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Abstract. We define GP-nuclear groups as topological Abelian groups for which the
groups of summable and absolutely summable sequences are the same algebraically and
topologically. It is shown that in the metrizable case only the algebraic coincidence of
the mentioned groups is needed for GP-nuclearity. Some permanence properties of the
class of GP-nuclear groups are obtained. Our final result asserts that nuclear groups in
the sense of Banaszczyk are GP-nuclear. The validity of the converse assertion remains
open.

1. Introduction

The theory of nuclear locally convex spaces is now an important part of Functional
Analysis. The notion of a nuclear space has been introduced by Grothendieck in the
framework of his theory of topological tensor products. Now the following definition of
nuclear spaces is commonly accepted (see [15, 17, 19]):

Definition 1.1. A locally convex space E is said to be nuclear if for any absolutely
convex neighborhood of zero U in E there exists another absolutely convex neighborhood
of zero V ⊂ U such that the canonical mapping of EV into EU is nuclear. Here EU denotes
the Banach space associated with U .

Several characterizations of nuclear spaces are known. In the definition, instead of the
ideal of nuclear operators many others can be used (see [15, p. 482]). Grothendieck es-
tablished already the following important internal criterion: a metrizable locally convex
space is nuclear if and only if every summable sequence in it is also absolutely summable
([17, p. 69]). Metrizability cannot be dropped from this assertion. Pietsch ([17, p. 73])
characterized nuclear spaces as those locally convex spaces for which appropriately topol-
ogized spaces of summable and absolutely summable sequences are the same algebraically
and topologically. We shall refer to this result as Grothendieck-Pietsch theorem.

Mitiagin’s theorem describes nuclear spaces in terms of Kolmogorov diameters of neigh-
borhoods of zero, as follows: a locally convex space E is nuclear if and only if for any
absolutely convex neighborhood of zero U in E there exists another absolutely convex
neighborhood of zero V ⊂ U such that limk→∞ kpdk(V, U) = 0 for some, resp. for each,
p > 0. Here dk(X, Y ) denotes the kth Kolmogorov diameter of X with respect to Y (see
[15, p. 485]).
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In his interesting cycle of papers ([3, 4, 5]) Banaszczyk demonstrated that closed sub-
groups and Hausdorff quotient groups of nuclear Fréchet spaces have many nice proper-
ties, e. g., they are Pontryagin reflexive, any closed subgroup of a nuclear Fréchet space
is weakly closed, etc. The specific methods and tools needed for the proofs of these
results allow him to give in [2] the following definition of nuclear groups, which is based
on Mitiagin’s theorem:

Definition 1.2. A Hausdorff Abelian topological group G is called nuclear when it
satisfies the following condition:

Given an arbitrary neighborhood of zero U in G, c > 0 and m ∈ N there exist: a vector
space E, two symmetric and convex subsets X, Y of E with dk(X, Y ) ≤ ck−m ∀k ∈ N, a
subgroup K of E and a homomorphism φ : K → G, such that φ(K∩X) is a neighborhood
of zero in G and φ(K ∩ Y ) ⊂ U.

The above definition is not internal and in a glance may seem to be complicated, but it
leads to many significant results. As it has already been shown in [2], the class of nuclear
groups contains locally compact Abelian groups and nuclear locally convex spaces and
it satisfies all the permanence properties which the class of nuclear spaces has. Many
important theorems known for nuclear locally convex spaces have been generalized for
nuclear groups (see Chapter 4 of [2], [6] or [7]). An extensive study of nuclear groups
can be found in [1] and [14].

The starting point for the present note is [6], in which it is shown that in an arbi-
trary nuclear group any summable sequence is absolutely summable. Consequently, the
necessity part of Grothendieck’s criterion is obtained. Concerning the sufficiency part
the following is written: ”If every (weakly) summable family in a [metrizable] locally
convex space is absolutely summable, then the space is nuclear ([17, 4.2.4]). It seems
conceivable that locally convex space may be replaced by locally quasi-convex group”.

We are attempting to study the question of validity of Grothendieck-Pietsch theorem
for nuclear groups in full strength. This means the following: For a given topological
Abelian group G let us consider the groups `1(G) and `1{G} of all summable and ab-
solutely summable sequences in G. We equip these groups with the naturally defined
topologies in such a way that when G is a locally convex space they coincide with the
known ones, which are called respectively ε-topology and π-topology in [17]. The above
mentioned result of [6] says that if G is a nuclear group, `1(G) = `1{G} as sets, i. e.,
algebraically. Two questions arise:

Question 1. Let G be an arbitrary nuclear group. Are then the topological groups
`1(G) and `1{G} also the same topologically?

Question 2. Let G be an arbitrary (locally quasi-convex) topological Abelian group
such that the topological groups `1(G) and `1{G} are the same algebraically and topo-
logically. Is then G nuclear?

To underline the importance of the problem, we propose the following

Definition 1.3. We say that a topological Abelian group G is Grothendieck-Pietsch
nuclear, or simply GP-nuclear, if `1(G) = `1{G} algebraically and topologically.

The notion of GP-nuclear group may have also an independent interest, since its
definition is formulated by using only tools of group theory.
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The paper is organized as follows:
In Section 2 we collect notations and prove some auxiliary lemmas.
In Section 3 we introduce the groups of summable and absolutely summable sequences,

and equip them with convenient topologies. The question of topologization of these
groups is relatively new. As far as we know, the topologization of the group of [su-
per]summable sequences has been considered only in [11, p. 102]. The question of
topologization of the group of absolutely summable sequences seems not to have been
considered until now.

In Section 4 GP-nuclear groups are defined and studied. It is observed that the class
of GP-nuclear groups is closed under formation of Cartesian products, completions and
arbitrary subgroups. When G is metrizable, then for GP-nuclearity of G the algebraic
coincidence of `1(G) and `1{G} suffices (Theorem 4.8). Our final result (Theorem 4.10)
asserts that nuclear groups (in Banaszczyk’s sense) are also GP-nuclear, i. e., Question 1
is answered affirmatively. Our proof uses the already cited result of [6], our Theorem 4.8
and a result from [1] which states that any nuclear group is isomorphic with a subgroup
of a product of metrizable nuclear groups. The question whether or not any GP-nuclear
group is nuclear (i. e., Question 2) remains open.

