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Abstract

A Boundary Element approach for the numerical com-
putation of substation grounding systems is presented.
In this general formulation, several widespread intuitive
methods (such as Average Potential Method) can be iden-
ti�ed as the result of speci�c choices for the test and
trial functions and suitable assumptions introduced in the
BEM formulation to reduce computational cost. While
linear and parabolic leakage current elements allow to in-
crease accuracy, computing time is drastically reduced by
means of new completely analytical integration techniques
and semi-iterative methods for solving linear equations
systems. This BEM formulation has been implemented
in a speci�c Computer Aided Design system for ground-
ing analysis developed in the last years. The feasibility of
this new approach is demonstrated with its application to
a real problem.

1 Introduction

In general, a safe earthing system has the objectives of
granting the integrity of equipments and the continuity
of the service under fault conditions |providing means
to carry and dissipate electric currents into the ground|
and safeguarding that a person working or walking in the
surroundings of grounded installations is not exposed to
the danger of su�ering an electrical shock. To achieve
these goals, the equivalent electrical resistance of the sys-
tem must be low enough to assure that fault currents dis-
sipate mainly through the grounding grid into the earth,
while maximum potential gradients between close points
on the earth surface must be kept under certain tolerances
(step, touch and mesh voltages) [1,2].

Physical phenomena underlying fault currents dissipation
into the earth can be modelled by means of Maxwell's
Electromagnetic Theory [3]. Constraining the analysis to
the obtention of the electrokinetic steady-state response
and neglecting the inner resistivity of the earthing con-
ductors |therefore, potential can be assumed constant in
every point of the electrodes surface|, the 3D problem
associated with an electrical current derivation to earth
can be written as

�������������� = � grad(V ); div(��������������) = 0 in E;

��������������tnnnnnnnnnnnnnnE = 0 in �E ; V = V� in �;
V �! 0 if jxxxxxxxxxxxxxxj ! 1;

(1)

where E is the earth,  its conductivity tensor, �E the
earth surface, nnnnnnnnnnnnnnE its normal exterior unit �eld and � the
electrode surface [4,5]. The solution at this problem gives
the potential V and the current density �������������� at an arbitrary
point xxxxxxxxxxxxxx when the electrode attains a voltage V� (Ground
Potential Rise or GPR) relative to a distant grounding
point assumed to be at the potential of remote earht.
Since V and �������������� are proportional to the GPR value, the
normalized boundary condition V� = 1 is not restrictive
at all.

On the other hand, the leakage current density � at an
arbitrary point of the earthing electrode surface, the total
surge current I� leaked into the ground when fault condi-
tions occur, and the equivalent resistance of the earthing
system Req (apparent resistance of the electrode-earth cir-
cuit) can be written as:

� = ��������������tnnnnnnnnnnnnnn; I� =

Z Z
�

� d�; Req =
V�

I�
: (2)

being nnnnnnnnnnnnnn the normal exterior unit �eld to �.

For practical purposes, the hypothesis of homogeneous
and isotropic soil can be considered acceptable [2], and
its conductivity tensor  can be substituted by a meas-
sured apparent scalar conductivity . Otherwise, since
the kind of techniques presented in this paper can be ex-
tended to multi-layer soil models (these models represent
the ground strati�ed into two or more layers of appro-
priate thickness each one with a di�erent value of  [6]),
further discussion and examples are restricted to uniform
soils. If one further assumes that the earth surface is
horizontal, symmetry allows to rewrite (1) in terms of a
Dirichlet Exterior Problem [5].

In practice, the particular geometry of the earthing elec-
trode in most electrical installations |a grid of inter-
connected bare cylindrical conductors, horizontally buried
and supplemented by a number of vertical rods, which ra-
tio diameter/lenght uses to be relatively small (� 10�3)|
makes very di�cult the obtention of analytical solutions
to this kind of problems. Therefore, the use of standard
numerical techniques (such as Finite Di�erences or Finite
Elements) requires the discretization of domain E, and
the obtention of su�ciently accurate results should imply
unacceptable computing e�orts in memory storage and
CPU time.



On the other hand, since computation of potential is only
required on the earth surface �E , and the equivalent re-
sistance can be easily obtained in terms of the leakage
current density at points of the earthing electrode surface
(2), a Boundary Element approach |which would only
require the discretization of the grounding surface �|
seems to be the right choice.

