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Abstract

We present a set of algorithms for local h-adaptivity of hierarchical B-splines for application in isogeometric

analysis. We extend Bézier projection, an e�cient quadrature-free local projection technique, to the hier-

archical setting. In this case, extraction operators may not be invertible. To address this issue we develop

a multi-level reconstruction operator which maintains the locality properties of the projection. We also

introduce a balance parameter to control the overlap of hierarchical functions leading to improved numerical

conditioning. We apply our algorithms to the simulation of localized prostate cancer growth. We model this

disease using the phase-�eld method and a set of di�usion-reaction equations to account for the dynamics of

nutrients and a key biomarker termed Prostate Speci�c Antigen. Our results include examples on simple 2D

and 3D domains and a more compelling tissue-scale, patient-speci�c simulation, which is run over a prostate

anatomy extracted from medical images. Our methods for local h-adaptivity e�ciently capture the evolving

interface between the tumor and the neighboring healthy tissue with remarkable accuracy in all cases.

Keywords: isogeometric analysis, Bézier projection, local re�nement and coarsening, hierarchical spline

spaces, phase �eld, tumor growth

1. Introduction

Isogeometric analysis (IGA) is a computational technology that tightly connects computer aided design

(CAD) and �nite element analysis (FEA) [1, 2]. The central idea of IGA is to adopt the smooth basis

functions which de�ne the CAD geometry as the basis for analysis. Thus, for properly constituted CAD

models, isogeometric methods bypass the mesh generation and geometry clean-up steps which characterize5

classical FEA. CAD descriptions which are suitable for analysis are called analysis-suitable geometry (ASG).
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The higher-order smooth ASG bases that are used in IGA have been shown to produce superior results

when compared to standard C0 discretizations. Another important property of IGA that has been recently

proven is that Galerkin solutions can be obtained with only one evaluation per degree of freedom using

the concept of variational collocation [3]. Methodologies such as Bézier extraction [4, 5] simplify the im-10

plementation of isogeometric basis function technology into existing �nite element frameworks and provide

a rigorous foundation for the localized projection procedures presented in this paper. The advantages of

IGA have been demonstrated in a wide variety of �elds of science and engineering, including structural

analysis [6, 7, 8, 9], �uids [10, 11, 12], �uid-structure interaction [13, 14, 15, 16], fracture and damage

[17, 18, 19], phase-�eld analysis [19, 20, 21], shape optimization [22], electromagnetics [23], and biomedicine15

[24, 25, 26, 27, 28, 29, 30].

Mesh adaptivity is a rich subject in IGA. The possibilities include element subdivision or merging (h-

adaptivity), degree elevation or reduction (p-adaptivity), basis roughening or smoothing (k-adaptivity),

and reparameterization (r-adaptivity). These operations can be combined to produce sophisticated hpkr-

adaptive schemes. These methodologies have been recently cast into a uni�ed framework based on Bézier20

projection [31].

Traditional approaches to isogeometric mesh adaptivity based on non-uniform rational B-splines

(NURBS) su�er from global propagation of re�nement [32, 33, 34]. Coarsening is much more di�cult

to apply accurately and e�ciently and it is rarely considered. Several ASG descriptions enable local adap-

tivity. Hierarchical B-splines [35, 36, 37, 38] are constructed in a multi-level fashion where higher levels25

are composed of �ner B-spline bases. A selection mechanism is used to construct a global basis from func-

tions in the hierarchy. Due to interactions between coarse and �ne basis functions the conditioning of the

basis can deteriorate. Truncated hierarchical B-splines (THB-splines) address this issue to a certain de-

gree [39, 40, 41, 42]. Spline forests [43] are an extension of hierarchical B-splines and NURBS to complex

surfaces and solids of arbitrary topological genus. T-splines [44] are a generalization of NURBS that are30

locally re�nable and capable of modeling complicated designs as a single, watertight geometry. Analysis-

suitable T-splines [45, 46, 47, 48, 49, 50] are a subset of T-splines with the same mathematical properties

as NURBS. Recently, hierarchical analysis-suitable T-splines [51] have been shown to combine the local

re�nement properties of T-splines, which can be used to precisely design the geometry, with the power of

the hierarchical concept, which accommodates e�cient local adaptivity for analysis. Polynomial splines35

over hierarchical T-meshes (PHT-splines) [52, 53, 54, 55], modi�ed T-splines [56], locally re�ned splines

(LR-splines) [57, 58], and generalized T-splines [59] are other locally re�nable ASG representations.