In Section 5 we show that the groups of summable and absolutely summable sequences
and the topologies we have introduced on them coincide in the case of locally convex
spaces with traditional ones. It is also proved that the additive group of a metrizable
topological vector space E is GP-nuclear if and only if E is a nuclear locally convex
space.

2. Auxiliary notations and facts

Notations N, Z, R, C will have the usual meaning. T will denote the multiplicative
group of complex numbers with modulus one, endowed with the topology induced by
that of C .

Unless it is explicitly stated otherwise, throughout the paper G will denote a topo-
logical Abelian group with the group operation +, the neutral element 0 and with the
topology τG. By G∧ we shall denote its topological dual group. Recall that G∧ consists
of all continuous characters ϕ : G → T. G∧ is a multiplicative Abelian group; in ad-
vance, no topology is defined on it. As in [2], we shall denote by N0(G) the family of all
neighborhoods of zero in G.

For a nonempty subset V ⊂ G, V . will denote the polar of V , i. e.

V . = {ϕ ∈ G∧ : Reϕ(x) ≥ 0 ∀x ∈ V }.

Also, for a nonempty subset B ⊂ G∧ we shall denote by /B the inverse polar of B, i. e.

/B = {x ∈ G : Reϕ(x) ≥ 0 ∀ϕ ∈ B}.

A subset V ⊂ G is said to be quasi-convex if /(V .) = V. Note that any quasi-convex
subset of G is closed and contains zero.

For any nonempty subset V ⊂ G we define

‖x‖V = sup
ϕ∈V .

|1− ϕ(x)| , x ∈ G.
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It is easy to verify that ‖ · ‖V is a quasinorm, i. e. it is subadditive and symmetric.
Using this notation we can say that a subset V ⊂ G is quasi-convex if and only if
V = {x ∈ G : ‖x‖V ≤

√
2}. Observe that for a given subset V ⊂ G the quasinorm ‖ · ‖V

is continuous if and only if V . is equicontinuous. In particular, it is continuous for any
V ∈ N0(G).

G is said to be locally quasi-convex if it has a fundamental system of quasi-convex
neighborhoods of zero. Observe that G is locally quasi-convex if and only if the system
of quasinorms {‖ · ‖V : V ∈ N0(G)} generates the topology of G. We shall not discuss
in detail the notion of local quasi-convexity. Now it is commonly used; see [1], [2] or
[10]. Note also that Hausdorff locally quasi-convex groups are dually separated and that
any product of locally quasi-convex groups is also locally quasi-convex. The additive
topological Abelian group of a real topological vector space E is locally quasi-convex if
and only if E is a locally convex space.

The following simple assertion implies the local quasi-convexity of R and T and clarifies
the meaning of the functional || · ||V in these cases:

Lemma 2.1. (a) Let G = T and n ∈ N. Put

Vn = {exp(2πiθ) : θ ∈ [− 1

4n
,

1

4n
]} = {t ∈ T : |1− t| ≤ 2 sin

π

4n
}.

Then

(2.1) ||t||Vn = max
k∈{1,...,n}

|1− tk| ∀t ∈ T

and

(2.2) ||t||V1 = |1− t|, ||t||Vn ≤ n|1− t| ∀t ∈ T.

Moreover, Vn is quasi-convex in T, i. e.,

(2.3) t ∈ T, Re(tk) ≥ 0 ∀k ∈ {1, . . . , n} =⇒ |1− t| ≤ 2 sin
π

4n
.

(b) Let G = R and r ∈ R, r > 0. Put Vr = [−r, r]. Then

(2.4) ‖x‖Vr =

{
2 sin π

4r
|x| if |x| ≤ 2r

2 if |x| ≥ 2r

and

(2.5) x ∈ Vr ⇒
1

r
|x| ≤ 1√

2
||x||Vr .

Moreover, Vr is quasi-convex in R.

Proof. (a) We have T∧
= Z. Using this identification, it is easy to observe that

V .
n = {−n, . . . ,−1, 0, 1, . . . , n}. This implies (2.1). (2.2) follows at once from

(2.1). To prove (2.3), fix t ∈ T satisfying the required conditions. We can
suppose that Imt ≥ 0. Then we have t = exp(iθ), θ ∈ [0, π

2
]. Since Re(tk) ≥ 0, we

have kθ ∈ [−π
2
, π

2
] + 2πZ ∀k ∈ {1, . . . , n}. From this we can derive by induction

that nθ ∈ [0, π
2
], and (2.3) is proved.
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(b) We have R∧
= R, in the sense that any ϕ ∈ R∧

has the form ϕ(x) = exp(2πiλx)
for some λ ∈ R. Using this, it is easy to prove that V .

r = V 1
4r

; (2.4) follows from

this. (2.5) follows from (2.4) via the inequality ξ ≤ π
2
√

2
sin ξ, valid for ξ ∈ [0, π

4
].

�

We shall need the following Lemma about the geometry of T :

Lemma 2.2. Fix any n ∈ N and t1, . . . , tn ∈ T.

(a)

max
ε1,...,εn∈{−1,0,1}

|1−
n∏

k=1

tεk
k | ≤

√
2 =⇒

n∑
k=1

|1− tk| ≤
π

2
√

2
max

ε1,...,εn∈{−1,0,1}
|1−

n∏
k=1

tεk
k |.

(b)

max
∆⊂{1,...,n}

|1−
∏
k∈∆

tk| ≤
√

2

2
=⇒

n∑
k=1

|1− tk| ≤
π√
2

max
∆⊂{1,...,n}

|1−
∏
k∈∆

tk|.

Proof. To prove (a), we can suppose that Im tk ≥ 0 for every k ∈ {1, . . . , n}. In this case
we shall show that

(2.6)
n∑

k=1

|1− tk| ≤
π

2
√

2
|1−

n∏
k=1

tk|.