2 General Boundary Element Formulation

The application of results of the Potential Theory to prob-
lem (1) allows to express the potential V at an arbitrary
point xxxxxxxxxxxxxx on the earth E in terms of the unknown leakage
current density � in �, in the integral form:

V (xxxxxxxxxxxxxx) =
1

4�

Z Z
��������������2�

k(xxxxxxxxxxxxxx; ��������������)�(��������������) d� (3)

with the weakly singular kernel k(xxxxxxxxxxxxxx; ��������������)

k(xxxxxxxxxxxxxx; ��������������) =

�
1

r(xxxxxxxxxxxxxx; ��������������)
+

1

r(xxxxxxxxxxxxxx; ��������������0)

�
; r(xxxxxxxxxxxxxx; ��������������) =

��xxxxxxxxxxxxxx� ��������������
��; (4)

where ��������������0 is the symmetric of �������������� with respect to the earth
surface [4,5].

Since (3) holds on the earthing electrode surface �, the
boundary condition V� = 1 leads to a Fredholm integral
equation of the �rst kind on � with quasi-singular kernel
(4), which solution is the unknown leakage current density
� [5]. Moreover, the variational formZ Z

��������������2�
w(��������������) (V (��������������)� 1) d� = 0: (5)

must be satis�ed for all members w(��������������) of a suitable class
of test functions de�ned on �.

Now, for a given set of N trial functions fNi(��������������)g de�ned
on �, and for a given set of M 2D boundary elements
f��g, the unknown leakage current density � and the
earthing electrode surface � can be discretized in the form

�(��������������) =

NX
i=1

�iNi(��������������); � =

M[
�=1

��; (6)

and a discretized form of potential (3) can be written as

V (xxxxxxxxxxxxxx) =

NX
i=1

�i Vi(xxxxxxxxxxxxxx); Vi(xxxxxxxxxxxxxx) =

MX
�=1

V �
i (xxxxxxxxxxxxxx); (7)

V �
i (xxxxxxxxxxxxxx) =

1

4�

Z Z
��������������2��

k(xxxxxxxxxxxxxx; ��������������)Ni(��������������) d�
�: (8)

Then, for a given set of N test functions fwj(��������������)g de�ned
on �, the variational statement (5) is reduced to the sys-
tem of linear equations

NX
i=1

Rji�i = �j; j = 1; : : : ;N ; (9)

Rji =

MX
�=1

MX
�=1

R
��
ji ; �j =

MX
�=1

�
�
j ; (10)

R
��

ji =
1

4�

Z Z
��������������2��

wj(��������������)

Z Z
��������������2��

k(��������������; ��������������)Ni(��������������) d�
�d��

(11)

�
�
j =

Z Z
��������������2��

wj(��������������) d�
�: (12)

In practice, the number of 2D discretizations required to
solve the above stated equations in real problems implies
an extremely large number of degrees of freedom. More-
over, coe�cients matrix in (9) is full and the computation
of each term requires double integration on a 2D domain,
and therefore some additional simpli�cations must be in-
troduced to overcome the problem complexity.

3 Aproximated 1D Variational Statement

With this scope, it is possible to introduce in our state-
ment one of the hypotheses widely used in most of the
practical methods related in the literature [1,2,8]. Thus,
taking into account the real geometry of grounding grids
in practice, it seems reasonable to consider that the leak-
age current density is constant around the cross section
of the cylindrical electrode [4,5].

Hence, if we denote L the whole set of axial lines of the
buried conductors, b�������������� the orthogonal projection over the

bar axis of a given generic point �������������� 2 �, �(b��������������) the electrode
diameter, C(b��������������) the circumferential perimeter of the cross

section at b��������������, and b�(b��������������) the approximated leakage current
density at this point (assumed uniform around the cross
section), equation (3) can be written in the form

bV (xxxxxxxxxxxxxx) = 1

4�

Z
b��������������2L

"Z
��������������2C(b��������������) k(xxxxxxxxxxxxxx; ��������������) dC

# b�(b��������������) dL: (13)

This assumption of circumferential uniformity seems to
be quite adecquate and not too restrictive due to the spe-
ci�c geometry of these earthing electrodes in real cases.
Nevertheless, because the leakage current is not really uni-
form around the cross section, boundary condition V� = 1
can not be exactly satis�ed now at every point on the
electrode surface and variational equality (5) does not
hold anymore. Therefore, if we restrict the class of trial
functions to those with circumferential uniformity, that is
w(��������������) = bw(b��������������) 8�������������� 2 C(b��������������), (5) results:Z
b��������������2L bw(b��������������)

