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Abstract.
Analysis and design of grounding systems of electrical installations involves computing
the potential distribution in the earth and the equivalent resistance of the system1,2.
Several numerical formulations based on the Boundary Element Method have recently
been derived for grounding grids embedded in uniform soils2,3,4 and in stratified soils5,
which feasibility has been demonstrated with its application to large earthing systems in
a two-layer soil4.
In cases of the analysis of grounding systems buried in more stratified soils or hetero-
geneous, the application of Boundary Element approaches can require a considerable
computational effort. On the other hand, the specific geometry of earthing systems in
practice (a grid of interconnected buried conductors) precludes the use of standard nu-
merical techniques (such as finite elements or finite differences)2,3, since discretization
of the domain (the earth) is required and the obtention of sufficiently accurate results
should imply unacceptable computing efforts.
For these reasons, we have turned our attention to investigate the applicability of numer-
ical formulations based on meshless methods6,7 for the grounding analysis. In this paper,
a meshless technique based on the Moving Least Square method with a point collocation
approach is proposed.
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1. INTRODUCTION

The application of numerical simulation in engineering problems has considerably in-
creased in last decades with the advance in the numerical methods and the development
of computer sciences. As new problems are proposed, more challenges appear in the
computational mechanics field.

The huge development of numerical methods such as Finite Differences or Finite Ele-
ments has represented a significant improvement in this area. However, some difficulties
have been reported when these standard numerical techniques are applied to some en-
gineering applications, as for example the treatment of moving discontinuities (cracks,
shock waves, etc.) and the high-speed impact problems, or the numerical simulation
in material science (fracture treatment, erosion problems, etc.), in fluid mechanics or
electromagnetics6,8. In most of these problems, since an efficient mesh is required in
their discretization, the mesh generation process can imply a lot of difficulties and it
frequently become the bottle neck of the problem (sometimes requiring more computa-
tional effort than the resolution itself).

For this reason, a family of numerical methods where meshes are unnecessary, “the
meshless methods”, has been proposed6,9. In general, the main objective of these me-
thods is to obtain the approximated solution to a given problem only in terms of the
information in some points of the domain without requiring an explicit element mesh
nor, consequently, a connectivity matrix to perform the assembly of the coefficient
matrix. The solution domain is formed by a set of nodal points with an associated
subdomain integrated by the closest points. Thus, the approximation for each central
node or “star node” is obtained with the information provided by its subdomain points,
what means that a local approximation in each node is achieved10.

Although the first meshless methods (such as the Smooth Particle Hydrodynamics,
SPH) were developed twenty years ago in the computational physics field11,12, the more
important theoretical research works about them (such as convergence or stability of
the methods) and their application in computational mechanics have been recently
performed13.

Nayroles14 proposed in 1992 the Diffuse Element Method (DEM), in which only a
mesh of nodes and a boundary description is needed to formulate the Galerkin equa-
tions, the interpolants are polynomials fitted to the nodal values by a weighted least
square approximation, and an auxiliar grid is used to compute the integral expressions
derived from the Galerkin formulation. In 1994, Belystchko et al. modify and refine
this technique, proposing the Element Free Galerkin Method (EFGM)6,9,15.

Liu et al.16,17 have recently proposed a different kind of meshless multiple scale meth-
ods (called Reproducing Kernel Particle methods, RKPM) based on reproducing kernels
and wavelets techniques. The starting point of these methods is the SPH method, where
several corrections and refinements have been introduced13.

Other interesting and promising methods proposed in last years are the family of
meshless techniques for the solution of boundary value problems, called H-p Cloud
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Method18,19. It is based on the idea of constructing functions (h-p clouds) which allow
the implementation of p and h-p adaptivity and can represent polynomials of any degree.

Oñate and other authors7,8,20 have recently proposed a method which combines the
moving least square approximation with a Point Collocation approach to compute the
integral terms. This method completely avoids the necessity of mesh generation, because
no auxiliary grid is required. Furthermore, different techniques can be derived if the
weighting function is fixed (Diffuse Least Square Method, DLS) or it depends on the
point where the approximated value is computed (Moving Least Square Method, MLS).

In this paper, a modified MLS method is proposed for the numerical solution of
problems in computational mechanics. This method combines a moving least square
approach using base interpolating functions normalized within each subdomain, with
a Point Collocation scheme, and it is used for solving potential problems in electrical
engineering applications.