We have tk = exp(iθk), θk ∈ [0, π
2
] for k ∈ {1, . . . , n}. Now our assumption means that

for any ∆ ⊂ {1, . . . , n},
∑

k∈∆ θk ∈ [−π
2
, π

2
]+2πZ. From this we can derive by induction

that θ :=
∑n

k=1 θk ∈ [0, π
2
]. Finally, using the inequality ξ ≤ π

2
√

2
sin ξ, valid for ξ ∈ [0, π

4
],

we obtain
n∑

k=1

|1− tk| = 2
n∑

k=1

sin
θk

2
≤

n∑
k=1

θk = 2 · 1

2
θ ≤ 2 · π

2
√

2
sin

θ

2
=

π

2
√

2
|1−

n∏
k=1

tk|,

and (2.6) is proved.
(b) follows from (a) in a standard way. �

Remark 2.3. (b) improves, in the case of tk ∈ T, a lemma given in [9, VIII.17]. From the
statement in (b) only the relation

t ∈ T, Re(tk) ≥ 0 ∀k ∈ {1, . . . , n} =⇒ |1− t| ≤ π

2
√

2n
|1− tn|(≤ π

2n
)

can be deduced, which is less accurate than the relation (2.3) in Lemma 2.1(a).

Let G be an Abelian group and U a nonempty subset of it. Let us introduce the
functional kU : G → [0, 1] as follows (cf. [20, p. 496]):

kU(x) = sup{ 1

n
: n ∈ N, x + n. . . + x 6∈ U} ∀x ∈ G.

As usual, we agree that sup ∅ = 0.
Below we shall use this functional to define the notion of absolute summability in a

group G. A closely related functional (·/U) defined only on U has been considered by
Kaplan in [16, p. 650], and afterwards a similar functional has been defined in [2, p. 8].
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We call kU the Kaplan functional of U . The Kaplan functional plays the role of
the Minkowski functional in the case of groups. Some properties of this functional are
collected in the following Lemma:

Lemma 2.4. Let G be an Abelian group and V, U nonempty subsets of G.

(a) U = {x ∈ G : kU(x) < 1}.
(b) If V ⊂ U then kU ≤ kV .
(c) If V + V ⊂ U, then

kU(x + y) ≤ max{kV (x), kV (y)} ∀x, y ∈ G.

(d) If 0 ∈ V, and V + V + V ⊂ U, then

kU(x) ≤ 1

2
kV (x) ∀x ∈ V.

(e) If G = T and Vn is as in Lemma 2.1(a), then

kVn(t) ≤ n√
2
|1− t| ∀t ∈ T

and
|1− t| ≤ πkV1(t) ∀t ∈ T.

(f) If G = R and Vr is as in Lemma 2.1(b), then

kVr(x) ≤ 1

r
|x| ∀x ∈ R

and
|x| ≤ 2kV1(x) ∀x ∈ V1.

(g) If G is a topological Abelian group and (xi)i∈I is a net in G, then xi → 0 in G if
and only if kU(xi) → 0 for any U ∈ N0(G).

Proof. (a) and (b) are evident.
(c) First suppose that x + y 6∈ U ; then either x 6∈ V or y 6∈ V and we have 1 =

kU(x + y) = kV (x) or 1 = kU(x + y) = kV (y). If x + y ∈ U, either kU(x + y) = 0 or
kU(x + y) = 1

n+1
, n ∈ N. In the first case there is nothing to prove. In the second case,

(x + y) + n+1. . . + (x + y) 6∈ U, so either x + n+1. . . + x 6∈ V or y + n+1. . . + y 6∈ V . We obtain
max{kV (x), kV (y)} ≥ 1

n+1
and the assertion is proved.

(d) If kV (x) = 0, kU(x) ≤ kV +V +V (x) = 0 and the inequality is trivial. In other case,
kV (x) = 1

n0+1
for some n0 ∈ N; in particular, for every j ∈ {1, . . . , n0} x + j. . . + x ∈ V.

Now
n ≤ 3n0 ⇒ x + n. . . + x = x + n. . . + x + 0 + 3n0−n. . . + 0 ∈ V + V + V

so

kU(x) ≤ kV +V +V (x) = sup{ 1

n
: x + n. . . + x 6∈ V + V + V }

≤ 1

3n0 + 1
= kV (x)

n0 + 1

3n0 + 1
≤ 1

2
kV (x).

(e), (f) and (g) are left to the reader. �

Lemma 2.5. Let G be a topological Abelian group and V a nonempty subset of G. Then
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(a) ‖x‖V ≤ πkV (x) ∀x ∈ G.
(b) If V is quasi-convex, then

√
2kV (x) ≤ ‖x‖V ∀x ∈ G.

Proof. (a) is evident if x 6∈ V (since ‖x‖V ≤ 2 < π and kV (x) = 1). Suppose now
that x ∈ V, and fix arbitrarily ϕ ∈ V .. If kV (x) = 0 then x + m. . . + x ∈ V , and so,
Re(ϕ(x)m) ≥ 0 for every m ∈ N. From (2.3) in Lemma 2.1(a) we deduce that ϕ(x) = 1,
i. e. ‖x‖V = 0. If kV (x) = 1

n+1
for some n ∈ N, then x + k. . . + x ∈ V , and so,

Re(varphi(x))k ≥ 0 for every k ∈ {1, . . . , n}. Using again (2.3) in Lemma 2.1(a), we
obtain that |1− ϕ(x)| ≤ π

2n
. Hence

‖x‖V ≤
π

2

1

n
=

π

2

n + 1

n
kV (x) ≤ πkV (x).

(b) If x 6∈ V, kV (x) = 1 and since V is quasi-convex ‖x‖V >
√

2, so the inequality is
fulfilled. Suppose that x ∈ V. If kV (x) = 0 there is nothing to prove. In other case,
kV (x) = 1

n+1
for some n ∈ N. By definition of kV , x + n+1. . . + x 6∈ V , and since V is

quasi-convex there exists ϕ ∈ V . such that |1−ϕ(x)n+1| >
√

2; hence (n+1)|1−ϕ(x)| ≥
|1− ϕ(x)n+1| >

√
2 and ‖x‖V ≥

√
2

n+1
=
√

2kV (x). �

3. Presummability and absolute summability

Let us recall first the notion of a summable family. Let A be an infinite set. The family
F(A) of all finite nonempty subsets of A is a directed set with respect to set-theoretic
inclusion ⊂. If now (xα)α∈A is any family of elements of an Abelian group G, then the
family

(∑
α∈∆ xα

)
∆∈F(A)

is a net in G.

