it can be observed, the obtained solutions (see Figures 5, 6
and 7) are in accordance to the engineering experience and compare fairly well
with the results previously obtained by Duysinx [3] and with the analytical
solutions proposed by Lewinsky [1&]. The analytical solution does not consider
self-weight but, in this case, this fact does not substantially modify the final
material distribution.

Table 1 compares the computational cost associated to solve this problem by
means of the three above mentioned approaches.

Due to the large number of elements being used, the SLP algorithm described
in section 6 has been used to solve all the underlying optimization problems
in this case.

Table 1
Example 1: L-SHAPE beam. Computational cost.
Local Global Block Agg.
L-SHAPE BEAM Approach Approach Approach
Fig. 5 Fig. 6 Fig. 7
Number of variables 6400 6400 6400
Number of constraints 6400 1 100
Number of iterations 253 530 341
Computing time (h) 2714 7.1 244

8.2 MBB beam

The second example corresponds to a classic MBB-type beam with sliding sup-
ports [1]. Only half of the structure is analyzed, because of symmetry. Figure
8 shows the dimensions of the domain and the position of the external load.
Self-weight is also considered. The rectangular domain (1 m thick) containing
the structure is discretized in N, = 60 x 20 = 1200 eight-node quadrilateral
elements. The material being used is steel with density Y. = 7650 kg/m?,
Young’s modulus £ = 2.1 10° MPa, Poisson’s ratio v = 0.3 and elastic limit
Omaz = 230 MPa.

Figure 9 shows the solutions obtained by means of the local constraints ap-

proach for p =4, ¢ = 1 and € = 0.02. Figure 10 shows the solution obtained
by means of the global constraints approach (right) for p = 4, ¢ = 0.02 and

13
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0.251
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Figure 5. Example 1: L-shape beam. Distribution of material at the final solution.
[Local constraints approach]

Relative_density
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0.001

Figure 6. Example 1: L-shape beam.

Distribution of material at the final solution.
[Global constraints approach]

Relative_density
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Figure 7. Example 1: L-shape beam. Distribution of material at the final solution
[Block aggregated constraints approach)]
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Figure 8. Example 2: MBB beam. Domain definition and external loads.

1 = 20. Figure 11 shows the solution obtained by means of the block aggre-
gated constraints approach for p = 4, ¢ = 0.02, u = 20, N}, = 24 and N? = 50.
As it can be observed, the obtained solutions (see figures 9, 10 and 11) are
very similar to the analytic solution proposed by Lewinsky, et al.[l9]. The
analytical solution does not consider self-weight but, in this example, this fact
does not substantially modify the final material distribution.

Table 2 compares the computational cost associated to solve this problem by
means of the three above mentioned approaches.

Due to the high number of elements being used, the SLP algorithm described
in section 6 has been used to solve the underlying optimization problems
corresponding to the local approach (see figure 9) and to the block aggre-
gated approach (see figure 11). The optimization problem corresponding to
the global approach (see figure 10) has been solved by means of the barrier
function algorithm described within the same section.

Table 2
Example 2: MBB beam. Computational cost.
Local Global Block Aggr.
MBB BEAM Approach Approach Approach
Fig. 9 Fig. 10 Fig. 11
Number of variables 1200 1200 1200
Number of constraints 1200 1 24
Number of iterations 253 1111 404
Computing time (h) 3.91 0.18 0.14

8.3 Cantilever Support

The third example corresponds to a cantilever support. The structure is built
into two circular holes located on the right side. Figure 12 shows the di-
mensions of the domain and the position of the external load. Self-weight is
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Relative_density
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0.750
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0.250
0.001

Figure 9. Example 2: MBB beam. Distribution of material at the final solution.

[Local constraints approach]

Relative_density
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0.750
0.500
0.250

0.001

Figure 10. Example 2: MBB beam. Distribution of material at the final solution.