"
��(b��������������) � 1

4�

Z
b��������������2LK(b��������������;b��������������) b�(b��������������) dL# dL = 0

(14)
for all members bw(b��������������) of a suitable class of test functions

de�ned on L, being K(b��������������;b��������������) the integral kernel
K(b��������������;b��������������) = Z

��������������2C(b��������������)
"Z
��������������2C(b��������������) k(��������������; ��������������) dC

#
dC: (15)

Resolution of integral equation (14) involves discretiza-
tion of the domain |in this case, the whole set of axial



lines of the buried conductors L|. Thus, for given sets of
n trial functions f bNi(b��������������)g de�ned on L and m 1D bound-
ary elements fL�g, the unknown approximated leakage
current density b� and the whole set of axial lines of the
buried conductors L can be discretized in the form

b�(b��������������) = nX
i=1

b�i bNi(b��������������); L =

m[
�=1

L�; (16)

In these terms, a discretized version of the aproximated
potential (13) can be obtained as

bV (xxxxxxxxxxxxxx) =
nX
i=1

b�i bVi(xxxxxxxxxxxxxx); bVi(xxxxxxxxxxxxxx) = mX
�=1

bV �
i (xxxxxxxxxxxxxx); (17)

bV �
i (xxxxxxxxxxxxxx) =

1

4�

Z
b��������������2L�

"Z
��������������2C(b��������������) k(xxxxxxxxxxxxxx; ��������������) dC

# bNi(b��������������) dL:
(18)

On the other hand, for a suitable selection of n test func-
tions f bwj(b��������������)g de�ned on L, variational statement (14) is
reduced to the system of linear equations

nX
i=1

bRjib�i = b�j; j = 1; : : : ; n; (19)

bRji =

mX
�=1

mX
�=1

bR��
ji ; b�j = mX

�=1

b�j�; (20)

bR��

ji =
1

4�

Z
b��������������2L� bwj(b��������������)

"Z
b��������������2L� K(b��������������;b��������������) bNi(b��������������) dL

#
dL;

(21)b��j =

Z
b��������������2L� � �(b��������������) bwj(b��������������) dL: (22)

On a regular basis, the computational work required to
solve a real problem is drastically reduced by means of
this 1D formulation with respect to the one given by ex-
pressions (9), (10), (11) and (12), because integrals on the
circumferential perimeter of electrodes are taken apart of
integrals on their axial lines. However, extensive comput-
ing is still required, mainly for circumferential integration
in (18) and (21), and further simpli�cations are necessary
to reduce computing time under acceptable levels [5].

3.1 Simpli�ed 1D Boundary Element Formulation

The inner integral of kernel k(xxxxxxxxxxxxxx; ��������������) in (18) can be written
as sum of two terms:Z
��������������2C(b��������������) k(xxxxxxxxxxxxxx; ��������������) dC =

Z
��������������2C(b��������������) dC

r(xxxxxxxxxxxxxx; ��������������)
+

Z
��������������2C(b��������������) dC

r(xxxxxxxxxxxxxx; ��������������0)
:

(23)

Analyzing the �rst of them, distance r(xxxxxxxxxxxxxx; ��������������) between any
point xxxxxxxxxxxxxx of the domain and any point �������������� at the earthing
electrode surface can be expressed as:

r(xxxxxxxxxxxxxx; ��������������) =

s��xxxxxxxxxxxxxx� b����������������2 + �2(b��������������)
4

�
��xxxxxxxxxxxxxx� b�����������������(b��������������) sin! cos �

(24)

where � is the angular position in the perimeter of cross
section of the cylindrical conductor, and ! is the angle
formed by the vector that links xxxxxxxxxxxxxx with its projection b��������������
(b�������������� � xxxxxxxxxxxxxx) and the unit vector of bar axis bssssssssssssss(b��������������), that is

sin! =

�� (b�������������� � xxxxxxxxxxxxxx) � bssssssssssssss(b��������������) ����b�������������� � xxxxxxxxxxxxxx
�� (25)

as it is shown in �gure 1.