A family (xα)α∈A of elements of a topological Abelian group G is called summable if the
net

(∑
α∈∆ xα

)
∆∈F(A)

is convergent in G. This is the ordinary definition of summability

given e. g. in [9, III.37].
If (xα)α∈A is a summable family in a separated topological Abelian group G, then the

(unique) limit of the net
(∑

α∈∆ xα

)
∆∈F(A)

is denoted by
∑

α∈A xα and it is called the

sum of (xα)α∈A.
We shall say that the family (xα)α∈A is presummable if

(∑
α∈∆ xα

)
∆∈F(A)

is a Cauchy

net in (the natural uniformity of) G. Observe that (xα)α∈A is presummable if and only
if the following Cauchy condition of summability is satisfied: for any V ∈ N0(G) there
exists a finite subset ∆0 ⊂ A such that whenever ∆ ∈ F(A) and ∆ ∩∆0 = ∅, we have∑

α∈∆ xα ∈ V. 1

Clearly, every summable family is presummable. The converse is true if the group is
complete. If G is sequentially complete then any presummable sequence is summable.

For a multiplicative group we shall use the terms ”multipliable” and ”premultipliable”
instead of ”summable” and ”presummable”, and

∏
α∈A xα instead of

∑
α∈A xα.

1In the literature the terminology is not stated yet; e. g., in [6] and [17] the families satisfying
Cauchy condition of summability are named simply ”summable families”. We decided not to change
the meaning of the term ”summable family” already accepted in [9] and because of this reason instead
of rather long expressions ”the family satisfying Cauchy condition of summability” or ”unconditionally
Cauchy family” we shall use the new term ”presummable family”.
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If (xα)α∈A is a presummable family and A0 ⊂ A is an infinite subset of A, then the new
family (xα)α∈A0 is again presummable. The same may not be true for a summable family
in a non-complete group. The family (xα)α∈A is called hereditarily summable ([12]) or
supersummable ([11, p. 102]) if for any infinite subset A0 ⊂ A the family (xα)α∈A0 is
summable in G. In a complete group any summable family is hereditarily summable.

For a given infinite set A and a given topological group G we shall denote by `1(A, G)
the set of all presummable families (xα)α∈A of elements in G. If A = N we shall write
also simply `1(G). Clearly `1(A, G) is a subgroup of GA and hence itself is a group with
respect to the group operation induced from GA.

We introduce a topology in the group `1(A, G) as follows. Put

(V )A = {(xα)α∈A ∈ `1(A, G) :
∑
α∈∆

xα ∈ V ∀∆ ∈ F(A)}, V ∈ N0(G).

It is straightforward to check that the system {(V )A : V ∈ N0(G)} is a fundamental
system of neighborhoods of zero for a group topology in `1(A, G). We shall denote this
topology with (τG)A. In what follows, we shall always assume that `1(A, G) is equipped
with this topology.

A similar topology in the subgroup `(A, G) of `1(A, G) consisting of all hereditarily
summable families of elements in G has been considered in [11, p. 102], and [12].

Lemma 3.1. A family (xα)α∈A in R is summable if and only if the family (|xα|)α∈A

is summable in R. The group `1(A, R) is also a vector space and its topology can be
generated by means of one of the following norms:

(xα)α∈A 7→
∑
α∈A

|xα|, (xα)α∈A 7→ sup
∆∈F(A)

|
∑
α∈∆

xα|.

Moreover,

(3.1) sup
∆∈F(A)

|
∑
α∈∆

xα| ≤
∑
α∈A

|xα| ≤ 2 sup
∆∈F(A)

|
∑
α∈∆

xα| ∀(xα)α∈A ∈ `1(A, R).

Consequently `1(A, R) is the ordinary Banach space of all summable families in R.

Proof. This is well known. �

Lemma 3.2. A family (tα)α∈A in T is multipliable if and only if the family (|1− tα|)α∈A

is summable in R. The topology of `1(A, T) can be generated by means of one of the
following quasinorms:

(tα) 7→ ||(tα)||1 =
∑
α∈A

|1− tα|, (tα) 7→ ||(tα)||′1 = sup
∆∈F(A)

|1−
∏
α∈∆

tα|.

Moreover, we have || · ||′1 ≤ || · ||1 and

(3.2) (tα) ∈ `1(A, T), ||(tα)||′1 ≤
√

2

2
=⇒ ||(tα)||1 ≤

π√
2
||(tα)||′1.

Proof. The first part is well known (cf. [9, VIII.16]); it follows also from Lemma 2.2(b).
It is clear from (2.2) in Lemma 2.1(a) that || · ||′1 really generates the topology of `1(A, T).
The inequality || · ||′1 ≤ || · ||1 and (3.2) show that || · ||1 and || · ||′1 generate the same
topology. The inequality is evident; (3.2) follows from Lemma 2.2(b). �
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Proposition 3.3. Let G be a locally quasi-convex group. Then the topology of `1(A, G)
can be generated by the family of quasinorms

(xα) 7→ sV ((xα)) := sup
∆∈F(A)

‖
∑
α∈∆

xα‖V ,

where V runs over all quasi-convex neighborhoods of zero in G. More precisely, if V ∈
N0(G) is quasi-convex, then

(V )A = {(xα)α∈A ∈ `1(A, G) : sV ((xα)) ≤
√

2}.

Proof. Take into account that if V ∈ N0(G) is quasi-convex, then V = {x ∈ G : ||x||V ≤√
2}. �

Proposition 3.4. Let G be a topological Abelian group and A an infinite set.

(a) If G is complete then `1(A, G) is complete.
(b) If G is metrizable then `1(A, G) is metrizable.
(c) If A is countable and G is metrizable and separable then `1(A, G) is metrizable

and separable.

Proof. Straightforward. �

Let us consider now the notion of absolute summability in groups. A family (xα)α∈A in
a topological Abelian group G is said to be absolutely summable if for every U ∈ N0(G)
the scalar family (kU(xα)) is summable in R (here kU is the Kaplan functional introduced
in Section 2).

