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Abstract At small scales, the interaction of multicompo-
nent fluids and solids can be dominated by capillary forces
giving rise to elastocapillarity. Surface tension may deform
or even collapse slender structures and thus, cause impor-
tant damage in microelectromechanical systems. However,
under control, elastocapillarity could be used as a fabrica-
tion technique for the design of new materials and struc-
tures. Here, we propose a computational model for elasto-
capillarity that couples nonlinear hyperelastic solids with
two–component immiscible fluids described by the Navier–
Stokes–Cahn–Hilliard equations. As fluid–structure interac-
tion computational technique, we employ a boundary–fitted
approach. For the spatial discretization of the problem we
adopt a NURBS–based isogeometric analysis methodology.
A strongly–coupled algorithm is proposed for the solution
of the problem. The potential of this model is illustrated
by solving several numerical examples, including, capillary
origami, the static wetting of soft substrates, the deforma-
tion of micropillars and the three dimensional wrapping of a
liquid droplet.
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1 Introduction

Multiphase and multicomponent flows have been widely stud-
ied [11,48] due to their importance in, e.g., mechanical, en-
vironmental and biomedical engineering. However, their me-
chanical interaction with solids has not received much atten-
tion until recently [36,49]. Understanding how these flows
interact with solids is crucial to study, for example, cavitation–
induced structural damage, phase–change–driven implosion
and elastocapillarity. The phenomenon of elastocapillarity,
whereby capillary forces at fluid–fluid interfaces deform solids,
is particularly intriguing. Elastocapillarity [51,58], can be
observed, for example, when water interacts with hair and
other flexible fibers, which tend to assemble into bundles
[9,29,28]. Another example can be found in our organism,
where capillary forces may cause atelectasis [44], that is, the
complete or partial collapse of the pulmonary alveoli. How-
ever, it is in micro and nanotechnologies, where the effect
of elastocapillary forces is sparking greatest interest. Under-
standing elastocapillarity is essential for the design of new
materials and devices at small scales. Capillary forces can
damage microelectromechanical structures [50,63] and car-
bon nanotube carpets [21], but, under control, they can be
used as a fabrication technique to deform straight pillars and
build complex and robust 3D geometries at the micrometer
and nanometer scales [25,65]. A numerical method capable
of capturing the physics behind elastocapillary phenomena
could become a useful tool for a better design of microfab-
ricated products.

In the last decades, numerous efforts have been devoted
to develop numerical methods for Fluid–Structure Interac-
tion (FSI) problems. FSI methods may be classified into two
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main groups, namely, boundary-fitted [6,53] and immersed
approaches [15,19,42,75]. These methods have been applied
to a large variety of problems such as, wind turbines [5,
35], heart valves [43,62], parachutes [55,60], and cell-scale
blood flow [16,70] to name a few. However, most of the ap-
plications addressed up to now involve classical fluids. The
interaction of complex fluids and solids has remained prac-
tically unexplored, although there has been recent works
involving two–phase fluids [13,12]. In this paper, we pro-
pose a model for the interaction of two–component immis-
cible flows and hyperelastic structures. We use the model to
study several elastocapillary problems, including, capillary
origami [49], deformation of elastic micropillars [64] and
static wetting of soft substrates [57].

Our computational method uses a boundary–fitted ap-
proach with a sharp fluid–solid interface. However, our ap-
proach to two–component immiscible flows is based on the
Navier–Stokes–Cahn–Hilliard (NSCH) equations, which treat
the fluid–fluid interface using a phase–field method. Phase–
field approaches can be thought of as an alternative to sharp–
interface methods in which interfaces are represented by thin
transition regions. The key idea is to define an order param-
eter, or phase–field, that varies smoothly on the entire com-
putational domain and acts as a marker for the location of
the different phases. This notably simplifies the numerics
compared to sharp–interface methods, although it implies
the resolution of an additional equation for the evolution of
the order parameter. This equation usually includes higher–
order partial–differential operators that are stiff in space and
time, and produce thin layers that evolve dynamically over
the computational domain. Different strategies have been
developed to deal with these computational challenges [31–
33] allowing to use phase–field models for a wide range
of applications such as, liquid-vapor transformations [14,
45], cancer growth [46,74], tumor angiogenesis [69,71], cell
motility [52,47], and dendritic growth [40]. For a thorough
discussion on phase-field models, see [34]. The NSCH equa-
tions can also be thought of as an extension of the incom-
pressible Navier–Stokes equations to a multicomponent fluid
with regularized surface tension. As a consequence, the NSCH
model inherits the saddle point nature of the incompressible
Navier-Stokes equations. This produces difficulties in the
numerics that can be tackled using inf-sup stable discretiza-
tions, stabilized formulations or divergence-conforming bases.

In this work, we tackle the computational challenges as-
sociated with phase–field models by adopting Isogeometric
Analysis (IGA) for the spatial discretization of the problem.
IGA is a generalization of the finite element method that
was proposed in [37]; see also [23]. IGA started using Non–
Uniform Rational B–Splines (NURBS) as basis functions
and, subsequently, was generalized to T–Splines (see, for ex-
ample, [2,4,8,17,18]) and subdivision surfaces [73,72]. In
the numerical examples presented here, we have used isoge-

ometric analysis based on NURBS, but our algorithms could
be used in conjunction with other types of basis functions.
To be able to use equal-order spaces for pressure and ve-
locity in the fluid dynamics equations, we adopt a stabilized
formulation for the NSCH equations based on the variational
multiscale method (VMS). Regarding the time discretiza-
tion, we use the generalized–α method [3,22,39].

2 Governing equations

2.1 Kinematics

Let us denote by x̂xx the coordinates of a reference domain
Ωx̂xx, which is fixed in time. We define a function φ̂φφ that
maps the reference domain Ωx̂xx into its spatial configura-
tion at time t, Ωt , that is, φ̂φφ : Ωx̂xx×]0,T [→ Ωt , where ]0,T [
is the time interval of interest. We denote by xxx the coor-
dinates in the spatial configuration, i.e., Ωt 3 xxx = φ̂φφ(x̂xx, t).
Using the mapping φ̂φφ , we can define the displacement of
a point in the referential domain ûuu(x̂xx, t) = φ̂φφ(x̂xx, t)− x̂xx, and
its velocity v̂vv = ∂ φ̂φφ/∂ t. Let us also define a material do-
main ΩXXX and the function φφφ : ΩXXX×]0,T [→Ωt , which maps
each material particle XXX into its spatial coordinate at time
t, that is, xxx = φφφ(XXX , t). From the function φφφ , we can de-
fine the particle displacement uuu(XXX , t) = φφφ(XXX , t)−XXX , its ve-
locity vvv = ∂φφφ/∂ t = ∂uuu/∂ t, and the deformation gradient
FFF = ∂φφφ/∂XXX .