(ξ)

ξ

ξ

θ

ω

Fig. 1 { Analysis of distance between an arbitrary
point xxxxxxxxxxxxxx and any point �������������� at the electrode
surface.

The elliptic integral obtained when r(xxxxxxxxxxxxxx; ��������������) in (24) is sub-
stituted into (23) can be aproximated by means of numer-
ical integration. In practice, this simpli�cation is quite
accurate because we are interested in computing poten-
tial at points on the earth surface, which are very far from
the earthing electrode in comparison with the size of its
diameter. Accordingly, distance between points xxxxxxxxxxxxxx and b�������������� is
several orders of magnitude bigger than the bar diameter
�(b��������������) [5]. At the same time, this result can be interpreted
as an approximation of distance r(xxxxxxxxxxxxxx; ��������������) in (24), in terms

of the distance between xxxxxxxxxxxxxx and its orthogonal projection b��������������
and the cylindrical diameter at this point:

r(xxxxxxxxxxxxxx; ��������������) � br(xxxxxxxxxxxxxx;b��������������) =

s��xxxxxxxxxxxxxx� b����������������2 + �2(b��������������)
4

: (26)

Finally, analyzing the second term in (23) in the same way
as (24), an approximation to the circumferential integral
of inner kernel in (18) can be obtained:Z

��������������2C(b��������������) k(xxxxxxxxxxxxxx; ��������������) dC � � �(b��������������) bk(xxxxxxxxxxxxxx;b��������������); (27)

bk(xxxxxxxxxxxxxx;b��������������) =  1br(xxxxxxxxxxxxxx;b��������������) + 1br(xxxxxxxxxxxxxx; b��������������0)
!
: (28)

bk(xxxxxxxxxxxxxx;b��������������) is a modi�ed kernel of the original one (4). In
this new expression, the orthogonal projection of �������������� over



the bar axis and the diameter of electrode are used, and
distance r(xxxxxxxxxxxxxx; ��������������) is rede�ned in terms of them.

On the other hand, taking into account the above analysis
of k(xxxxxxxxxxxxxx; ��������������), a �rst approximation to inner kernel in (15) can
now be derived

K(b��������������;b��������������) � Z
��������������2C(b��������������) � �(b��������������) bk(��������������;b��������������) dC: (29)

Next, bearing in mind the hypothesis used in (26), dis-

tance between points �������������� and b�������������� can be expressed in terms
of the distance between points over the axes of electrodes
(b�������������� and b��������������) and the diameter �(b��������������), so that kernel (15) can
now be simpli�ed in the same manner as (27):

K(b��������������;b��������������) � � �(b��������������)� �(b��������������) bbk(b��������������;b��������������); (30)

bbk(b��������������;b��������������) =

 
1bbr(b��������������;b��������������) + 1bbr(b��������������; b��������������0)

!
; (31)

bbr(b��������������;b��������������) =

s��b��������������� b����������������2 +
�2(b��������������) + �2(b��������������)

4
: (32)

The use of the unexpensive approximations (27) and (30)
to evaluate the circumferential integrals of kernels, takes
advantage of the fact that double integration in the gen-
eral boundary element approach is performed on a 1D
domain |expressions (18) and (21)|.

For di�erent selections of the sets of trial and test func-
tions, speci�c formulations can be obtained. Thus, for
constant leakage current elements, Point Colocation (Di-
rac deltas as trial functions) leads to the very early intu-
itive methods, such as the superposition of current point
sources, whereas Galerkin formulation (test functions id-
entical to trial functions) leads to a kind of more recent
methods, such as \Average Potential Method, APM "),
based on the idea that each segment of conductor is sub-
stituted for a \line of point sources over the length of
the conductor" [10]. In these methods, coe�cients (21)
correspond to \mutual and self resistances"between \seg-
ments of conductor" [8]. Naturally, for higher order ele-
ments it is now possible to derive more advanced formula-
tions [5]. Further discussion and examples are restricted
to Galerkin type formulations, where the matrix of co-
e�cients of linear system (19) is symmetric and positive
de�nite [9].

Now, if we take into account simpli�cations achieved in
the circumferential integration and diameter of conduc-
tors is assumed constant within each element, �nal expres-
sions for computing potential coe�cients (18) and linear
system coe�cients (21) can be written as

bV �
i (xxxxxxxxxxxxxx) �

��

4

Z
b��������������2L� bk(xxxxxxxxxxxxxx;b��������������) bNi(b��������������) dL: (33)

bR��

ji �
�����

4

Z
b��������������2L� bNj(b��������������)

"Z
b��������������2L� bbk(b��������������;b��������������) bNi(b��������������)dL

#
dL;

(34)

where �� and �� represent the constant diameter within
elements L� and L�. Obviously, (34) leads to a symmetric
matrix.