2. MESHLESS METHODS BASED ON LEAST SQUARE APPROXIMA-
TIONS

2.1 Overview of basic concepts

Let A and B be two differential operators, Ω the domain of our problem and Γ its
boundary (Γ = Γt∪Γu). In these terms, a scalar boundary value problem can be written
as,

A(u) = b in Ω (1)

with boundary conditions,
B(u) = t in Γt

u − up = 0 in Γu
(2)

where u is the solution, b and t represent the actions over Ω and along the boundary
Γt, and up is the prescribed value of u along Γu.

Application of weighted residual method allows to obtain a variational form of the
above problem, in terms of the trial approximation function û of the unknown u, as

∫
Ω

Ψi [A(û) − b]dΩ +
∫
Γt

Ψ̂i [B(û) − t]dΓ +
∫
Γu

̂̂Ψi [û − up]dΓ = 0 (3)

which must hold for all members Ψi, Ψ̂i and ̂̂Ψi of suitable classes of test functions
defined on Ω, Γt and Γu

21.
Now, for a given set of np trial functions {Ni} defined on Ω, unknown û can be

discretized in the form

u ∼= û =
np∑
i=1

Niu
h
i = NNNNNNNNNNNNNNtuuuuuuuuuuuuuuh (4)
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being np the total number of nodal points of the solution domain, where the approxi-
mation is evaluated.

On the other hand, in order to preserve the local character of the approximation,
functions {Ni} must satisfy

Ni(xxxxxxxxxxxxxx) 6= 0 if xxxxxxxxxxxxxx ∈ Ωi
Ni(xxxxxxxxxxxxxx) = 0 if xxxxxxxxxxxxxx 6∈ Ωi

(5)

where Ωi is a subdomain of Ω containing n points (n � np).
Starting from this general statement, it is possible to derive specific formulations.

Thus, different definitions of test functions allow to obtain for example the finite element,
the finite difference and the finite volume methods7.

2.2 Modified Moving Least Square Approximations

The basic idea of the Moving Least Square approximation is to replace the FEM
interpolation, valid on an element, by a local weighted least square fitting, valid on a
small neighbourhood of a point and based on its n closest points (domain Ωk). The
local character of the approximation comes from a moving weighting function which
takes its maximum value at this point and vanishes outside a surrounding region.

In order to define properly the approximation at every point, it is necessary that all
subdomains Ωk cover all the interpolation domain. Hereby, these subdomains must over-
lap, and the common areas have to include enough nodal points in order to ensure the
convergence of the method22. In the present paper, for a given nodal point (the “star”
node) the selection of the nodal points included in its subdomain has been performed
by using a simple an effective process based on the “four quadrants” technique7.

If Ωk is the interpolation domain of a function u(xxxxxxxxxxxxxx), it can be approximated by

u(xxxxxxxxxxxxxx) ∼= û(xxxxxxxxxxxxxx) =
m∑

i=1
pi(xxxxxxxxxxxxxx)αi = ppppppppppppppt(xxxxxxxxxxxxxx)αααααααααααααα (6)

where αααααααααααααα = [α1, α2, . . . , αm]t is a set of unknown coefficients, pppppppppppppp(xxxxxxxxxxxxxx) contains a base of
interpolating functions (monomial terms, generally) which order is m.

In the approach presented in this paper, the base interpolating functions are nor-
malized within each subdomain Ωk by dividing for the maximum distance between the
star point i of the domain and the surrounding points. Thus, we can define normalized
coordinates (ξξξξξξξξξξξξξξ ≡ [ξ, η, ζ]) within a subdomain Ωk as,

ξξξξξξξξξξξξξξ(xxxxxxxxxxxxxx) =
[
x − xi

d
,
y − yi

d
,
z − zi

d

]
(7)

where d is the maximum distance between star node i and the points of its subdomain.
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m 1D 2D 3D

1 ppppppppppppppt = [1] ppppppppppppppt = [1] ppppppppppppppt = [1]

2 ppppppppppppppt = [1, ξ] − −

3 ppppppppppppppt = [1, ξ, ξ2] ppppppppppppppt = [1, ξ, η] −

4 − − ppppppppppppppt = [1, ξ, η, ζ]

6 − ppppppppppppppt = [1, ξ, η, ξ2, ξη, η2] −

10 − − ppppppppppppppt = [1, ξ, η, ζ, ξ2, ξη, η2, ηζ, ζ2, ζξ]

Table 1— Normalized base interpolating functions (constant, lineal and quadratic).