A similar definition has been used in [6]. The set of all absolutely summable families
with index set A in a topological Abelian group G will be denoted by `1{A, G}, or `1{G}
if A = N.

Proposition 3.5. Let A be an infinite set and G a topological Abelian group. Then

(a) `1{A, G} is a subgroup of GA; hence itself is a group with respect to the group
operation induced by GA.

(b) The sets having the form

{V }ε,A = {(xα)α∈A ∈ `1{A, G} : k̃V ((xα)) :=
∑
α∈A

kV (xα) ≤ ε},

where V runs over N0(G) and ε ∈ (0, 1], form a fundamental system of neighbor-
hoods of zero for a group topology {τG}A in `1{A, G}.

Proof. This follows directly from Lemma 2.4, (c) and (d). �

In what follows we shall equip the group `1{A, G} with the topology {τG}A that we
have introduced in the Proposition 3.5.

Lemma 3.6. Let G be a topological Abelian group, A an infinite set and H a subgroup
of G with the topology induced from G. Then

(a) `1(A, H) = `1(A, G) ∩HA, `1{A, H} = `1{A, G} ∩HA.
(b) for every V ∈ N0(G) and ε ∈ (0, 1]

(V ∩H)A = (V )A ∩HA and {V ∩H}ε,A = {V }ε,A ∩HA.
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(c) the canonical inclusion maps `1(A, H) ↪→ `1(A, G) and `1{A, H} ↪→ `1{A, G} are
topological embeddings.

Proof. (a) and (b) can be directly deduced from the definitions. (c) follows from (b). �

Lemma 3.7. A family (xα)α∈A in R is absolutely summable if and only if the family
(|xα|)α∈A is summable in R. The topology of `1{A, R} can be generated by the norm

(xα)α∈A 7→
∑
α∈A

|xα|.

Consequently, `1{A, R} and `1(A, R) coincide algebraically and topologically.

Proof. This follows directly from Lemma 2.4(f) and Lemma 3.1. �

Lemma 3.8. Let (tα)α∈A be a family in T. Then (tα)α∈A ∈ `1{A, T} if and only if
(tα)α∈A is multipliable in T. The topology of `1{A, T} can be generated by the quasinorm
|| · ||1 of Lemma 3.2. Consequently, `1{A, T} and `1(A, T) coincide algebraically and
topologically.

Proof. This follows directly from Lemma 2.4(e) and Lemma 3.2. �

Proposition 3.9. Let G be a locally quasi-convex topological Abelian group.

(a) A family (xα) in G is absolutely summable if and only if for every V ∈ N0(G)

rV ((xα)) :=
∑
α∈A

‖xα‖V < ∞.

(b) The topology of `1{A, G} can be defined by means of the quasinorms {rV : V ∈
N0(G)}. More precisely, the sets

[V ]A = {(xα)α∈A ∈ `1{A, G} : rV ((xα)) ≤
√

2},
where V runs over all quasi-convex neighborhoods of zero in G, form a funda-
mental system of neighborhoods of zero for {τG}A.

(c) If (xα) is an absolutely summable family in G then it is presummable, i. e.
`1{A, G} ⊂ `1(A, G). The corresponding inclusion map is continuous.

Proof. (a) This follows at once from Lemma 2.5.
(b) Again from Lemma 2.5 it follows easily that for any quasi-convex V ∈ N0(G),

{V }√2
π

,A
⊂ [V ]A ⊂ {V }1,A.

(c) Fix V ∈ N0(G). Since (xα)α∈A is absolutely summable, the family (kV (xα))α∈A is
summable in R. By Lemma 2.5, the family (‖xα‖V )α∈A also is summable. Hence
there is a finite subset ∆0 ⊂ A such that for any fixed ∆ ∈ F(A) with ∆∩∆0 = ∅
we have

‖
∑
α∈∆

xα‖V ≤
∑
α∈∆

‖xα‖V ≤
√

2.

Suppose now that V is quasi-convex. Then the above inequality implies
∑

α∈∆ xα ∈
V. Since G is locally quasi-convex, we obtain that (xα) is presummable in G. The
continuity of the inclusion map follows from the inclusion [V ]A ⊂ (V )A, which is
valid for any quasi-convex V ∈ N0(G).

�
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Remark 3.10. The assertion in (c) will play an important role in what follows. Its
algebraic part was obtained previously in [6, p. 277]. This statement justifies the name
”absolutely summable family” in the case of locally quasi-convex groups. The local quasi-
convexity assumption is essential for its validity, since for a non-locally quasi-convex
group absolute summability may not imply presummability (cf. [18, p. 315]).

Proposition 3.11. Let G be a locally quasi-convex topological Abelian group. Then
Proposition 3.4 remains valid also for `1{A, G}.

Proof. Straightforward. �

4. GP-nuclear groups

In the previous section, for any given topological Abelian group G and any infinite
set of indices A, we have introduced the new topological Abelian groups `1(A, G) and
`1{A, G} of presummable and absolutely summable families of elements in G. Using these
groups, now we can formulate the following definition:

Definition 4.1. A topological Abelian group G is said to be Grothendieck-Pietsch nu-
clear, or simply GP-nuclear, if `1(G) = `1{G} algebraically and (τG)N = {τG}N.

In what follows we shall deal mainly with locally quasi-convex GP-nuclear groups.
Before giving further comments about this notion let us first demonstrate that in the
definition, instead of index set N we could take an arbitrary infinite set A.

Proposition 4.2. Let G be a locally quasi-convex topological Abelian group. The follow-
ing are equivalent:

(i) G is GP-nuclear.
(ii) For any infinite set of indices A, `1(A, G) = `1{A, G} and {τG}A = (τG)A.
(iii) There is an infinite set of indices A such that `1(A, G) = `1{A, G} and {τG}A =

(τG)A.