Nevertheless, computation of the remaining integrals in
(33) and (34) is not obvious, and the cost of numerical
integration is still out of range due to the undesirable be-
haviour of the integrands. For this reason, it is essential to
derive explicit formulae in order to compute analytically
these coe�cients.

4 Analytical Integration of Coe�cients

Successive hypotheses introduced in the general boundary
element formulation have allowed to reduce the complex-
ity of the grounding grid analysis. Thus, each cylindri-
cal conductor can be modelled by means of a segment of
straight line |the electrode axis| de�ned by its ends,
and provided with an additional geometrical property |
the electrode diameter| which is taken into account in
the calculations.

Now, potential created by an electrode at any point xxxxxxxxxxxxxx
of the domain (17) can be obtained as sum of the con-
tributions (33) of each conductor of the grounding grid.
These terms correspond to the i trial function contribu-
tion to potential generated by the element L� belonging
to electrode L at an arbitrary point xxxxxxxxxxxxxx. On the other hand,
the simpli�ed 1D boundary element discretization of the
problem leads to system (19), which coe�cients bR��

ji in
(34) correspond to the i trial function contribution to po-
tential generated by the element L� over other element
L� , weighted by the j test function.

4.1 Computation of Potential Coe�cients bV �
i (xxxxxxxxxxxxxx)

Any point b�������������� 2 L� can be expressed in terms of the mid-

point b��������������0 of the element L�, its length L� and its unit vec-
tor bssssssssssssss�, for a value of scalar parameter � varying within the
range �1 and 1 (domain of isoparametric trial functions)
[11]. Thus, (33) can be rewritten as the line integral in a
single variable �:

bV �
i (xxxxxxxxxxxxxx) =

�� L�

8

Z �=1

�=�1

bk(xxxxxxxxxxxxxx;b��������������(�)) bNi(b��������������(�)) d�: (35)

In the same way, it is possible to express the integral
kernel bk(xxxxxxxxxxxxxx;b��������������(�)) as a function of �, given that it depends

on terms (28) in the form br(xxxxxxxxxxxxxx;b��������������(�)). Thus, if we denote
p0 the distance between the point xxxxxxxxxxxxxx and its orthogonal
projection over the electrode axial line, and q the distance
between this projection and the mid-point b��������������0, distancebr(xxxxxxxxxxxxxx;b��������������(�)) results in

br(xxxxxxxxxxxxxx;b��������������(�)) = L
�

2

pbp2 + (bq � �)2; (36)

bp2 =

�
p0

L
�=2

�2

+

�
��

L
�

�2

; bq = q

L
�=2

(37)

Obviously this analysis can also be performed with the

term br(xxxxxxxxxxxxxx; b��������������0(�)) in (28), and we should obtain analogous



expressions in terms of new geometrical parameters bp0 andbq0, corresponding to points (xxxxxxxxxxxxxx; b��������������0) [5].

On the other hand, trial functions bNi(b��������������(�)) in (35) can be
expressed |by means of their series expansion until the
second order term| as parabolic functions in the vari-
able �, which coe�cients depend on known values of the
functions and their �rst and second derivatives [5].

Finally, if we substitute in (35) expressions obtained in
(36) for the integral kernel (28) and those developed for

the trial functions bNi(b��������������(�)), taking into account that both
depend on �, it is possible to integrate explicitly the po-
tential coe�cient bV �

i (xxxxxxxxxxxxxx). After a relatively long analytical
development, (35) results in

bV �
i (xxxxxxxxxxxxxx) =

��

4
[ �(bp; bq) + �(bp0; bq0) ] (38)

where function �(bp; bq) depends only on geometrical pa-
rameters bp; bq and known coe�cients of trial functions [5].