In what follows, we will make use of the Eulerian coun-
terpart of the particle velocity vvv, namely, vvv◦φφφ

−1. However,
in most cases, we will only use one symbol to denote a
physical quantity. Furthermore, to avoid ambiguity in our
notation we will use subscripts to clarify how derivatives
should be understood. We will adopt the subscript XXX (re-
spectively, x̂xx) to indicate that the derivative is taken by hold-
ing XXX (respectively, x̂xx) fixed. When no subscript is specified,
the derivative is assumed to be taken by holding xxx fixed. For

example,
∂vvv
∂ t

∣∣∣∣
X

denotes the time derivative of the velocity

holding XXX fixed.

2.2 Governing equations of fluid mechanics

In our model, the dynamics of the two–component fluid sys-
tem is described by the Navier–Stokes–Cahn–Hilliard equa-
tions. The model describes the motion of two immiscible
and incompressible fluids with matched density and viscos-
ity. In the Eulerian frame, the equations can be written as
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∇ · vvv = 0, (1a)

ρ

(
∂vvv
∂ t

+ vvv ·∇vvv
)
−∇ ·σσσ f −ρ fff = 0, (1b)

∂ϕ

∂ t
+∇ · (ϕvvv)−∇ ·

(
Mϕ γ f ∇

(
1
ε

W ′ϕ − ε∆ϕ

))
= 0, (1c)

where ρ is the fluid density that we consider to be con-
stant, fff represents body forces per unit mass and ϕ ∈ [−1,1]
is the phase–field variable. Wϕ is a double–well potential,
which we define as Wϕ =

(
ϕ2−1

)2
/4. The constant γ f de-

notes the surface tension and ε is the interface thickness.
Mϕ represents the mobility, which is assumed to be constant
for the examples presented herein. The fluid Cauchy stress
tensor σσσ f is given by σσσ f = τττ − pIII− γ f ε∇ϕ ⊗∇ϕ, where
⊗ denotes the usual vector outer product, p represents the
pressure and τττ is the viscous stress tensor. For incompress-
ible Newtonian fluids, τττ is defined as τττ = µ̄

(
∇vvv+∇T vvv

)
,

where µ̄ is the viscosity coefficient, which is assumed to be
constant. A complete derivation of Eqs. (1) from the sharp–
interface theory may be found in [34].

2.3 Governing equations of solid mechanics

The behavior of the structure will be described by the mo-
mentum balance equation, which can be written in Lagrangian
form as

ρ
s
0

∂ 2uuu
∂ t2

∣∣∣∣
X
= ∇X ·PPP+ρ

s
0 fff s. (2)

Here, ρs
0 is the mass density in the initial configuration, PPP

denotes the first Piola–Kirchhoff stress tensor and fff s repre-
sents body forces per unit mass. To completely define the
system, we adopt a nonlinear hyperelastic material as con-
stitutive theory. In particular, we use the generalized neo–
Hookean model with dilatational penalty proposed in [54].
In this model, the second Piola–Kirchhoff stress tensor is
defined as

SSS = µJ−2/d
(

III− 1
d

tr(CCC)CCC−1
)
+

κ

2
(
J2−1

)
CCC−1, (3)

where κ and µ are the material bulk and shear moduli, which
can be obtained from the Young modulus E and the Pois-
son ratio νs using the relations κ = E/(3(1− 2νs)) and
µ = E/(2(1+νs)); III represents the identity tensor and d is
the number of spatial dimensions; tr(·) denotes the trace op-
erator and J is the determinant of the deformation gradient,
that is, J = det(FFF), where FFF = III+∇X uuu. Finally, CCC stands for
the Cauchy–Green deformation tensor, i.e., CCC = FFFT FFF . From
SSS, the first Piola–Kirchhoff stress tensor can be computed
by taking PPP = FFFSSS. Let us also define the solid Cauchy stress
tensor σσσ s = J−1FFFSSSFFFT = J−1PPPFFFT .

3 Numerical formulation

3.1 Computational framework

We adopt a boundary–fitted technique with matching dis-
cretization at the fluid–structure interface. This choice per-
mits to strongly impose kinematic boundary conditions at
the fluid-solid interface and results in more accurate solu-
tions at the fluid–solid interface as long as the mesh does
not undergo large distortions. We use the Lagrangian de-
scription to derive the semi–discrete form of the solid equa-
tions and the Arbitrary Lagrangian–Eulerian (ALE) descrip-
tion [26,27,38] for the fluid domain. This means that the
fluid mesh needs to be updated to accommodate the motion
of the structure. For this purpose, we solve an additional
linear elasticity problem subject to displacement boundary
conditions coming from the motion of the solid. In ALE ap-
proaches, the partial time derivatives in the governing equa-
tions are taken by holding x̂xx fixed while the space derivatives
are taken with respect to xxx. This particularity enables to use
semi–discrete methods, even when the equations are posed
on a moving domain [3]. The ALE form of the NSCH equa-
tions can be derived using the techniques presented in [6,
27]. This leads to the system

∇ · vvv = 0, (4a)

ρ

(
∂vvv
∂ t

∣∣∣∣
x̂
+(vvv− v̂vv) ·∇vvv

)
−∇ ·σσσ f −ρ fff = 0, (4b)

∂ϕ

∂ t

∣∣∣∣
x̂
+(vvv− v̂vv) ·∇ϕ−∇ ·

(
Mϕ γ f ∇

(
1
ε

W ′ϕ − ε∆ϕ

))
= 0,

(4c)

where v̂vv is the velocity of the fluid domain [3].
Remark Another boundary–fitted approach that could be
adopted as alternative to ALE methods is the space–time
technique. This would allow to discretize directly the Eule-
rian form of the NSCH equations; see [6,7,59,61] for recent
advances in space–time methods.