Proof. (i)⇒(ii): We follow the scheme in [19, p. 182]. Fix A. Because of Proposition
3.9(c), it is needed only to show that `1(A, G) ⊂ `1{A, G} and {τG}A ⊂ (τG)A. Suppose
that the first inclusion is not true. Then there exists a presummable family (xα)α∈A which
is not absolutely summable. Hence, for some V ∈ N0(G) the scalar family (kV (xα))α∈A

is not summable. This implies that there exists a countable subset A0 ⊂ A such that
(kV (xα))α∈A0 is not summable. But (xα)α∈A was presummable, hence (xα)α∈A0 is also
presummable. Since G is GP-nuclear and A0 is countable, this implies that (xα)α∈A0 is
absolutely summable and, in particular, that (kV (xα))α∈A0 is summable, a contradiction.

Let us show now that {τG}A ⊂ (τG)A. Fix U ∈ N0(G); we shall find V ∈ N0(G) such
that (V )A ⊂ [U ]A. Since G is GP-nuclear, {τG}N ⊂ (τG)N. Hence, there exists V ∈ N0(G)
such that (V )N ⊂ [U ]N. Now it is easy to see that we have also (V )A ⊂ [U ]A.

(iii)⇒(i): We can suppose that N ⊂ A. Let us show that `1(N, G) ⊂ `1{N, G}.
Take (xn) ∈ `1(N, G). Consider the family (yα)α∈A defined as follows: yα = xα if
α ∈ N, yα = 0 otherwise. The fact that (xn) is presummable implies easily that
(yα) is also presummable. By our assumption (yα) ∈ `1{A, G}. This again implies that
(xn) ∈ `1{N, G}.
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Let us show now that (τG)N ⊂ {τG}N. Fix any V ∈ N0(G). By our supposition we
have (τG)A ⊂ {τG}A. Hence there exists U ∈ N0(G) such that (U)A ⊂ [V ]A. It is easy to
check that this implies (U)N ⊂ [V ]N. �

Note that at the level of the definition we can say only that the groups R and T are
GP-nuclear (see Lemma 3.7 and Lemma 3.8). To provide more examples of GP-nuclear
groups and also to show that any nuclear group is GP-nuclear, some preparation is
needed.

Proposition 4.3. Let G be a topological Abelian group and H a topological subgroup of
G.

(a) If `1(G) = `1{G} then `1(H) = `1{H}.
(b) If G is GP-nuclear, then H is GP-nuclear.

Proof. (a) follows from Lemma 3.6(a). (b) follows from (a) and Lemma 3.6(c). �

Proposition 4.4. Let G be a locally quasi-convex metrizable topological Abelian group
and H be a dense subgroup of G. If in the topological group H any presummable sequence
is absolutely summable, then the same is true for G.

Proof. It is possible to construct a fundamental sequence of neighborhoods of zero in G,
(Vn), such that Vn is symmetric for every n ∈ N and

yn ∈ Vn ∀n ∈ N ⇒ (yn) ∈ `1{G}.
Let (xn) be a presummable sequence in G. Let (zn) be a sequence in H such that
zn − xn ∈ Vn for every n ∈ N; hence, the sequence (zn − xn) is absolutely summable
and by Prop. 3.9(c), it is also presummable in G. Therefore, (zn) = (zn − xn) + (xn) is
presummable in G and, by Lemma 3.6(a), also in H. By hypothesis, (zn) is absolutely
summable in H and, again by Lemma 3.6(a), also in G. Therefore (xn) = (xn−zn)+(zn)
is absolutely summable in G. �

Proposition 4.5. Let G be a topological Abelian group, Gi, i ∈ I a family of locally
quasi-convex topological Abelian groups, ui : G → Gi, i ∈ I group homomorphisms.
Suppose that the topology in G is coarsest among the topologies in G which make ui

continuous for every i ∈ I.

(a) If `1(Gi) = `1{Gi} for every i ∈ I, then `1(G) = `1{G}.
(b) If Gi, i ∈ I are GP-nuclear then G is GP-nuclear.

Proof. (a) It is easy to show that G is locally quasi-convex, so by Proposition 3.9(c)
only the inclusion `1(G) ⊂ `1{G} remains to be proved. The following family can
be taken as a basis of neighborhoods of zero for the topology of G :

{
n⋂

j=1

u−1
ij

(Uj) : Uj ∈ N0(Gij), j = 1, . . . , n, n ∈ N}

Let (xm) ∈ `1(G) and U =
⋂n

j=1 u−1
ij

(Uj) as above. Let us show that
∑∞

m=1 kU(xm) <
∞. Observe that

kU(x) = max
j∈{1,...,n}

kUj
(uij(x)) ∀x ∈ G
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and that, since ui is continuous, the sequence (ui(xm))m∈N is presummable and,
hence, absolutely summable in Gi for every i ∈ I. Therefore

∞∑
m=1

kU(xm) =
∞∑

m=1

max
j∈{1,...,n}

kUj
(uij(xm))

≤
∞∑

m=1

n∑
j=1

kUj
(uij(xm)) =

n∑
j=1

∞∑
m=1

kUj
(uij(xm)) < ∞.

(b) By (a) above and Proposition 3.9(c), it remains only to prove that the identity
`1(G) → `1{G} is continuous. Let U =

⋂n
j=1 u−1

ij
(Uj) as above, and ε ∈ (0, 1].

We shall find V ∈ N0(G) such that (V )N ⊂ {U}ε,N. Since for every i ∈ I,
the identity map `1(Gi) → `1{Gi} is continuous, for every j ∈ {1, . . . , n} there
exists Vj ∈ N0(Gij) such that (Vj)N ⊂ {Uj} ε

n
,N. Let V =

⋂n
j=1 u−1

ij
(Vj). For every

(xm)m∈N ∈ (V )N and every j ∈ {1, . . . , n} we have (uij(xm))m∈N ∈ (Vj)N ⊂
{Uj} ε

n
,N. Therefore

∞∑
m=1

kU(xm) =
∞∑

m=1

max
j∈{1,...,n}

kUj
(uij(xm))

≤
n∑

j=1

∞∑
m=1

kUj
(uij(xm)) ≤ n

ε

n
= ε,

hence (xm) ∈ {U}ε,N and (V )N ⊂ {U}ε,N.
�

Corollary 4.6. (a) The Cartesian product of any family of locally quasi-convex GP-
nuclear groups is GP-nuclear.