In the context of phase-�eld models, local adaptivity is essential to accurately and e�ciently resolve

evolving interfaces. In particular, hierarchical B-splines are an attractive adaptive technology for several

reasons:40

2



� Simple and e�cient.

� Preserves many of the mathematical properties of B-splines.

� Generates smooth, localized, and geometrically exact discretizations.

� Enables design on the �rst level while higher levels can be leveraged for analysis.

� Compatible with quadrilateral and hexahedral meshing technology.45

We present a set of algorithms for coupled local hierarchical h-re�nement and h-coarsening and apply it

in the context of adaptive IGA. Our algorithms are capable of handling evolving interfaces e�ciently. The

framework is based on an extension of Bézier extraction and projection to the hierarchical setting. The

coarsening projection is local and quadrature-free. We introduce a balance parameter to control the overlap

of hierarchical basis functions resulting in superior conditioning of the resulting linear systems. Coupling the50

localized projection and the balance parameter enables �ne-grain control over the behavior of the adaptive

algorithms.

In order to illustrate our methods we address the simulation of localized prostate cancer growth using a

phase-�eld model that we previously presented in [30]. This problem has an evolving interface which sepa-

rates the tumor from the surrounding healthy tissue. To resolve this interface we use our local adaptivity55

approach. First, we describe and analyze the behavior of our adaptive algorithms in simple 2D and 3D

settings. Then, we apply them to a tissue-scale, patient-speci�c simulation, where we solve our equations

of tumor growth over the patient's prostate anatomy extracted from computerized tomography images, as

in [30]. Finally, we demonstrate that our algorithms for local adaptivity are a cornerstone in the success-

ful implementation of our model for localized prostate cancer growth as a predictive tool for the clinical60

management of the disease.

1.1. Modeling and simulation of prostate cancer

Approximately 95% of prostate cancer cases are adenocarcinomas [60]. This is a form of cancer that

originates in an epithelial tissue, like the one present in the majority of the prostate. The development

of a prostate adenocarcinoma requires a gradual accumulation of alterations to the genes within the cells'65

nucleus, which varies from patient to patient. The accumulation of successive genetic changes through years

leads to the phenomenon of tumor progression, whereby an initial mild disorder of cell behavior evolves

gradually into an advanced cancer. In this process, prostate cancer begins as a localized tumor within the

prostate, which is the stage when this disease is normally detected, diagnosed and treated. Then, the tumor

escapes from this organ invading the surrounding tissues and, �nally, some malignant cells leave the original70

tumor, get into the bloodstream and migrate to distant tissues, which they colonize and invade (metastasis)

[61].
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Predictive medicine [62, 63, 64, 30] is a new interdisciplinary trend of medical practice that uses math-

ematical models and computer simulations in order to predict outcomes of diseases and design optimal

treatments on a patient-speci�c basis. This approach complements the statistical and experiential methods75

that dominate diagnosis and treatment planning in current medical practice. Regarding cancer research,

mathematical oncology [65, 66, 67] is the �eld of predictive medicine aimed at developing models to simulate

cancer progression and treatment.