3.2 Computational domain

We will denote by Ω0 the initial configuration of the fluid

and solid domains combined, that is, Ω0 = Ω
f

0 ∪Ω s
0, with

Ω
f

0 ∩Ω s
0 = /0, where superscripts s and f refer to the solid

and the fluid domain, respectively. Ω0 is adopted as the ma-
terial and reference configuration. The spatial configuration
of Ω0 at time t is designated as Ωt , and can also be decom-

posed as Ωt = Ω
f

t ∪Ω s
t , with Ω

f
t ∩Ω s

t = /0. Let us also de-
note by Γ0 and Γt the fluid–solid interface at the initial and
the current configuration, respectively. Γ s

0 and Γ s
t (Γ f

0 and
Γ

f
t ) will refer to the boundary of the solid (fluid) domain

without the part of the fluid–structure interface.
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3.3 Continuous problem in the weak form

3.3.1 Fluid mechanics

In the fluid mechanics problem we focus on solid–wall bound-
ary conditions, by setting the velocity to a given value. Ad-
ditionally, and with the purpose of attaining well–posedness
in the NSCH system, we enforce the following boundary
conditions on the phase–field variable,

∇ϕ ·nnn f = |∇ϕ|cos(θc) on Γt , (5a)

∇ϕ ·nnn f = 0 on Γ
f

t , (5b)

and

Mϕ γ f ∇

(
1
ε

W ′ϕ − ε∆ϕ

)
·nnn f = 0 on Γ

f
t ∪Γt , (6)

where nnn f is the unit outward normal to the fluid boundary
and θc denotes the contact angle between the fluid–fluid in-
terface and the solid, measured in the phase of value ϕ = 1.
The imposition of boundary condition (5) can be notably
simplified by introducing in our problem a new variable ϒ =

∆ϕ . This implies that the phase–field equation (4c) is split
into two lower–order equations, allowing to use the classi-
cal finite element method for the spatial discretization of the
problem.

In preparation for the spatial discretization of the fluid
dynamics problem, we derive a weak form of Eqs. (4). Let
L2(Ω f

t ) be the space of scalar–valued functions that are square–
integrable on Ω

f
t . We define the trial function space for the

pressure variable as

X p =

{
p | p ∈ L2

(
Ω

f
t

)
,
∫

Ω
f

t

pdΩ
f

t = 0
}
. (7)

The weighting function space for the pressure variable Y p

will be indentical to X p. The trial solution spaces for ϒ

and ϕ are denoted by X ϒ and X ϕ , respectively. We take
X ϒ =X ϕ = H1(Ω f

t ), where H1(Ω f
t ) is the Sobolev space

of square–integrable functions with square–integrable first
derivatives. The weighting function spaces for ϒ and ϕ are
identical to their corresponding trial solution spaces. The
trial solution space X v for vvv is also a subset of H1(Ω f

t )

whose members satisfy all Dirichlet boundary conditions.
The weighting function space Y v is identical to X v, but
all restrictions on the Dirichlet boundary are homogeneous.
With the above considerations, the variational formulation
of the fluid mechanics problem may be stated as follows:
Find p ∈ X p, vvv ∈ X v, ϕ ∈ X ϕ and ϒ ∈ X ϒ such that
∀w1 ∈ Y p, www2 ∈ Y v, w3 ∈ Y ϕ and w4 ∈ Y ϒ ,

B f (w1,www2,w3,w4, p,vvv,ϕ,ϒ ; v̂vv) = F f (www2). (8)

where

B f (w1,www2,w3,w4, p,vvv,ϕ,ϒ ; v̂vv) =∫
Ω

f
t

w1
∇ · vvvdΩ

f
t +

∫
Ω

f
t

www2 ·ρ
(

∂vvv
∂ t

∣∣∣∣
x̂
+(vvv− v̂vv) ·∇vvv

)
dΩ

f
t

+
∫

Ω
f

t

∇www2 : σσσ
f dΩ

f
t +

∫
Ω

f
t

w3
(

∂ϕ

∂ t

∣∣∣∣
x̂
+(vvv− v̂vv) ·∇ϕ

)
dΩ

f
t

+
∫

Ω
f

t

∇w3 ·Mϕ γ f ∇

(
1
ε

W ′ϕ − εϒ

)
dΩ

f
t

+
∫

Ω
f

t

w4
ϒ dΩ

f
t +

∫
Ω

f
t

∇w4 ·∇ϕdΩ
f

t

−
∫

Γt

w4|∇ϕ|cos(θc)dΓt , (9)

and

F f (www2) =
∫

Ω
f

t

www2 ·ρ fff dΩ
f

t . (10)

Note that the variational formulation (8)–(10) weakly
imposes the NSCH equations and the boundary conditions
(5) and (6). If Dirichlet boundary conditions are not set on
the entire boundary for velocity, then the variational formu-
lation weakly imposes the conjugate stress–free condition
on that part of the boundary.

In order to stabilize the NSCH equations, we make use
of the VMS method and split the weighting and the trial so-
lution spaces corresponding to pressure and velocity into a
coarse and a fine scale subspaces, that is, X p =X p

g ⊕X p
q ,

X v = X v
g ⊕X v

q , Y p = Y p
g ⊕Y p

q and Y v = Y p
g ⊕Y v

q .
Here, the subscripts g and q denote the coarse and the fine
scales, respectively. This implies that p, vvv, w1 and www2 may
be written as

p = pg + pq, (11a)

w1 = w1
g +w1

q, (11b)

vvv = vvvg + vvvq, (11c)

www2 = www2
g +www2

q. (11d)

3.3.2 Solid mechanics

In order to define suitable boundary conditions for the solid
mechanics problem, we assume that the solid boundary Γ s

0
can be decomposed into Dirichlet and Neumann parts, which
will be designated as (Γ s

0 )D and (Γ s
0 )N , respectively. We de-

note by X s = X s(Ω s
0) a trial function space whose mem-

bers satisfy all Dirichlet boundary conditions. Y s =Y s(Ω s
0)

is a weighting function space identical to X s, which verifies
homogeneous conditions on (Γ s

0 )D. The trial and weighting
function spaces are subsets of H1

(
Ω s

0
)
. The variational for-

mulation of the solid mechanics problem may be stated as
follows: Find uuu ∈X s such that ∀wwws ∈ Y s,

Bs(wwws,uuu) = Fs(wwws), (12)
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where

Bs(wwws,uuu) =
∫

Ω s
0

(
wwws ·ρs

0
∂ 2uuu
∂ t2

∣∣∣∣
X
+∇X wwws : PPP

)
dΩ

s
0 (13)

and

Fs(wwws) =
∫

Ω s
0

wwws ·ρs
0 fff sdΩ

s
0 +

∫
(Γ s

0 )N

wwws · ĥhhd(Γ s
0 )N . (14)

The previous variational formulation weakly enforces the
Neumman boundary condition PPPn̂nns = ĥhh on (Γ s

0 )N , where n̂nns

represents the unit outward normal to the solid boundary in
the material domain and ĥhh is a given traction.