(b) Any topological Abelian group, endowed with its Bohr topology, is GP-nuclear.

Proof. This follows directly from Proposition 4.5(b) and from the definition of the prod-
uct topology (in the case of (a)) and the definition of the Bohr topology (in the case
of (b)). Recall that the Bohr topology of G is by definition the coarsest topology on G
which makes all characters ϕ ∈ G∧ continuous. �

Remark 4.7. Using Corollary 4.6(a), Proposition 4.3(b) and the structure theorems for
locally compact Abelian groups, it is easy to show that these groups are GP-nuclear.
However, this follows also from Theorem 4.10 below.

Next we shall prove that, under the assumptions of metrizability and local quasi-
convexity on the group G, the set-theoretical identity between the groups of presummable
and absolutely summable families implies the topological equivalence.

Theorem 4.8. Let G be a metrizable locally quasi-convex topological Abelian group.
Then G is GP-nuclear if and only if `1(G) = `1{G} algebraically.

Proof. Step 1. Suppose first that G is separable and complete. By Proposition 3.9(c)
the inclusion map i : `1{G} → `1(G) is continuous and by our supposition it is also
surjective. According to Propositions 3.4 and 3.11, `1(G) and `1{G} are also metrizable,
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separable and complete. From the open homomorphism theorem (see e. g. [9, IX.116,
ex. 28]) it follows that i is open, hence i is a homeomorphism.

Step 2. If G is separable but not complete, consider the completion G̃ of G. G̃ is
complete, metrizable, separable, locally quasi-convex ([8]). Since `1(G) = `1{G}, by

Proposition 4.4 we obtain that `1(G̃) = `1{G̃}. According to Step 1, we can conclude

that G̃ is GP-nuclear. Hence, by Proposition 4.3(b), its subgroup G is also GP-nuclear.
Step 3. Now we consider the general case. Suppose that there exist V ∈ N0(G)

and ε ∈ (0, 1] such that for every W ∈ N0(G), (W )N 6⊂ {V }ε,N. Let (Wn)n∈N be a
fundamental sequence of neighborhoods of zero in G. For every n ∈ N we can find
a sequence (xn,k)k∈N ∈ (Wn) such that (xn,k)k∈N 6∈ {V }ε,N. Consider the subgroup H
generated by {xn,k : n ∈ N, k ∈ N}. H is countable (hence separable), metrizable and
by Prop. 4.3(a), we have `1(H) = `1{H}. According to Step 2, H is GP-nuclear, hence
(τH)N = {τH}N, but (Wn ∩ H)N 6⊂ {V ∩ H}ε,N for every n ∈ N (see Lemma 3.6(b)), a
contradiction. �

Remark 4.9. The assumption of metrizability is essential for the validity of Theorem 4.8.
See Remark 5.9 below.

Now we can formulate our final result:

Theorem 4.10. Let G be a nuclear group. Then G is GP-nuclear.

Proof. Step 1. G is locally quasi-convex ([2, 8.5]) and `1(G) = `1{G} algebraically ([6,
Th. 3]).

Step 2. If G is a metrizable nuclear group, then GP-nuclearity of G follows from Step
1 and Theorem 4.8.

Step 3. Every nuclear group can be embedded into a Cartesian product of metrizable
nuclear groups ([1, 21.3]). Now GP-nuclearity of G follows from Step 2, Corollary 4.6
and Proposition 4.3(b). �

As we have noted in the Introduction, the validity of converse assertion remains open.
We did not succeed to construct any counterexample. By this reason, we think that any
locally quasi-convex GP-nuclear group should be nuclear. That is why we are not giving
here other properties of GP-nuclear groups. Let us mention only that the topological
direct sum of countably many GP-nuclear groups is GP-nuclear.

In the next section we shall show that the additive topological Abelian group of a
locally convex space E is GP-nuclear if and only if E is a nuclear locally convex space.

5. The case of topological vector spaces

In this section we shall check that the notions which we have considered before in the
framework of groups have their ordinary meaning in the case of additive subgroups of
topological vector spaces.

Let E be a (real) topological vector space. E∗ denotes its topological dual space, which
consists of all continuous linear functionals x∗ : E → R. Again, no topology on E∗ is
fixed.
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For a nonempty subset V ⊂ E, V ◦ will denote the ordinary (absolute) polar of V , i.
e. V ◦ = {x∗ ∈ E∗ : |x∗(x)| ≤ 1 ∀x ∈ V }. Also, for a nonempty subset B ⊂ E∗ we shall
denote by ◦B its inverse polar, i. e. ◦B = {x ∈ E : |x∗(x)| ≤ 1 ∀x∗ ∈ B}.

If V is a nonempty subset of E, then pV denotes its Minkowski functional, i. e.
pV (x) = inf{λ > 0 : x ∈ λV }. We agree that inf ∅ = ∞.

Lemma 5.1. If V ∈ N0(E) is absolutely convex, then

pV (x) = sup
x∗∈V ◦

|x∗(x)| ∀x ∈ E.

Proof. This assertion is a standard corollary of the Hahn-Banach theorem. �

Lemma 5.2. If V is a radial subset of E (i. e. rV ⊂ V ∀r ∈ [0, 1]), then

(5.1) kV (x) ≤ pV (x) ∀x ∈ E

and

(5.2) pV (x) ≤ 2kV (x) ∀x ∈ V.

Proof. Suppose first that x 6∈ V. Then, since V is radial, pV (x) ≥ 1 and kV (x) = 1 ≤
pV (x).

Suppose now that x ∈ V. If kV (x) = 0 then nx ∈ V for every n ∈ N. Hence, pV (x) = 0
and in this case (5.1) and (5.2) are proved. If kV (x) = 1

n+1
for some n ∈ N, then nx ∈ V

and (n+1)x 6∈ V. The first condition implies (5.2) and (5.1) follows from the second one,
since V is radial. �

Since E is also an topological Abelian group, it has a topological dual group E∧. The
mapping x∗ → exp(2πix∗) establishes an algebraic isomorphism between the additive
group E∗ and the multiplicative group E∧.