In mathematical oncology, localized prostate cancer growth can be understood as a moving interface

problem that aims at de�ning the regions occupied by the evolving tumor within this organ. As for other80

moving interface problems, there have been several fruitful attempts to model the phenomena involved in

cancer growth with the phase �eld method [68, 69, 70, 71, 72, 73, 74, 75]. Though this technique has its

origin in materials science [76], it has been extended to a broad variety of areas of science and engineering

[14, 20, 77, 78, 79] for one reason: the possibility to capture the interface implicitly without solving a moving

boundary problem.85

Mathematical models representing tumor growth include one or several cancerous cell species and the

host tissue as di�erent interacting phases. Tumoral and healthy cells compete in order to obtain nutrients,

proliferate and control cell density so as to thrive in the harsh tumoral environment � where nutrients

are scarce and cells are tightly packed. The dynamics of each cellular species is modeled by means of a

combination of the following processes: di�usion, convection, reaction and gradient-oriented migration, also90

known as taxis. Reactive terms normally include cell proliferation, metabolism, death or interactions with

other cell species and substances included in the model. Additionally, there are di�erent types of gradients

that promote cancerous cell migration: in the concentration of a substance dissolved in the interstitial �uid

(chemotaxis), in the concentration of a compound attached to the extracellular matrix (haptotaxis), and in

the mechanical properties of the extracellular matrix or in the forces exerted on the cells (mechanotaxis).95

The dynamics of the nutrients, as well as any other substance with a major role in cancer progression, is

included by means of further di�usion-reaction equations. Moreover, it is possible to include the e�ect of

some treatments by means of additional reactive terms in the equations of cell dynamics (e.g., radiation

therapy or chemotherapy), although sometimes additional di�usion-reaction equations are required (e.g.,

chemotherapy).100

1.2. Structure and contents of the paper

Section 2 introduces the fundamental concepts of univariate and multivariate Bernstein, B-spline and

NURBS spaces in order to perform IGA. We proceed to present hierarchical splines in Section 3. Then, we

describe the concept of the Bézier mesh and the extraction operator for hierarchical splines in Section 4,

where we also introduce the spline reconstruction operator for hierarchical splines. We present our algorithms105

for h-re�nement and h-coarsening of hierarchical splines in Section 5 and 6, respectively. Section 7 discusses
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the operation of balancing and introduces the new function support balance parameter, which we also

compare to the previous ring balance parameter described in [43]. In Section 8, we use our methodology

to accommodate local h-adaptivity in IGA to simulate localized prostate cancer tumor growth. First, we

describe our model, the details for numerical analysis, and how we implement automatic adaptivity. We110

proceed to present the results corresponding to the 2D and 3D academic scenarios to discuss the performance

of our algorithms. Then, we describe and discuss the results of a tissue-scale, patient-speci�c simulation,

which demonstrates the potential of our technology to e�ciently address compelling problems in complex

geometries. Finally, we draw conclusions in Section 9.

2. Notation and preliminaries115

2.1. Univariate Bernstein basis

The univariate Bernstein basis functions are de�ned as

Bpi (ξ) =
1

2p

(
p

i− 1

)
(1− ξ)p−(i−1)(1 + ξ)i−1, (1)

where ξ ∈ [−1, 1], p is the polynomial degree, and the binomial coe�cient
(
p
i−1

)
= p!

(i−1)!(p+1−i)! , 1 ≤ i ≤ p+1.

We choose to de�ne the Bernstein basis over the biunit interval to facilitate Gaussian quadrature in �nite

element analysis rather than use the convention of the computer-aided geometric design (CAGD) community120

where the Bernstein polynomials are de�ned over the unit interval [0, 1]. The Bernstein basis functions for

polynomial degrees p = 1, 2, 3 are shown in Fig. 1. It is often useful to de�ne a vector of Bernstein basis
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Figure 1: The Bernstein basis for polynomial degrees p = 1, 2, 3.

functions Bp(ξ) = {Bpi (ξ)}p+1
i=1 . The degree superscript is suppressed when unnecessary. We denote the

space of functions over the biunit interval spanned by the Bernstein basis of degree p by Bp. A useful review

of Bernstein polynomials and their properties is provided in [80].125
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2.2. Multivariate Bernstein basis

We de�ne a multivariate Bernstein basis over the box of dimension dp, [−1, 1]dp by the tensor product.