3.3.3 Mesh motion

As the solid deforms, the fluid domain needs to be updated to
accommodate to the fluid–structure interface motion. With
this purpose, we solve a succession of fictitious linear elastic
boundary–value problems [3,41,56,66–68], using as bound-
ary conditions the displacement data on the fluid–solid in-
terface. The fluid domain motion will be associated to the
mapping φ̂φφ . Let us define the displacement of the reference
domain at time t as

ûuut(x̂xx) = ûuu(x̂xx, t) = φ̂φφ t(x̂xx)− x̂xx. (15)

where φ̂φφ t(x̂xx)= φ̂φφ(x̂xx, t). To determine φ̂φφ t , and thus, the motion
of the fluid domain, we use the identity

φ̂φφ t(x̂xx) = φ̂φφ t̃(x̂xx)+(ûuut − ûuut̃)(x̂xx), (16)

where ûuut − ûuut̃ is obtained from a linear elastic boundary–
value problem. Here, t̃ < t is a time instant close to t. In
general, in our problems t̃ is the final configuration of the
previous time step.

Let us define uuum as uuum = ûuut− ûuut̃ . uuum is obtained by solv-
ing fictitious linear–elastic boundary value problems, sub-
ject to the Dirichlet boundary conditions uuum = uuut ◦ φφφ

−1
t −

uuut̃ ◦φφφ
−1
t̃ on Γ̃t , where uuut and uuut̃ are the particle displacement

at times t and t̃, respectively. These Dirichlet boundary con-
ditions are strongly built into the trial solution space V m =

V m(Ω f
t̃ ), which is a subset of H1(Ω f

t̃ ). W m = W m(Ω f
t̃ )

is a weighting function space identical to V m except that it
satisfies homogeneous conditions on the boundary. The vari-
ational formulation of the fluid domain motion can be stated
as follows: Find uuum ∈ V m such that ∀wwwm ∈W m,

Bm(wwwm,uuum) = 0, (17)

where

Bm(wwwm,uuum) =
∫

Ω
f

t̃

∇
sym
x̃ wwwm : 2µ

m
∇

sym
x̃ uuumdΩ

f
t̃

+
∫

Ω
f

t̃

∇x̃ ·wwwm
λ

m
∇x̃ ·uuumdΩ

f
t̃ , (18)

Here, ∇x̃ is the gradient operator on Ωt̃ and ∇
sym
x̃ is its sym-

metric counterpart; µm and λ m are the Lamé parameters of
the fictitious elastic problem.

3.3.4 Coupled FSI problem

The variational formulation of the coupled fluid–structure
interaction problem is stated as follows: Find pg ∈X p

g , pq ∈
X p

q , vvvg ∈X v
g , vvvq ∈X v

q , ϕ ∈X ϕ , ϒ ∈X ϒ , uuu ∈X s and
uuum ∈ V m such that ∀w1

g ∈ Y p
g , www2

g ∈ Y v
g , w3 ∈ Y ϕ , w4 ∈

Y ϒ , wwws ∈ Y s and wwwm ∈W m,

B f (w1
g,www

2
g,w

3,w4, pg + pq,vvvg + vvvq,ϕ,ϒ ; v̂vv) (19)

+Bs(wwws,uuu)+Bm(wwwm,uuum) = F f (www2)+Fs(wwws),

with the following compatibility conditions at the fluid–structure
interface:

vvvg =
∂uuu
∂ t
◦φφφ
−1 on Γt , (20a)

www2
g = wwws ◦φφφ

−1 on Γt . (20b)

Note that Eq. (20a) imposes strongly the kinematical com-
patibility at the fluid–structure interface while Eq. (20b) leads
to a weak enforcement of traction compatibility, i.e., σσσ f nnn f +

σσσ snnns = 0 on Γt , where nnns is the unit outward normal to the
solid boundary in the spatial configuration.

3.4 Semidiscrete formulation

We use NURBS–based isogeometric analysis for the spatial
discretization of the coupled problem. Let us define finite–
dimensional approximations of the funtional spaces, namely,
X p

h ⊂X p
g , X v

h ⊂X v
g , X ϕ

h ⊂X ϕ , X ϒ
h ⊂X ϒ , X s

h ⊂
X s, and V m

h ⊂ V m. Analogously, we introduce Y p
h ⊂ Y p

g ,
Y v

h ⊂ Y v
g , Y ϕ

h ⊂ Y ϕ , Y ϒ
h ⊂ Y ϒ , Y s

h ⊂ Y s, and W m
h ⊂

W m.
Let us now use ϕh ∈X ϕ

h and the coarse–scale velocity
vvvh ∈X v

h and pressure fields ph ∈X p
h to approximate the

fine scales of the velocity and pressure fields as

vvvq =−
τSUPS

ρ
rrrM, (21a)

pq =−ρνLSICrC. (21b)

Here, rrrM and rC are given by

rrrM = ρ

(
∂vvvh

∂ t

∣∣∣∣
x̂
+(vvvh− v̂vvh) ·∇vvvh

)
−∇ ·σσσ f

h −ρ fff , (22a)

rC = ∇ · vvvh, (22b)

where σσσ
f
h = µ̄

(
∇vvvh +∇T vvvh

)
− phIII − γ f ε∇ϕh ⊗∇ϕh. For

the stabilization parameters τSUPS and νLSIC we use the ex-
pressions

τSUPS =

(
4

∆ t2 +(vvvh− v̂vvh) ·GGG(vvvh− v̂vvh)+CIν
2GGG : GGG

)−1/2

,

(23a)

νLSIC = (tr(GGG)τSUPS)
−1 , (23b)
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where ∆ t is, in a time-discrete context, the time step; CI =

1/12 is a positive constant; ν is the kinematic viscosity; and
GGG denotes the element metric tensor [6]. The stabilized for-
mulation of the fluid problem over the finite element spaces
can be stated as: Find ph ∈X p

h , vvvh ∈X v
h , ϕh ∈X ϕ

h and
ϒh ∈ X ϒ

h such that ∀w1
h ∈ Y p

h , www2
h ∈ Y v

h , w3
h ∈ Y ϕ

h and
w4
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h ,

B f
MS(w
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h,www
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h,w