4.2 Computation of System Coe�cients bR��

ji

In analogous way to previous development, any point b�������������� 2
L� can be expressed in terms of the mid-point b��������������0 of the el-
ement L� , its length L� and its unit vector bssssssssssssss�, for a value
of scalar parameter � varying within the range �1 and
1 (domain of isoparametric trial functions) [11]. Thus,
taking into account the development achieved in (35), ex-
pression (34) can be rewritten as two line integrals, one
in the single variable � and other in �,

bR��

ji =
� �� �� L� L�

16

(Z �=1

�=�1

bNj(b��������������(�))"Z �=1

�=�1

bbk(b��������������(�);b��������������(�)) bNi(b��������������(�)) d�
#
d�

) (39)

It may be seen that the line integral in � is similar to
(35), although in this case, the integral kernel is given by
(31). If geometrical parameters bp(b��������������(�)) and bq(b��������������(�)) are
suitably rede�ned, expression (35) can be written [5] |by
means of (38)| in the form

bR��
ji =

�����L�

8

(bR��

ji (
b��������������1;b��������������2; b��������������1; b��������������2)

+ bR��

ji (
b��������������01;b��������������02; b��������������1; b��������������2)

) (40)

bR��

ji (
b��������������1;b��������������2; b��������������1; b��������������2)=Z �=1

�=�1

bNj(b��������������(�))[�(bp(b��������������(�)); bq(b��������������(�)))]d�
(41)

bp2(b��������������(�)) = �p0(b��������������(�))
L
�=2

�2

+

�
��

L
�

�2

+

�
��

L
�

�2

; (42)

bq(b��������������(�)) = q(b��������������(�))
L
�=2

: (43)

On the other hand, trial functions bNj(b��������������(�)) can be ex-
pressed |by means of their series expansion until the sec-
ond order term| as parabolic functions in the variable �,

which coe�cients are known [5], in the same way as it has

been previously made with bNi(b��������������(�)). Finally, substitution
of trial functions bNj(b��������������(�)) in (41) leads to a line integral
in the variable �.

4.2.1 Integration of Coe�cients bR��

ji (
b��������������1;b��������������2; b��������������1; b��������������2)

Each coe�cient bR��

ji (
b��������������1;b��������������2; b��������������1; b��������������2) in (40) can be under-

stood as the potential inuence generated by an elec-
trode on another. Since electrodes are perfectly de�ned
by cartesian coordinates of their axial ends, we can anal-
yse the �rst of two terms and apply results and formulae
obtained to the second one, considered as the integration
between two di�erent bars (with the symmetric points tob��������������1 and b��������������2).
Therefore, integration of coe�cients (41) requires in the
�rst place a geometrical analysis of two cylindrical bars in
the space. This study allows to express adimensional dis-
tances bp(b��������������(�)) and bq(b��������������(�)) in (42) and (43) as a function
of �, and a set of known geometrical parameters depend-
ing on the relative position between electrodes [5]. Now, if
�nal expressions for bp(b��������������(�)) and bq(b��������������(�)) derived with the
previous analysis, and those obtained for trial functionsbNj(b��������������(�)) are substituted in (41), and we make suitable
arrangements, results in

bR��

ji (
b��������������1;b��������������2; b��������������1; b��������������2) =

u=2X
u=0

w=4X
w=0

K
(u)
w '(u)

w ; (44)

where coe�cients K(u)
w can directly be computed from

the jth trial function, the geometrical parameters of elec-
trodes and the ith trial function [5].

On the other hand, remaining line integrals in the vari-

able � are incorporated in coe�cients '
(u)
w (44). The

obtention of explicit formulae to evaluate these expres-
sions is not obvious, and requires quite a lot of analytical
work. Moreover, this circumstance gets worse because co-

e�cients '
(u)
w depends also on the geometrical parameters

of electrodes, which possible values increase the casuistry
in the di�erent type of integrals we must analyse, due to
singularities that can be produced [5].

For this reason, in the beginning of this project [12] ana-
lytical expressions for the more common spatial arrange-
ments of electrodes |perpendicular and parallel bars|
were derived. Although these techniques represented a
signi�cant improvement in the area of earthing analysis,
it was necessary to complete the analysis of integrals inde-
pendently of geometrical parameters, in order to compute
them analytically in all cases.

At present, this development has been completely �n-
ished, and now we get ready explicit expressions to com-

pute all coe�cients '
(u)
w , although its derivation is too

cumbersome to be made explicit in this paper [5]. These
formulae have been developed in order to make easy the
later implementation in a computer code, in such a way
as its evaluation is made in recurrent form, using as few
as possible operations with trascendental functions. Nev-
ertheless, its programation must be done carefully, due to



the huge complexity of the �nal formulae of coe�cients in
(44), its casuistry and its ill-conditioning.