The polynomial degree may be di�erent in each direction and so we de�ne the vector of degrees p = {p`}
dp
`=1.

The vector of multivariate Bernstein basis functions is de�ned by the Kronecker product

Bp = Bpdp (ξdp)⊗ · · · ⊗Bp1(ξ1). (2)

Thus, there are
∏dp
`=1(p` + 1) basis functions in the vector. All of the properties of the univariate Bernstein130

basis are inherited by the multivariate Bernstein basis.

2.3. Relations between Bernstein polynomials over di�erent intervals

The Bernstein polynomials over the interval [a, b] are

Bpi (t) =

(
p

i− 1

)
(b− t)p−(i−1)(t− a)i−1

(b− a)p
. (3)

Given another interval [ã, b̃], the Bernstein polynomials are

B̃pi (t) =

(
p

i− 1

)
(b̃− t)p−(i−1)(t− ã)i−1

(b̃− ã)p
. (4)

A polynomial function f of degree p can be represented by a linear combination of the Bernstein polynomials135

over [a, b] or by a combination of the Bernstein polynomials over [ã, b̃]

f(t) =

p+1∑
i=1

ciB
p
i (t) =

p+1∑
i=1

c̃iB̃
p
i (t). (5)

As shown by [81], the coe�cient vectors c = {ci}p+1
i=1 and c̃ = {c̃i}p+1

i=1 can be related by the transformation

matrix A

c̃ = Ac (6)

where the entries of A are given by

Ajk =

min(j,k)∑
i=max(1,j+k−p+1)

Bj−1
i (b̃)Bp−j−1

k−i (ã) for j, k = 1, 2, . . . , p+ 1. (7)

This can be extended to multiple dimensions by a tensor product. The elements of the inverse of A are140

given by

[A−1]jk =

min(j,k)∑
i=max(1,j+k−p+1)

B̃j−1
i (b)B̃p−j−1

k−i (a) for j, k = 1, 2, . . . , p+ 1. (8)

The inverse matrix provides a relationship between the basis functions over each interval

B̃
p

= A−TBp. (9)

Both Eqs. (7) and (8) are de�ned using one-based indexing for both the matrix entries and the Bernstein

basis as opposed to the zero-based indexing used in [81].
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2.4. The Gramian of the Bernstein basis and its inverse145

When computing the projection of an arbitrary function onto the Bernstein polynomials, an expression

for the Gramian matrix Gp for the basis of degree p is required. The entries in the matrix are

Gpjk =

∫ 1

−1

Bpj (ξ)Bpk(ξ)dξ for j, k = 1, 2, . . . , p+ 1. (10)

Expressions for products and integrals of the Bernstein polynomials in [80, 82] permit Eq. (10) to be written

in closed form as

Gpjk =
2

2p+ 1

(
2p

j + k − 2

)−1(
p

j − 1

)(
p

k − 1

)
. (11)

The Gramian matrix for a multivariate Bernstein basis of dimension dp and with the vector of polynomial150

degrees p =
{
p1, . . . , pdp

}
is obtained from a Kronecker product

Gp = Gpdp ⊗ · · · ⊗Gp1 . (12)

An expression for the inverse of the Gramian of the Bernstein basis can be obtained by considering the

Bernstein-Bézier representation of the dual basis in [83]. The Bézier coe�cients of the dual basis are

precisely the entries in the inverse of the Gramian and so the expression for the dual basis can be used to

obtain155

[(Gp)−1]jk =
(−1)j+k

2

[(
p

j − 1

)(
p

k − 1

)]−1 min(j,k)∑
i=1

(2i−1)

(
p− i+ 1

p− j + 1

)(
p− i+ 1

p− k + 1

)(
p+ i

p− j + 1

)(
p+ i

p− k + 1

)
(13)

after modi�cation to use one-based indexing and the Bernstein basis over the biunit interval. The inverse

of a Kronecker product of matrices is given by the Kronecker product of the inverses and so Eq. (13) can

be used to compute the inverse of a multivariate Gramian matrix

(Gp)−1 = (Gpdp )−1 ⊗ · · · ⊗ (Gp1)−1. (14)