3
h,w

4
h, ph,vvvh,ϕh,ϒh; v̂vvh) = F f (www2

h), (24)

where
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t
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Here, nel is the total number of elements on the fluid mesh
and Ω

f ,e
t the region of the physical space occupied by ele-

ment e at time t.
We can now approximate the coupled FSI problem (19)

by the following variational formulation over the finite ele-
ment spaces: Find ph ∈X p

h , vvvh ∈X v
h , ϕh ∈X ϕ

h , ϒh ∈X ϒ
h ,

uuuh ∈ X s
h and uuum

h ∈ V m
h such that ∀w1

h ∈ Y p
h , www2

h ∈ Y v
h ,

w3
h ∈ Y ϕ

h , w4
h ∈ Y ϒ

h , wwws
h ∈ Y s

h and wwwm
h ∈W m

h ,

B f
MS(w

1
h,www

2
h,w

3
h,w

4
h, ph,vvvh,ϕh,ϒh; v̂vvh)+Bs(wwws

h,uuuh)

+Bm(wwwm
h ,uuu

m
h ) = F f (www2

h)+Fs(wwws
h), (26)

where

ph(xxx, t) = ∑
A∈I f

pA(t)NA(xxx, t), (27a)

w1
h(xxx, t) = ∑

A∈I f

w1
ANA(xxx, t), (27b)

uuuh(XXX , t) = ∑
A∈Is

uuuA(t)N̂A(XXX), (27c)

wwws
h(XXX) = ∑

A∈Is

wwws
AN̂A(XXX), (27d)

uuum
h (x̃xx, t̃) = ∑

A∈I f

ûuuA(t̃)ÑA(x̃xx, t̃), (27e)

wwwm
h (x̃xx, t̃) = ∑

A∈I f

wwwm
A ÑA(x̃xx, t̃), (27f)

v̂vvh(xxx, t) = ∑
A∈I f

∂ ûuuA

∂ t
(t)NA(xxx, t). (27g)

The rest of the variables (vvvh, ϕh and ϒh) and the weight-
ing functions (www2

h, w3
h and w4

h) are defined analogously to ph

and w1
h, respectively. In Eqs. (27), the N̂A’s are a set of ba-

sis functions defined on Ω0 that are fixed in time. In the
context of IGA, these functions are splines with control-
lable continuity. In the interior of the fluid and solid do-
mains, their continuity can be arbitrarily high but on Γ0 (in
the normal direction) is exactly C 0. Is denotes the global–
index set of the N̂A’s that correspond to the solid domain.
NA is the push forward of N̂A to the spatial domain Ωt , i.e.,

NA(xxx, t) = N̂A ◦ φ̂φφ
h
−1
(xxx, t), where φ̂φφ

h
−1

is the discrete coun-

terpart of φ̂φφ
−1

. Likewise, ÑA is the push forward of N̂A to the

spatial domain at time t̃, i.e., ÑA(x̃xx, t̃) = N̂A ◦ φ̂φφ
h
−1
(x̃xx, t̃). I f is

the global–index set of the NA’s that correspond to the fluid
domain.
In order to enforce the compatibility conditions at the fluid-
structure interface and taking into account that we work with
matching discretizations, we define a unique set of both trial
an test functions for the velocity at the fluid–structure in-
terface. This leads to strong (pointwise) satisfaction of the
kinematics condition and weak satisfaction of the traction
compatibility condition.

3.5 Time discretization and numerical implementation

In this section, we present the time integration algorithm for
our FSI problem. We use the generalized-α method, which
was originally proposed by Chung and Hulbert [22] for the
equations of structural dynamics. Subsequently, this tech-
nique was extended to the equations of fluid mechanics [39]
and successfully applied to fluid-structure interaction prob-
lems (see, for instance, [3,13,15]).
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3.5.1 Time stepping scheme

Let us call UUU , U̇UU , ÜUU the vectors of control variable degrees of
freedom of the fluid–structure system, and its first and sec-
ond time derivatives, respectively. Analogously, let us call
VVV , V̇VV , V̈VV the vectors of control variable degrees of freedom
of mesh displacements, velocities and accelerations. We de-
fine the residual vectors

RRRcont = {Rcont
A }, (28a)

RRRmom = {Rmom
A,i }, (28b)

RRRϕ = {Rϕ

A}, (28c)

RRRaux = {Raux
A }, (28d)

RRRmesh = {Rmesh
A,i }, (28e)

where A is a control–variable index and i is an index associ-
ated to the spatial dimensions. The residual components are
defined as

Rcont
A = B f

MS({NA,0,0,0},{ph,vvvh,ϕh,ϒh}; v̂vvh), (29a)

Rmom
A,i = B f

MS({0,NAeeei,0,0},{ph,vvvh,ϕh,ϒh}; v̂vvh)

+Bs(N̂Aeeei,uuuh)−Fs(N̂Aeeei)−F f (N̂Aeeei), (29b)

Rϕ

A = B f
MS({0,0,NA,0},{ph,vvvh,ϕh,ϒh}; v̂vvh), (29c)

Raux
A = B f

MS({0,0,0,NA},{ph,vvvh,ϕh,ϒh}; v̂vvh), (29d)

Rmesh
A,i = Bm(ÑAeeei,uuum

h ), (29e)

where eeei is the ith cartesian basis vector. Our time stepping
scheme can be defined as follows: Given the discrete ap-
proximation to the global vectors of control variables at time
tn, namely, UUUn, U̇UUn, ÜUUn, VVV n, V̇VV n, V̈VV n and the current time step
size ∆ t = tn+1 − tn, find UUUn+1, U̇UUn+1, ÜUUn+1, VVV n+1, V̇VV n+1,
V̈VV n+1 such that

RRRcont(UUUn+α f ,U̇UUn+α f ,ÜUUn+αm ,VVV n+α f ,V̇VV n+α f ,V̈VV n+αm) = 0,
(30a)

RRRmom(UUUn+α f ,U̇UUn+α f ,ÜUUn+αm ,VVV n+α f ,V̇VV n+α f ,V̈VV n+αm) = 0,
(30b)

RRRϕ(UUUn+α f ,U̇UUn+α f ,ÜUUn+αm ,VVV n+α f ,V̇VV n+α f ,V̈VV n+αm) = 0,
(30c)