5 Application to a Real Case

This simpli�ed 1D numerical approach based on the Bo-
undary Element Method with analytical integration of
coe�cients of the linear equations system, is very struc-
tured, and it has been developed to be implemented in a
Computer Aided Design system.

Nowadays, all these techniques derived by authors have
allowed to develop the system TOTBEM for the computer
design of earthing grids of electrical subestations [13].
With this system, now it is possible to analyse accu-
rately grounding grids of huge installations, with accept-
able computing requirements in memory storage and CPU
time.

The example that we present is the E. R. Barber�a substa-
tion grounding, close to Barcelona, Spain. The earthing
system of this substation is a grid of 408 cylindrical con-
ductors with constant diameter (12.85 mm) buried to a
depth of 80 cm, being the total surface protected up to
6500 m2. The total area studied is a rectangle of 135 m by
210 m, which implies a surface up to 28000 m2. The plan
of the grounding grid and its characteristics are presented
in �gure 1. a) and table 1.

E. R. BARBER�A GROUNDING SYSTEM

Max. Grid Dimensions: 145 m� 90 m

Total Protected Surface: 6500 m2

Grid Depth: 0.80 m

Number of Grid Electrodes: 408

Max./Min. Electrode Length: 19 m/3 m

Electrode Diameter: 12.85 mm

Fault Current: 30 kA

Earth Resistivity: 60 
m

Table 1.|E. R. Barber�a Substation: Characteristics.

The numerical model used in the resolution of this prob-
lem has been a Galerkin formulation. Each bar is dis-
cretized in one single constant leakage current density
element, which implies 408 degrees of freedom. On the
other hand, total fault current considered in this study
has been 30 kA (due to the linear relation between poten-
tial and intensity, we can indistinctly consider the Ground
Potential Rise V� or the Total Surge Current I�).

Results are given in table 2. Moreover, �gure 1. b) shows
the potential distribution on ground surface when fault
condition ocurrs, �gure 1. c) represents the potential pro-
�le along a line, and �gure 1. d) is a 3D view of po-
tential level on surface. This numerical model of the
grounding grid has only required seven and a half min-
utes of CPU time in a conventional personal computer
(i.e. PC486/16Mb to 66MHz). It is obviuos that this

proposed approach allows the complete characterization
of a grounding grid in a riguorous and reliable way, with
very acceptable computing requirements.

E. R. BARBER�A GROUNDING SYSTEM:

1D BEM MODEL & RESULTS

Type of Element: Constant

Number of Nodes: 238

Number of Elements: 408

Ground Potential Rise: 9.45 kV

Equivalent Resistance: 0.315 


CPU Time: 450 s

Computer: PC486/16Mb/66MHz

Table 2.|E.R. Barber�a Substation: Numerical Model
and BEM Results.

This example has also been solved increasing the num-
ber of boundary elements used in the numerical model,
by means of the subdivision of each one of the electrodes
of the grid. At the scale of the whole grid, results and
potential distributions are not noticeably improved by in-
creasing discretization, therefore as a general rule, it will
not be considered necessary the aditional subdivision of
grid conductors. In cases in which we need more accurate
results, i.e. to compute touch or step voltages [1], the use
of higher order elements (linear or parabolic) are more
advantageous in comparison with constant elements [5].

6 Conclusions

A Boundary Element approach for the analysis of sub-
station earthing systems has been presented. For 3D
problems, some reasonable assumptions allow to reduce
a general 2D BEM formulation to an approximated less
expensive 1D version. By means of new advanced inte-
gration techniques, it is possible to compute analytically
all coe�cients of the numerical model, and reduce com-
puting requirements under acceptable levels. Moreover,
more accurate and e�cient formulations can be derived.

The numerical approach proposed is a general method-
ology that |for the �rst time| allows to obtain results
with high accuracy in the grounding grid analysis of elec-
trical substations of medium/big sizes, nearly in real time
and using a low cost and widely available conventional
computer. Obviously, study of big installations requires
higher computing e�orts with more powerful computers,
although always with a very reasonable cost.
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-- E. R. Barberá Substation: Plan of the grounding grid, Potential distribution on ground surface (kV),
Potential profile along a line, 3D view of potential level on ground surface.
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