On the other hand, function u(xxxxxxxxxxxxxx) can be sampled in the n points belonging to Ωk as,

uuuuuuuuuuuuuuh =




uh
1

uh
2
...

uh
n


 ∼=




û1
û2
...

ûn


 =




ppppppppppppppt
1

ppppppppppppppt
2
...

ppppppppppppppt
n


αααααααααααααα = SSSSSSSSSSSSSSαααααααααααααα (8)

where uh
j are the values of unknown function evaluated in nodal points of Ωk (uh

j =
u(xxxxxxxxxxxxxxj), j = 1, . . . , n), ûj = û(xxxxxxxxxxxxxxj) are their approximated values, and ppppppppppppppj contains the
normalized base interpolating functions evaluated in ξξξξξξξξξξξξξξj (where ξξξξξξξξξξξξξξj = ξξξξξξξξξξξξξξ(xxxxxxxxxxxxxxj)). In table 1
we summarize base interpolating functions in 1D, 2D and 3D for constant, linear and
quadratic order.

This result can be understood as a generalization of the finite element interpolation,
since one obtains this approximation if the number of subdomain points n is chosen
equal to order m of the polinomials base23. In this case, SSSSSSSSSSSSSS in (8) is a square matrix,
and shape functions NNNNNNNNNNNNNN in (4) can be directly obtain combining (6) and (8).

In general, if n > m, SSSSSSSSSSSSSS is a rectangular matrix and the approximation cannot fit all
the uh

j values. However, approximated values û(xxxxxxxxxxxxxx) can be determined by minimizing

the weighted sum of the square differences between the exact value uh
j and the approxi-

mation û(xxxxxxxxxxxxxxj) at each nodal point xxxxxxxxxxxxxxj belonging to the domain of node xxxxxxxxxxxxxxk. The weighting
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function is usually built in such a way that it equals unity in point xxxxxxxxxxxxxxk and vanishes
outside domain Ωk.

In the Moving Least Square approach, this functional can be written as

J(xxxxxxxxxxxxxxk) =
n∑

j=1
ωk(xxxxxxxxxxxxxxj, xxxxxxxxxxxxxxk)(uh

j − û(xxxxxxxxxxxxxxj))
2 =

n∑
j=1

ωk(xxxxxxxxxxxxxxj, xxxxxxxxxxxxxxk)(uh
j − ppppppppppppppt

jαααααααααααααα)2 (9)

where ωk(xxxxxxxxxxxxxxj, xxxxxxxxxxxxxxk) is the weighting function computed in xxxxxxxxxxxxxxj , which shape and span depend
on xxxxxxxxxxxxxxk. It must be pointed out that xxxxxxxxxxxxxxk represents an arbitrary position and can be
replaced for the generic coordinate xxxxxxxxxxxxxx.

Now a standard minimization of (9) with respect to αααααααααααααα

∂J(xxxxxxxxxxxxxx)
∂αi

= 0; i = 1, m (10)

results in
AAAAAAAAAAAAAA(xxxxxxxxxxxxxx)αααααααααααααα = BBBBBBBBBBBBBB(xxxxxxxxxxxxxx)uuuuuuuuuuuuuuh (11)

being

AAAAAAAAAAAAAA(xxxxxxxxxxxxxx) =
n∑

j=1
ωk(xxxxxxxxxxxxxxj, xxxxxxxxxxxxxx)pppppppppppppp(ξξξξξξξξξξξξξξj)pppppppppppppp

t(ξξξξξξξξξξξξξξj) (12)

BBBBBBBBBBBBBB(xxxxxxxxxxxxxx) = [ωk(xxxxxxxxxxxxxx1, xxxxxxxxxxxxxx)pppppppppppppp(ξξξξξξξξξξξξξξ1) , ωk(xxxxxxxxxxxxxx2, xxxxxxxxxxxxxx)pppppppppppppp(ξξξξξξξξξξξξξξ2) , . . . , ωk(xxxxxxxxxxxxxxn,xxxxxxxxxxxxxx)pppppppppppppp(ξξξξξξξξξξξξξξn)] (13)

where ξξξξξξξξξξξξξξj = ξξξξξξξξξξξξξξ(xxxxxxxxxxxxxxj), j = 1, ..., n.
These matrices may also be rewritten as,