RRRaux(UUUn+α f ,U̇UUn+α f ,ÜUUn+αm ,VVV n+α f ,V̇VV n+α f ,V̈VV n+αm) = 0,
(30d)

RRRmesh(UUUn+α f ,U̇UUn+α f ,ÜUUn+αm ,VVV n+α f ,V̇VV n+α f ,V̈VV n+αm) = 0,
(30e)

where

U̇UUn+1 = U̇UUn +∆ t((1− γ)ÜUUn + γÜUUn+1), (31a)

UUUn+1 =UUUn +∆ tU̇UUn +
∆ t2

2
(
(1−2β )ÜUUn +2βÜUUn+1

)
,

(31b)

V̇VV n+1 = V̇VV n +∆ t((1− γ)V̈VV n + γV̈VV n+1), (31c)

VVV n+1 =VVV n +∆ tV̇VV n +
∆ t2

2
(
(1−2β )V̈VV n +2βV̈VV n+1

)
. (31d)

The α–levels are defined as

UUUn+α f =UUUn +α f (UUUn+1−UUUn) , (32a)

UUUn+αm =UUUn +αm (UUUn+1−UUUn) . (32b)

The parameters α f , αm, γ and β are chosen as in [3] lead-
ing to second–order time accuracy, unconditional stability of
the time–integration algorithm for linear ordinary differen-
tial equation systems with constant coefficients, and an op-
timally damped fluid subproblem. The nonlinear system of
equations (30) is solved using a Newton–Raphson iteration
procedure.

4 Numerical examples

In this section, we present a series of numerical examples
that illustrate the predictive ability of our model and the ef-
fectiveness of our computational method. The first numeri-
cal example uses the NSCH equations without solid to re-
produce the coalescence of two droplets. We aim to show
that the radius of the meniscus formed during the coales-
cence process follows the scaling law observed in experi-
mental and theoretical results. The second example demon-
strates that our model can be used to simulate the deforma-
tion caused by a droplet on an underlying substrate. Our re-
sults are compared with experimental data taken from the
literature. Subsequently, we present a numerical simulation
of capillary origami. A droplet of glycerol is deposited on a
solid membrane and the capillary forces at the interface fold
the structure until the droplet is partially wrapped by the
membrane. Our next example reproduces the deformation
caused by capillary forces in elastic micropillars. Finally, we
present a three dimensional simulation of a slender structure
deformed by a wetting droplet. Note that gravity forces are
negligible at small scales and, as a consequence, they are
not considered in the numerical examples presented in this
paper.

4.1 Coalescence of droplets

When two droplets come into contact, they form a bridge
and coalesce due to surface tension. The NSCH model given
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in Eqs. (1) can be used to study droplet coalescence for in-
compressible, two-component, immiscible fluids with matched
density and viscosity. To solve the NSCH equations, we use
the algorithm described in Section 3, annihilating all the
terms corresponding to the solid mechanics and the mesh–
motion subproblems. Fig. 1 shows a sequence of isocon-
tour plots of the interface along the coalescence process of
two water droplets. For simplicity, we considered a two-
dimensional domain. Note that the time t = 0.0 does not
refer to the initial time of the simulation, but to the instant
when the interfaces of both droplets come into contact. Ini-
tially, the dynamics is driven by a large Laplace pressure
originating from the high curvature at the contact region,
where a meniscus is formed. Early in the process, the droplets
retain their circular shape to some extent (t < 0.15ms). By
time t ∼ 4ms the two initial droplets can be barely discerned.
At this point, the dynamics starts to operate on larger time
scales. The shape of the droplet evolves toward a circle that
minimizes the interfacial length. However, the gradual ac-
cumulation of kinetic energy along the process produces a
“rebound” effect in the shape of the droplet; see the evolu-
tion between t ∼ 8ms and t ∼ 400ms. We consider that the
solution at time t = 400ms is a good approximation of the
steady state.

The initial dynamics of the merger process is amenable
to simplified theoretical models that provide the time evo-
lution of the meniscus radius r(t); see the bottom-right in-
set of Fig. 2 for a pictorial description of r(t). The theoreti-
cal model [30] predicts the scaling r(t)∼

√
t for r & 0.03R,

where R is the droplet radius. This result is also backed up by
experimental observations [1]. Fig. 2 shows the time evolu-
tion of r obtained from the simulation (red squares) and the
function g(t) = χ

√
t (blue solid line), where χ is a fitting

constant parameter. The diagram shows a good agreement
between both datasets, demonstrating that our model repro-
duces correctly the initial dynamics of merging droplets.

4.2 Static wetting on soft substrates

The static equilibrium shape of a liquid droplet on a flat
and rigid substrate is well understood. The droplet’s shape
is a spherical cap which contacts the solid with an equilib-
rium contact angle θE = arccos[(γSG−γSL)/γ f ] given by the
Young-Dupré equation [24]. In the contact angle equation,
γSG and γSL are the surface tension at the solid-gas and at the
solid-liquid interface, respectively. When the solid is suf-
ficiently compliant or the droplet sufficiently small for the
elastocapillary length scale lec = γ f /E to be comparable to
the droplet radius, Young–Dupré’s equation breaks down.
The excess Laplace pressure in the interior of the droplet
creates a dimple in the wet area and capillary forces pro-
duce a ridge at the contact line. To show that our FSI model
can successfully predict this phenomenon, we reproduce one

Fig. 1 Time evolution of the interface shown by isocontour lines of
ϕ . We plot ϕ = 0.7 (blue) and ϕ = −0.7 (black). The computational
domain (not shown) is Ω = (0,1.5L)× (0,L), where L = 1.0cm. The
mesh is composed of 256× 384 C 1-quadratic elements. We imposed
periodic boundary conditions in both directions. The initial configura-
tion consisted of two water droplets of radius R = 0.2cm centered at
(0.543L ,0.5L) and (0.957L,0.5L), respectively. The physical parame-
ters correspond to water at 20◦C, i.e., γ f = 72.86mN/m, µ = 1.0mPas
and ρ = 1.0g/cm3. The thickness of the interface and the mobility
were set to ε = 3.910−3 cm, and Mϕ = 10−3 cm3s/g, respectively.