2.5. Splines

A univariate spline is de�ned by the polynomial degree of the spline p and the knot vector G, a set of

non-decreasing parametric coordinates G = {sA}n+p+1
A=1 , sA ≤ sA+1 where n is the number of spline basis

functions [32, 33, 34]. The multiplicity of a knot value sA ∈ G is 0 ≤ µ (G, sA) ≤ p + 1 and it will be zero

for any sA 6∈ G. We require that the knot vector be open, that is, µ (G, s1) = µ (G, sn+p+1) = p + 1. We

call Ω̂ = [s1, sn+p+1] the parameter space, which is partitioned into knot spans [sA, sA+1] by the knots in G.

The Ath spline basis function over the knot vector can be de�ned using the Cox-de Boor recursion formula

[84, 85]:

N0
A(s) =

1 sA ≤ s < sA+1

0 otherwise.

(15)
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Np
A(s) =

s− sA
sA+p − sA

Np−1
A (s) +

sA+p+1 − s
sA+p+1 − sA+1

Np−1
A+1(s). (16)

The spline space spanned by the spline basis is denoted by N p. We denote the set of functions in the basis

by N. A spline curve of dimension ds is a function mapping Ω̂ ⊂ R to Rds . The curve x(s) is de�ned by a

set of ds dimensional control points PA as

x(s) =

n∑
A=1

PAN
p
A(s). (17)

An alternate form of Eq. (17) can be obtained by de�ning the vector of control points P = {PA}nA=1 and

the vector of basis functions Np(s) = {Np
A(s)}nA=1 so that

x(s) = PTNp(s). (18)

The vector of control points P can be interpreted as a matrix of dimension n × ds. Due to the variation160

diminishing property of the spline basis, the curve will generally only interpolate the control points at the

ends of the curve or at locations where the spline basis is C0. A multivariate spline basis is de�ned from a

tensor product of univariate spline bases [32, 33, 34]. The properties of multivariate spline basis functions

follow from the corresponding properties of their univariate counterparts. We can build spline surfaces and

solids using a bivariate or trivariate spline basis in Eq. (17), respectively.165

2.6. Rational splines

The spline basis de�ned in the previous section provides a �exible means to represent curves. However,

this polynomial basis cannot represent certain curves of interest such as circular arcs. A rational spline basis

can be used to remedy this de�ciency [32, 33, 34]. The rational basis is de�ned by associating a weight

wA ∈ R+ with each basis function Np
A and introducing the weight function170

w(s) =

n∑
A=1

wAN
p
A(s) (19)

The rational basis functions are then de�ned as

RpA(s) =
wAN

p
A(s)

w(s)
(20)

and a rational curve is de�ned as

x(s) =

n∑
A=1

PAR
p
A(s) (21)

or, alternatively, as

x(s) = PTRp(s). (22)

where P = {PA}nA=1 and Rp(s) = {RpA(s)}nA=1. We can de�ne multivariate rational spline bases and

describe multiparametric geometries with them following the same approach as in Section 2.5.
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3. Hierarchical splines175

A hierarchical spline space is constructed from a �nite sequence of nh nested spline spaces, Nα ⊂ Nα+1,

α = 1, . . . , nh − 1, and nh open bounded subdomains of the parametric space Ω̂ such that Ω̂nh ⊆ Ω̂nh−1 ⊆

. . . ⊆ Ω̂1 [35]. We denote by Nα the spline basis at each hierarchical level. To ensure nestedness of the spline

spaces Nα ⊂ Nα+1 we impose the following restrictions:

� pα+1
` ≥ pα` , ` = 1, . . . , dp, α = 1, . . . , nh − 1180

� Gα` ⊂ Gα+1
` , ` = 1, . . . , dp, α = 1, . . . , nh − 1

� µ(Gα+1
` , s`)− µ(Gα` , s`) ≥ p

α+1
` − pα` , ∀s ∈ Ω̂, ` = 1, . . . , dp, α = 1, . . . , nh − 1

We will set Ω̂1 = Ω̂ and require that the boundaries ∂Ω̂α, α = 1, . . . , nh, are aligned with knot lines in

Nα−1. This is called a strong boundary condition [35].