AAAAAAAAAAAAAA(xxxxxxxxxxxxxx) = PPPPPPPPPPPPPPWWWWWWWWWWWWWW (xxxxxxxxxxxxxx)PPPPPPPPPPPPPP t (14)

BBBBBBBBBBBBBB(xxxxxxxxxxxxxx) = PPPPPPPPPPPPPPWWWWWWWWWWWWWW (xxxxxxxxxxxxxx) (15)

being auxiliary matrices PPPPPPPPPPPPPP and WWWWWWWWWWWWWW (xxxxxxxxxxxxxx):

PPPPPPPPPPPPPP = [pppppppppppppp(ξξξξξξξξξξξξξξ1) . . . pppppppppppppp(ξξξξξξξξξξξξξξn)] (16)

WWWWWWWWWWWWWW (xxxxxxxxxxxxxx) = diag
[
ωk(xxxxxxxxxxxxxxj, xxxxxxxxxxxxxx)

]
, j = 1, ..., n. (17)

On the other hand, since AAAAAAAAAAAAAA(xxxxxxxxxxxxxx) is a square matrix, unknown coefficients αααααααααααααα yield from
equation (11) as,

αααααααααααααα = CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)uuuuuuuuuuuuuuh (18)
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being CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)
CCCCCCCCCCCCCC(xxxxxxxxxxxxxx) = AAAAAAAAAAAAAA−1(xxxxxxxxxxxxxx)BBBBBBBBBBBBBB(xxxxxxxxxxxxxx) (19)

Matrix CCCCCCCCCCCCCC can be considered as the inverse of SSSSSSSSSSSSSS in equation (8).
Now, the substitution of (18) in (6) allows to obtain an approximation to function

u(xxxxxxxxxxxxxx) in Ωk in the form,
u(xxxxxxxxxxxxxx) ∼= û(xxxxxxxxxxxxxx) = ppppppppppppppt(ξξξξξξξξξξξξξξ)CCCCCCCCCCCCCC(xxxxxxxxxxxxxx)uuuuuuuuuuuuuuh. (20)

Therefore, shape functions are given by,

NNNNNNNNNNNNNNt(xxxxxxxxxxxxxx) = ppppppppppppppt(ξξξξξξξξξξξξξξ)CCCCCCCCCCCCCC(xxxxxxxxxxxxxx). (21)

It is important to remark that the local values of the approximating function do not
fit the nodal unknown values,

û(xxxxxxxxxxxxxxj) 6= uh
j (22)

due to the least square character of the approximation. It must be pointed out that
if n = m, the FEM type approximation is recovered and no effect of weighting is
presented7. Besides, if the weighting function is constant and equals the unity, the
standard least square method is reproduced.

2.3 Weighting Functions in MLS Approximation

Weighting functions play an important role in the performance of this kind of meshless
methods. Depending on the definition of weighting functions one can obtain different
least square methods. Thus, if a fixed function within every interpolation domain Ωi is
defined

ωi(xxxxxxxxxxxxxxi, xxxxxxxxxxxxxxi) = 1, i = 1, ..., np

ωi(xxxxxxxxxxxxxxi, xxxxxxxxxxxxxx) 6= 0, xxxxxxxxxxxxxx ∈ Ωi

ωi(xxxxxxxxxxxxxxi, xxxxxxxxxxxxxx) = 0, xxxxxxxxxxxxxx 6∈ Ωi,

(23)

we obtain the Diffuse Least Square methods (DLS)8.
In the Moving Least Square methods the weighting function is defined so that it is

translated over the domain, and it is maximum over the position of interpolation point
xxxxxxxxxxxxxxk (which subdomain is Ωk) where function û is evaluated. In this case, the weighting
function can be defined as

ωk(xxxxxxxxxxxxxxi, xxxxxxxxxxxxxxk) = 1
ωk(xxxxxxxxxxxxxxi, xxxxxxxxxxxxxx) 6= 0, xxxxxxxxxxxxxx ∈ Ωk

ωk(xxxxxxxxxxxxxxi, xxxxxxxxxxxxxx) = 0, xxxxxxxxxxxxxx 6∈ Ωk,

(24)