Fig. 2 Time evolution of the meniscus radius r obtained from the com-
putation (red points) and trend line given by g(t) = χ

√
t with χ = 22.9

(blue line). The initial time on the horizontal axis refers to the instant
when the interfaces of both droplets come into contact.

of the experiments reported in [57]. In particular, a glycerol
droplet of radius R = 225.5 µm is deposited on a soft sub-
strate with Young’s modulus E = 3.0kPa. The droplet de-
forms the substrate as shown on the left–hand side of Fig.
3(a). The contact angle θc in the boundary condition (5) is
given by θE = arccos[(γSG− γSL)/γ f ], but the solid defor-
mation produces an apparent contact angle (measured with
respect to a horizontal line) that is smaller than θE . In simple
words, the droplet “sinks” in the substrate and looks “more
wetting” that it would do on a rigid surface. The right–hand
side of Fig. 3(a) portraits a detailed view of the contact line
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(a) Stationary configuration of the fluid–solid system

(b) Solid displacements in horizontal direction

(c) Solid displacements in vertical direction

Fig. 3 Glycerol droplet deposited on a soft substrate. (a) Stationary
configuration (left) and detail of the contact line region after deforma-
tion (right). (b), (c) solid displacements in the horizontal and vertical
directions, respectively. We use a uniform mesh of 400×200 quadratic
elements. On the left, right and lower boundaries of the computational
domain, we impose zero velocity in the normal direction. On the up-
per boundary, zero velocity is imposed in both directions. We adopted
the values of surface tension reported in [57], i.e., γ f = 46.0mN/m,
γSA = 31mN/m and γSL = 36mN/m. For the viscosity and density
parameters, we use values for glycerol: µ = 1412.0mPas and ρ =
1.26 pg/µm3. We took ε = 2.0 µm and Mϕ = 0.1 µm3µs/pg. The pa-
rameters for the solid correspond to a silicone gel with E = 3.0kPa,
νs = 0.499 and ρs = 12.6 pg/µm3.

neighborhood and also shows the mesh in the current config-
uration. It may be observed that the fictitious linear elasticity
problem used to move the fluid domain produces a smooth
transition of the element shape using the solid displacement
at the fluid–solid interface as boundary condition. Figs. 3(b)
and 3(c) show, respectively, the substrate’s displacements in
the horizontal and vertical directions, when equilibrium is
reached.

To perform a more quantitative analysis, we measured
the displacement of the fluid–solid interface close to the con-
tact line and we compared our results with the experimen-
tal data reported in [57]; see Fig. 4. The experimental re-
sults are available only for the stationary configuration (blue
dots). Our computational method enables us to understand
the dynamics of the process. We report the solution at times
t = 0.25ms (yellow), t = 0.75ms (purple) and t = 21.0ms
(red), when we considered the solution to be stationary. Note
that our model neglects the disjoining pressure. At the length
scales considered in this paper, the disjoining pressure is
expected to have an impact only close to the contact line.
Based on the results presented in Fig. 4, the impact of the
disjoining pressure on the global deformation seems to be
small, which justifies our assumption.

Fig. 4 Vertical displacements of the fluid–solid interface. dc in the hor-
izontal axis represents the distance to the center of the droplet. The
blue circles are the experimental measurements reported in [57], which
represent a stationary configuration. The computational results are re-
ported at t = 0.25ms (yellow), t = 0.75ms (purple) and t = 21.0ms
(red), when the solution is considered to be stationary. The horizontal
line y = 0 corresponds to the fluid–solid interface before deformation.

4.3 Capillary origami

A droplet deposited on an elastic membrane will pull the
solid through surface tension. If the membrane is sufficiently
compliant, the drop will fold it, giving rise to a capillary
origami [49]. This process has triggered significant interest
because it can be used for self-assembly of micro- and nano-
structures. We use our theory to simulate the spontaneous
wrapping of glycerol droplets with elastic membranes. The
experiments in [49] were performed by placing the mem-
brane on a rigid surface. Modeling this system in its entirety
would require the use of contact algorithms. It is also very
likely that we would need to remesh the fluid domain due
to changes in its topology. To avoid this, we simply placed
the membrane in the fluid omitting the underlying rigid sur-
face; see Fig 5(a). Since we are neglecting gravity forces,
we expect this simplified system to behave similarly to the
capillary origamis formed on top of a rigid surface. Another
difference with the experiments in [49] is that we do not con-
sider the evaporation of the droplet. As shown in [49], a cap-
illary origami can be produced without evaporation, but the
complete encapsulation of the droplet is harder to achieve
without reducing the droplet’s volume.

We place a semicircular droplet of radius R = 146.0 µm
on an elastic membrane [see Fig. 5(a) for the setup of the
problem] and we impose different contact angles θc along
the fluid–structure interface. The membrane is modeled as
a 3D solid. Figs. 5(b)–5(d) show how the membrane folds
wrapping a droplet with contact angle θc = 90◦. After the
droplet is deposited, the membrane bends downwards due
to the internal Laplace pressure. Later, the ends of the mem-
brane move upwards until the droplet gets almost fully en-
capsulated. Fig. 6 shows the solid mesh in the current con-
figuration and the streamlines at time t = 0.045s. The fluid–
fluid interface is drawn as a black solid line. The flow inside
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the droplet is predominantly vertical. Outside the droplet,
the membrane’s motion produces well-defined vortices.

Fig. 7 shows the influence of the contact angle on the
dynamics of the process. The initial conditions are the same
as before. The results suggest that droplet encapsulation oc-
curs faster for more wetting fluids. This observation can be
used to have better control in the process of self-assembly
of micro- and nano-structures.

4.4 Wetting of elastic micropillars

Wetting of fibrous media has been widely studied due to
its importance in natural and engineered systems. However,
most of the research focuses on rigid fibers. At small scales,
capillary forces outweigh bulk forces and deform fibers sig-
nificantly, which produces a coupled problem combining elas-
ticity and wetting [29]. Here, we use our FSI model to study
quantitatively the deformation of micropillars produced by
a fluid–fluid interface. Fig. 8(a) shows the setup of our prob-
lem. We place a small amount of liquid (blue) between the
two micropillars (grey) and let capillary forces deform the
fibers. The micropillars are clamped at the bottom by pre-
venting the displacements in horizontal and vertical direc-
tions. Fig. 8(b) shows how surface tension deforms the fibers
bringing them close to each other, which, in turn, produces
the rise of the liquid.