Lemma 5.3. Let U be a nonempty radial subset of E. Then

(a) U. = {exp(π
2
ix∗) : x∗ ∈ U◦}, and the equality

(5.3) ‖x‖U = sup
x∗∈U◦

2 sin(
π

4
|x∗(x)|) ∀x ∈ E

holds.
(b) ‖x‖U ≤ π

2
pU(x) ∀x ∈ E; more precisely, ‖x‖U ≤ 2 sin(π

4
pU(x)) ∀x ∈ U, and if

U is an absolutely convex neighborhood of zero, then pU(x) ≤ 1√
2
‖x‖U for every

x ∈ U.
(c) If U ∈ N0(E), then U is quasi-convex in the additive group of E if and only if U

is closed and absolutely convex.

Proof. (a) Let B = {exp(π
2
ix∗} : x∗ ∈ U◦}. The inclusion B ⊂ U. is clear and valid

for any U . Let now ϕ ∈ E∧. Then ϕ = exp(2πiy∗) for some y∗ ∈ E∗. Suppose
ϕ ∈ U. and fix a nonzero x ∈ U. Then |1−ϕ(x)| = 2 sin |πy∗(x)| ≤

√
2. Since U is

radial we can write also, for any fixed r ∈ [0, 1], that |1−ϕ(rx)| = 2 sin |πy∗(rx)| ≤√
2. This evidently implies that |y∗(x)| ≤ 1

4
. Hence x∗ = 4y∗ ∈ U◦ and ϕ ∈ B.
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(b) The first inequality follows from (5.3), since |x∗(x)| ≤ pU(x) ∀x ∈ E ∀x∗ ∈ U◦.
Using the same reasoning and the fact that sin ξ is monotone in [0, π

4
] we obtain

the second inequality.

The third one is consequence of the equality (5.3), the inequality sin ξ ≥ 2
√

2
π

ξ
(valid for ξ ∈ [0, π

4
]) and Lemma 5.1.

(c) This follows from (5.3) in (a) and Lemma 5.1, taking into account that U is closed
and absolutely convex if and only if U = {x ∈ E : pU(x) ≤ 1}, and quasi-convex
if and only if U = {x ∈ E : ‖x‖U ≤

√
2}.

�

Using this Lemma, the following result can be deduced, which is an important justifi-
cation for the notion of locally quasi-convex group (see [2, 2.4]):

Lemma 5.4. The additive group of a topological vector space E is locally quasi-convex
if and only if E is locally convex.

Let, as in previous sections, A be an infinite set of indices. If E is a topological vector
space then the group of all presummable families `1(A, E) is also a vector space. The
space `1(A, E) where E is a locally convex space has been studied in detail in [17], where
it is denoted by l1A(E) and it is equipped with the ε-topology, generated by the seminorms

(xα)α∈A 7→ εU((xα)) = sup
x∗∈U◦

∑
α∈A

|x∗(xα)|,

where U runs over all absolutely convex neighborhoods of zero in E. In Section 3 we
have introduced in `1(A, E) the topology (τE)A.

Proposition 5.5. If E is a locally convex space then for an arbitrary infinite set of
indices A the ε−topology in `1(A, E) coincides with (τE)A.

Proof. By Lemma 5.4, E is locally quasi-convex. By Proposition 3.3 and Lemma 5.3(c),
(τE)A is generated by the quasinorms sV , where V runs over all closed and absolutely
convex V ∈ N0(E).

Fix a closed and absolutely convex V ∈ N0(E). Using (3.1) in Lemma 3.1, Lemma
5.3(b) and Lemma 5.1 we obtain

sV ((xα)) ≤ π

2
εV ((xα)) ∀(xα) ∈ `1(A, E)

and
εV ((xα)) ≤

√
2sV ((xα)) ∀(xα) ∈ (V )A.

This implies the assertion. �

The following assertion shows that in the case of topological vector spaces our notion
of absolute summability coincides with the similar notion used for this case for instance
in [13], [18] and, for locally convex spaces, in [17].

Proposition 5.6. Let E be a topological vector space, (xα)α∈A a family of elements of
E. Then (xα) is absolutely summable if and only if for every V ∈ N0(E), the family
(pV (xα))α∈A is summable in R.

Proof. This follows from Lemma 5.2. �
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Let E be a locally convex space. Then the group `1{A, E} is also a vector space. This
space is denoted in [17] by l1A{E} and it is equipped with the π-topology, generated by
the seminorms

(xα)α∈A 7→ πU((xα)) =
∑
α∈A

pU(xα),

where U runs over all absolutely convex neighborhoods of zero in E.

Proposition 5.7. If E is a locally convex space then for an arbitrary infinite set of
indices A the π-topology in `1{A, E} coincides with {τE}A.

Proof. Fix a closed and absolutely convex V ∈ N0(E) and (xα) ∈ `1{A, E}. Using

Lemma 5.2, we can conclude that k̃V ((xα)) ≤ πV ((xα)) and

k̃V ((xα)) < 1 ⇒ πV ((xα)) ≤ 2k̃V ((xα)).

These inequalities imply the assertion. �

Taking into account the above Propositions and the Grothendieck-Pietsch theorem
mentioned in the Introduction, we can state:

Theorem 5.8. The additive topological Abelian group of a locally convex space E is
GP-nuclear if and only if E is a nuclear space.

Remark 5.9. Let A be an uncountable set of indices and E = RA
0 be the locally convex

direct sum of A copies of R. It is easy to observe that `1(E) = `1{E} algebraically.
However, E is not nuclear ([17, (4.3.4), p. 78]), hence by Theorem 5.8 it is not GP-
nuclear. This shows that Theorem 4.8 is not true without the assumption of metrizability.

In the case of metrizable spaces we have also the following

Proposition 5.10. The additive topological Abelian group of a metrizable topological
vector space E is GP-nuclear if and only if E is a nuclear locally convex space.

Proof. Since E is GP-nuclear, in particular, we have `1{E} ⊂ `1(E). This, according to
[18, p. 315], implies that E is locally convex. It remains to apply Theorem 5.8. �

Remark 5.11. There exists also a notion of metrizable nuclear topological vector space
in which local convexity is not required ([18, p. 296]). The above Proposition shows that
the notion of GP-nuclear space is more restrictive.
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