In order to preserve its unique definition, the weighting function must be continuous
and differentiable in Ωk and vanish on its boundary and outside, ensuring that the
number of n points within Ωk is equal or greater than order m7.
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In general, the definition of a different weighting function for every interpolating point
xxxxxxxxxxxxxxk is very difficult, presenting an infinite number of posibilities. To overcome this prob-
lem, we can define the weighting functions at nodal points xxxxxxxxxxxxxxi, and use them evaluated
in the arbitrary point xxxxxxxxxxxxxxk. Therefore, ωk(xxxxxxxxxxxxxxi, xxxxxxxxxxxxxxk) may be substituted by ωi(xxxxxxxxxxxxxxi, xxxxxxxxxxxxxxk).
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Figure 1.- Gaussian Weighting function for dmax = 1.5 max‖x−xi‖ and several values
of α: a) α = 0.25, b) α = 0.5.
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Figure 2.- Gaussian Weighting function for dmax = 1.1max‖x− xi‖ and several values
of α: a) α = 0.25, b) α = 0.5.

Different kinds of weight functions have been proposed. In this paper we have con-
sidered two of the most common: the modified conoidal function and the truncated
gaussian distribution. Thus, if we denote ωi(xxxxxxxxxxxxxxi, xxxxxxxxxxxxxxk) = φi(d) where d is the distance
between nodal point xxxxxxxxxxxxxxi and arbitrary point xxxxxxxxxxxxxxk (d = ‖xxxxxxxxxxxxxxi − xxxxxxxxxxxxxxk‖), the modified conoidal
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weighting is

φi(d) =
[
1 −

(
d

dmax

)2]m
(25)

where the parameter m is usually chosen23 as 4, and the truncated gaussian distribution
is

φi(d) =
e−(dc )2

− e−(dmax
c )2

1 − e−(dmax
c )2

(26)

where dmax is the domain of influence of the weight function in Ωk and c is a constant
value, which determines the shape of the weight function. The domain of influence
is obtained by multiplying the maximum distance in Ωk by a constant value (usually
chosen between 1.0 and 2.0)9.

Several definitions for these parameters can be found in the bibliography on the issue:
Belystchko et al.9 suggest

c = αci, 1 ≤ α ≤ 2, ci = max‖xj − xi‖, ∀ j ∈ Sj (27)

where Sj is the minimum set of neighbouring points of xi which construct a polygon
surrounding it, and Oñate7 and Hegen24 propose parameter c proportional to domain
of influence dmax

c = αdmax α = 0.25 − 0.50 (28)

Note that if dmax → ∞ in (25) and (26), then the weight function value tends to
unity and so, the standard least square approach is recovered.

In the following examples presented in this paper, the gaussian weighting function
have been used. For this reason a graphical representation of it is given in figures 1 and
2 for different values of the required parameters.

2.4 Shape Functions and Derivatives

Shape functions can be obtained from equations (14), (15), (19) and (21). In figure
3 we represent the shape functions for different orders of the base functions in the 1D
case. It is also possible to deduce analytical expressions by using constant, linear and
quadratic base interpolating functions in 1D and 2D cases25.

It must be noted that obtaining shape functions within a subdomain requires the
computation and the inversion of matrix AAAAAAAAAAAAAA at every point xxxxxxxxxxxxxx. This process is improved by
using normalized coordinates (7), because the ill-conditioning of this matrix is avoided
for some practical cases.
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Figure 3.- Shape functions obtained by using constant, linear and quadratic base in-
terpolating functions respectively for the 1D case, with n = 3 and n = 5
points of the subdomain (nodal points are marked).
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However, obtaining analytical expressions for derivatives of shape functions up to an
arbitrary order is unaffordable in practice. Therefore, derivatives must be performed
by direct derivation of expression (21). For example, first and second derivatives of the
shape functions for 1D problems result in,

dNNNNNNNNNNNNNNt(x)
dx

=
dppppppppppppppt(ξj)

dx
CCCCCCCCCCCCCC(x) + ppppppppppppppt(ξj)

dCCCCCCCCCCCCCC(x)
dx

d2NNNNNNNNNNNNNNt(x)
dx2 =

d2ppppppppppppppt(ξj)

dx2 CCCCCCCCCCCCCC(x) + ppppppppppppppt(ξj)
d2CCCCCCCCCCCCCC(x)

dx2 + 2
dppppppppppppppt(ξj)

dx

dCCCCCCCCCCCCCC(x)
dx

(29)

being
dCCCCCCCCCCCCCC(x)

dx
= CCCCCCCCCCCCCC(x)WWWWWWWWWWWWWW−1(x)