We observe that, in addition to the obvious parameters
controlling the dynamics (the geometry and the mechanical
properties of the fibers as well as the physical properties of
the fluid) the volume of liquid placed between the micropil-
lars plays a key role. We quantified the volume using the
height of the liquid column as shown in Fig. 8; see the plots
on the left-hand side. The top, middle and bottom rows cor-
respond, respectively, to h = 200.0 µm, h = 300.0 µm and
h = 400.0 µm. It may be observed that for a given geomet-
rical configuration of the fibers, larger volumes of liquid
produce larger deformations. In addition, the dynamics of
the process seems to be faster for larger volumes of liquid.
This might be explained as follows: Capillary forces have
a constant magnitude across all examples, but act at differ-
ent points of the micropillars due to the different location of
the interface. The torque applied to the micropillars is larger
for larger volumes, producing stronger deformations. In ad-
dition, capillary forces are always oriented at an angle θc,
owing to the boundary condition given by Eq. (5)(a). Since
capillary forces act as follower loads, they have a larger ver-
tical component as the micropillars deform.

4.5 Three dimensional wrapping of a liquid droplet

Here, we study the three dimensional wrapping of a liquid
droplet with an elastic membrane. Fig. 9(a) shows the initial

(a) θc = 90◦, t = 0.0s

(b) θc = 90◦, t = 0.014s

(c) θc = 90◦, t = 0.075s

(d) θc = 90◦, t = 0.138s

Fig. 5 Capillary origami. (a) Initial condition. A semicircular droplet
(blue) is deposited on an elastic membrane (grey). (b), (c) and (d)
Current configuration at t = 0.014s, t = 0.075s and t = 0.138s, re-
spectively. We use a uniform mesh of 200× 100 quadratic elements.
We impose zero velocity in normal direction on all boundaries. The
parameters employed in this computation for the fluid correspond to
a glycerol droplet, in particular, µ = 1412.0mPas, γ f = 46.0mN/m,
and ρ = 1.26 pg/µm3. We take ε = 5.0 µm and Mϕ = 0.1 µm3µs/pg.
For the elastic membrane we adopt E = 30.0kPa, νs = 0.45, and
ρs = 12.6 pg/µm3.
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Fig. 6 Solid mesh and streamlines of the fluid velocity at time t =
0.045s for the capillary origami of Fig. 5. The arrows show the direc-
tion of the velocity field. The streamlines and the arrows are colored
with the velocity magnitude. The interface of the droplet is represented
by a black, solid line.

(a) θc = 60◦, t = 0.065s

(b) θc = 120◦, t = 0.302s

Fig. 7 Capillary origami for two different contact angles. (a) Wetting
droplet at time t = 0.065s. (b) Non–wetting droplet at time t = 0.302s.

configuration of the problem, which consists of a droplet
of radius R = 146.0 µm (blue) deposited on a membrane
of thickness 20.0 µm (grey) that covers an entire horizontal
plane of the computational domain. The elastic membrame
is clampled to the lateral boundaries, where we have pre-
vented the displacements in normal and vertical directions.
We carry out this simulation assuming that the droplet is a
wetting liquid that forms a contact angle of θc = 60◦ with
the solid membrane. The left panels in Fig. 9 show an upper
view of the problem. The right panels are vertically flipped,
so that we can easily observe the membrane’s deformation.
The surface tension at the interface folds the solid, resulting

(a) t = 0.0s (b) t = 0.3225s

(c) t = 0.0s (d) t = 0.2975s

(e) t = 0.0s (f) t = 0.15075s

Fig. 8 Wetting of elastic micropillars. The top, middle and bottom
row correspond, respectively, to h = 200.0 µm, h = 300.0 µm and
h = 400.0 µm. We impose zero velocity in normal direction on all the
boundaries, except on the upper one, where we only enforce a stress–
free condition. We use a wetting liquid with contact angle θc = 60◦.
The parameters are µ = 1412.0mPas, γ f = 46.0mN/m, ε = 2.5 µm,
ρ = 1.26 pg/µm3, Mϕ = 0.1 µm3µs/pg, E = 320.0kPa, νs = 0.45 and
ρs = 12.6 pg/µm3.

in the partial wrapping of the droplet [see Fig. 9(b)]. The
initial square shape of the elastic membrane leads to a non–
axisymmetric deformation of the structure and triggers the
formation of wrinkles [Fig. 9(c)]. Different values of surface
tension and solid stiffness should result in different patterns
of the wrinkling instability [20,36].

5 Conclusions

We have proposed a computational method for three–dimensional,
dynamic simulation of elastocapillarity. The solid dynamics
is governed by the equations of nonlinear elastodynamics
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(a) t = 0.0s

(b) t = 0.00625s

(c) t = 0.125s

Fig. 9 Top view (left panels) and bottom view (right panels) of the
three dimensional wrapping of a liquid droplet. (a) A hemispherical
droplet is deposited on a elastic membrane that is clamped to the lat-
eral boundaries of the computational domain. (b) Capillary forces fold
the membrane and lead to the partial wrapping of the liquid droplet.
(c) A wrinkling instability is developed on the structure, triggered by
the non–axisymmetric shape of the membrane. Note that we are only
representing the solid domain and one of the fluid phases. The compu-
tational domain (not shown) is Ω = (0,L)× (0,L)× (0,0.5L), where
L = 1 mm. We used a uniform mesh with 100× 100× 50 quadratic
elements. We impose zero velocity in normal direction on all the
boundaries as well as zero vertical velocity on the lateral boundaries.
The parameters correspond to a glycerol droplet: µ = 1412.0mPas,
γ f = 46.0mN/m, ρ = 1.26 pg/µm3. We take ε = 10.0 µm and Mϕ =
0.1 µm3,µs/pg. For the membrane we employ E = 0.6kPa, νs = 0.45,
and ρs = 12.6 pg/µm3.

in the Lagrangian description. The fluid theory models the
dynamics of two-component, immiscible fluids with surface
tension. We adopt a fully–implicit fluid–structure interac-
tion algorithm to solve the problem. We use a boundary–
fitted method with the fluid equations written in Arbitrary
Lagrangian–Eulerian coordinates. The motion of the mesh is
described by the equations of elastostatics. We have shown
the viability of our theoretical framework and numerical al-
gorithm by solving several examples of elastocapillary phe-
nomena in two and three dimensions. This work is expected

to open new avenues in the study of elastocapillarity. For
example, we believe that it would be interesting to study
capillary origamis with a model that accounts for evapora-
tion of the droplet. This can be accomplished by using a
fluid theory that allows for liquid-vapor phase transforma-
tions, such as, the Navier–Stokes–Korteweg equations [13].
Our framework can also be extended to model capillary frac-
ture [10]. This can be accomplished by coupling the current
model with a fracture theory.
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