[Global constraints approach]

Relative_density

1.000
0.750
0.500 ||
0.250

0.001

Figure 11. Example 2: MBB beam. Distribution of material at the final solution.
[Block aggregated constraints approach)]
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also considered. The rectangular domain (1 c¢m thick) containing the struc-
ture is discretized in N, = 5808 eight-node quadrilateral elements. The ma-
terial being used is steel with density V. = 7650 kg/m?, Young’s modulus
E = 2.1 10° MPa, Poisson’s ratio v = 0.3 and elastic limit 7,,,, = 230 MPa.

O |

0.02 m
0.10 m

%—15 kN
@ 1

1 0.15m 1

Figure 12. Example 3: Cantilever support. Domain definition and external loads.

Figure 13 shows the solution obtained by means of the local constraints ap-
proach for p =4, ¢ = 1 and ¢ = 0.01. Figure 14 shows the solution obtained
by means of the global constraints approach for p = 4, ¢ = 0.01 and u = 20.
Figure 15 shows the solution obtained by means of the block aggregated con-
straints approach for p = 4, ¢ = 0.01, u = 20, N, = 24 and N’ = 50. This
example was first analyzed by means of shape optimization techniques by
Zhang [20] and more recently by means of topology optimization techniques
(maximum stiffness approach) by Duysinx [21].

Table 3 compares the computational cost associated to solve this problem by
means of the three above mentioned approaches.

Due to the high number of elements being used, the SLP algorithm described
in section 6 has been used to solve all the underlying optimization problems
in this case.

Table 3
Example 3: Cantilever support. Computational cost.
Local Global Block Aggr.
CANTILEVER Approach Approach Approach
SUPPORT Fig. 13 Fig. 14 Fig. 15
Number of variables 5808 5808 5808
Number of constraints 5808 1 88
Number of iterations 253 430 507
Computing time (h) 157.0 19.7 27.0
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Figure 13. Example 3: Cantilever support. Optimal distribution of material.
[Local constraints approach]

Relative_density
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Figure 14. Example 3: Cantilever support. Optimal distribution of material.
[Global constraints approach]
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Figure 15. Example 3: Cantilever support. Optimal distribution of material.
[Block aggregated constraints approach)]
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9 Conclusions

There are both conceptual and practical reasons that justify the interest in
setting out structural topology optimization problems in terms of minimum
weight formulations with a large number of highly non-linear local constraints.
This is commonly referred to as the local constraints approach. However, the
applicability of the technique is severely restricted by the extraordinarily high
computational requirements of this kind of problems.

With the aim of reducing the complexity of these problems, we explore the fea-
sibility of defining a so-called global constraint, which basic aim is to enforce
the fulfillment of all the local constraints by means of one single inequal-
ity. This is commonly referred to as the “global (statement of) constraints
approach”. However, a certain loss of strictness in the fulfillment of the feasi-
bility conditions is expected to occur when a large number of local constraints
are lumped into one single inequality.

For this reason, we have introduced a more suitable class of global type con-
straints by grouping the elements into blocks. Then, the local constraints cor-
responding to all the elements within each block could be combined to produce
a single aggregated constraint per block. We refer to the latter as the “block
aggregated (statement of) constraints approach”. In this way we expect to
retain the advantages of the global constraints approach while its undesirable
collateral effects could be partially mitigated.

In this paper, we have proposed specific procedures for correctly stating local
constraints (local constraints approach) and for constraint aggregation (global
constraints and block aggregated constraints approaches) in structural topol-
ogy optimization problems. The performance of these three approaches has
been tested and compared by stating and solving some application examples.

The computational requirements (both the data storage and the computing
time) have been an order of magnitude lower for the global constraints ap-
proach and for the block aggregated constraints approach when compared to
the local constraints approach, as it was expected. In return, the results have
not been exactly equivalent, but quite similar. On the other hand, the block
aggregated constraints approach gets to retain the advantages of the global
constraints approach while its undesirable collateral effects are greatly miti-
gated, in return for a small increase in the computational cost of the technique.

The important reduction in the computational cost due to the constraint ag-
gregation clearly compensates for the slight loss of accuracy in the results.
Moreover, the applicability of the technique can be expanded this way far
beyond its original possibilities.
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