dWWWWWWWWWWWWWW (x)
dx

(IIIIIIIIIIIIII − PPPPPPPPPPPPPP t(ξj)CCCCCCCCCCCCCC(x))

d2CCCCCCCCCCCCCC(x)
dx2 = −2CCCCCCCCCCCCCC(x)WWWWWWWWWWWWWW−1(x)

dWWWWWWWWWWWWWW (x)
dx

PPPPPPPPPPPPPPt(ξj)
dCCCCCCCCCCCCCC(x)

dx
+

CCCCCCCCCCCCCC(x)WWWWWWWWWWWWWW−1(x)
d2WWWWWWWWWWWWWW (x)

dx2 (IIIIIIIIIIIIII − PPPPPPPPPPPPPP t(ξj)CCCCCCCCCCCCCC(x))

(30)

where matrices PPPPPPPPPPPPPP , WWWWWWWWWWWWWW (x) CCCCCCCCCCCCCC(x) are given by (16), (17) and (19), and IIIIIIIIIIIIII is the identity
matrix.

Derivatives in 2D and 3D cases or high order ones may be obtained in analogous way
as (29) and (30).

3. STATEMENT OF DISCRETIZED EQUATIONS

The selection of test functions in the general varational form (3) allows to derive
different formulations. In the examples presented in this paper a point collocation
method has been implemented, in order to take advantage of the meshless charac-
ter of the approximation20. Other approaches based on integral methods have been
proposed15,16,18, but require some kind of auxiliar grid to evaluate the resulting inte-
grals.

The point collocation scheme (Ψi = Ψ̂i = ̂̂Ψi = δi in expression (3), where δi is the
Dirac delta) leads to the set of equations,

[A(û)]i − bi = 0 in Ω
[B(û)]i − ti = 0 in Γt

ûi − up = 0 in Γu

(31)

Now, if function û is approximated by linear combination (4) of the shape functions
(21) the previous system of equations may be written in the standard form as,

KKKKKKKKKKKKKKuuuuuuuuuuuuuuh = ffffffffffffff (32)

11



Ignasi Colominas, Mar Chao, Fermı́n Navarrina and Manuel Casteleiro

where coefficient matrix KKKKKKKKKKKKKK is banded (but not necessary symmetric), ffffffffffffff is also known
(contains the contributions from terms b and t and prescribed values up), and uuuuuuuuuuuuuuh contains
the unknown values of the function evaluated in nodal points20.

The validation of this moving least square method with a point collocation approach
has been succesfully performed for different numerical tests25. Furthermore, Oñate et
al.7,8,20 have applied this method with promising results to the solution of problems
in fluid mechanics. As we present in the next section, the meshless character of this
formulation may represent an important improvement in the treatment of some problems
in electrical engineering like the grounding analysis.

4. APPLICATION TO GROUNDING ANALYSIS

A safe grounding system has to guarantee the integrity of equipments and the con-
tinuity of the service under fault conditions —providing means to carry and dissipate
electrical currents into the ground—, and to safeguard that persons working or walking
in the surroundings of the grounded installation are not exposed to dangerous electrical
shocks. To achieve these goals, the equivalent electrical resistance of the system must
be low enough to assure that fault currents dissipate mainly through the grounding grid
into the earth, while maximum potential differences between close points on the earth
surface must be kept under certain tolerances (step, touch and mesh voltages)1.

Physical phenomena underlying fault currents dissipation into the earth can be mo-
delled by means of Maxwell’s Electromagnetic Theory 26. Constraining the analysis
to the obtention of the electrokinetic steady-state response, and neglecting the inner
resistivity of the earthing electrode, the 3D problem associated to an electrical current
derivation to earth can be written as

divσσσσσσσσσσσσσσ = 0, σσσσσσσσσσσσσσ = −γγγγγγγγγγγγγγ gradV in E;
σσσσσσσσσσσσσσtnnnnnnnnnnnnnnE = 0 in ΓE ; V = VΓ in Γ; V −→ 0, if |xxxxxxxxxxxxxx| → ∞;

(33)

where E is the earth, γγγγγγγγγγγγγγ its conductivity tensor, ΓE the earth surface, nnnnnnnnnnnnnnE its normal
exterior unit field and Γ the electrode surface2,3. Thus, when the electrode attains
a voltage VΓ (Ground Potential Rise or GPR) relative to a distant grounding point,
the solution to this problem gives the potential V and the current density σσσσσσσσσσσσσσ at an
arbitrary point xxxxxxxxxxxxxx. Further assumption VΓ = 1 is not restrictive at all, since V and σσσσσσσσσσσσσσ
are proportional to VΓ.

For some practical purposes, the assumption of homogeneous and isotropic soil can
be considered accurate1, and the tensor γγγγγγγγγγγγγγ can be substituted by a meassured appa-
rent scalar conductivity γ. Otherwise, a multi-layer model (representing the ground
as stratified into two or more layers of appropriate thickness, each one with a different
value of γ) could be accepted without risking a serious calculation error27. Although the
kind of techniques described in this paper can be applied to other soil models, examples
presented in this paper are restricted to uniform soil models which earth surface is
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horizontal. Hence, problem (33) can be written in terms of the Neumann Exterior
Problem3:

∆V = 0 in E,
d V

d nE
= 0 in ΓE, V = VΓ in Γ, V −→ 0, if |xxxxxxxxxxxxxx| → ∞. (34)

On the basis of this model for homogeneous and isotropic soils, we derived a numer-
ical formulation based on the Boundary Element Method, which has been succesfully
applied to the analysis of large grounding systems2,3. Recently, we have developed a
new boundary element approach for earthing grids embedded in stratified soils, which
feasibility has been demonstrated with its application to the practical case of a ground-
ing system in a two-layer soil5,28. In cases in which we are interested to analyse earthing
systems buried in more stratified soils or heterogeneous, the application of Boundary
Element approaches implies a considerable computational effort.

On the other hand, the use of standard numerical techniques, such as finite elements,
requires the discretization of domain E, the generation of a very complicated mesh of
elements and the obtention of sufficiently accurate results would imply an extremely
high (out of range) computational effort3,4. For these reasons, we have turned our
attention to investigate the applicability of numerical formulations based on meshless
methods for the solution of this problem.

The moving least square method with a point collocation approach presented in this
paper has been applied to two test problems of grounding systems formed by a toroidal
electrode. Due to the axial symmetry of the problem, solution can be obtained by using
a 2D model.

The first example we present is a numerical test performed for a toroidal electrode in
an infinite domain. The interior diameter of the ring is 20 m and the electrode diameter
is 3 m. This case has been solved with two different point distributions for 1699 points
and 1089 points obtained by means of the program GEN4U29. The base interpolating
functions used are linear and all subdomains contain at least five points. Figures 4 and
5 show the nodal point distribution, the potential profile along a line, contour lines
around the electrode and the potential distribution around it.

These numerical results agree significantly with those obtained by using a very dense
point distribution and with results of a finite element program. Furthermore, the use
of quadratic base interpolating functions allows to obtain more accurate results with a
very acceptable computing effort.

The second example considered is the case of a toroidal electrode horizontally buried
to a depth of 7 m. The interior diameter of the ring is 20 m and the electrode diameter
is 3 m. This problem has been solved with two different point distributions with 1485
points and 3019 points also obtained by means of GEN4U29. As in the previous case,
the base interpolating functions chosen are linear and a minimum of five points have
been used in all subdomains. Figures 6 and 8 show the nodal point distributions and
potential profiles along different lines. In figures 7 and 9, we represent the contour lines
and the potential distribution around the electrode.
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5. CONCLUSIONS

A moving least square interpolation method with a point collocation approach has
been presented. This method takes advantage of the fact that no auxiliary mesh is
required, and so, it is possible to obtain the solution to boundary value problems from
a finite set of points of the domain.

Meshless character of these methods may represent an important improvement in
the computational analysis of some problems in the electrical engineering field, in which
the use of standard numerical techniques (such as finite elements) is precluded due to
large computational efforts required in the discretization process. An example of these
engineering applications is the analysis and design of grounding systems of electrical
installations.

In this paper, the MLS formulation has been applied to the solution of two test cases
of grounding analysis, consisting of toroidal electrodes. Although further study and
development are still required in order to assess the practical aspects of this method,
first results obtained for different distributions of points are very promising requiring
a low computational cost. More accurate results are possible to obtain by using dense
point distributions or by means of higher order base interpolating functions, although
in these cases the computing effort can significantly increase.
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[7] Oñate E., Idelsohn S., Zienkiewicz O.C., Taylor R.L., A finite point method in compu-
tational mechanics. Applications to convective transport and fluid flow , International
Journal for Numerical Methods in Engineering (1996).
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