3.1. Hierarchical spline spaces185

The hierarchical spline basis H is constructed recursively:

1. Initialize H1 = N1.

2. Recursively construct Hα+1 from Hα by setting

Hα+1 = Hα+1
coarse ∪ Hα+1

fine, α = 1, . . . , nh − 1

where

Hα+1
coarse = {N ∈ Hα : supp (N) 6⊆ Ω̂α+1}

and

Hα+1
fine = {N ∈ Nα+1 : supp (N) ⊆ Ω̂α+1}

3. Set H = Hnh .

We denote the number of hierarchical basis functions in H by nf , which span a hierarchical spline

space H. During each step of the previous algorithm, we �rst build Hα+1
coarse by dropping from Hα those190

functions whose support is contained in Ω̂α+1. Then, we add to the hierarchical basis through Hα+1
fine all the

functions from Nα+1 that are fully supported by Ω̂α+1. The rationale for excluding functions from Hα when

building Hα+1
coarse is that those functions can be represented by a linear combination of the functions in Hα+1

fine.

Consequently, the functions in the resulting hierarchical basis H are linearly independent. Fig. 2 shows an

example of a univariate quadratic hierarchical spline basis. Notice also that given H1, . . . ,HN , a sequence of195

hierarchical spline bases, span Hα ⊆ span Hα+1. For a thorough exposition of the these and other properties

of hierarchical spline bases, the interested reader is referred to [35].
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By construction, N 1 ⊆ H, thus the approximation properties of B-splines and NURBS are inherited

by their hierarchical counterparts. In particular, constants are exactly represented and all patch tests are

satis�ed [43, 86].200
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Figure 2: Basis functions for a univariate quadratic hierarchical spline space. Functions in H are represented with solid lines

and colored with a di�erent hue for each level. Functions in Nα dependent on higher-level functions are depicted with dashed

lines in the corresponding color for each level. Functions that are not fully supported by the hierarchy of subdomains Ω̂α are

represented in gray dotted lines. In each level, the Bézier elements in Eα (see Section 4) that are contained in the subdomain

Ω̂α are shown in black and the remainder in dark gray. Bézier elements in HE (see Section 4) are highlighted in green across

the hierarchy. Note that the functions in H are supported entirely by Bézier elements.

3.2. The geometric map for hierarchical splines

The geometric map x : Ω̂ ⊂ Rdp 7→ Ω ⊂ Rds for hierarchical splines can be constructed in various ways.

Let ng denote the number of geometric blending functions. In this paper we will associate a ds dimensional

control point PA to each function N1
A ∈ N1 and write the geometric map as

x(s) =

ng∑
A=1

PAN
1
A(s). (23)

or, alternatively,205

x(s) = PTN1(s) (24)

where P = {PA}
ng

A=1 and N1(s) =
{
N1
A(s)

}ng

A=1
. We can also use the functions in N1 to represent the weight

function w(s) if we are working with a rational basis [2, 43].
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4. Bézier extraction and spline reconstruction

It is not immediately obvious how to integrate hierarchical splines into existing �nite element tools. A

primary challenge is converting the hierarchy into a �nite element mesh. A simple and elegant solution210

to this problem is based on Bézier extraction. This technique was initially introduced in [4] for NURBS

and in [5] for T-splines. Then it was extended for hierarchical splines [43] and hierarchical analysis-suitable

T-splines [51]. Bézier extraction collapses the spline hierarchy onto a single level �nite element mesh. Both

the hierarchical basis H and geometry are described with the same set of Bernstein basis functions.

4.1. Bézier elements215

We denote a Bézier element by e and the set of all Bézier elements on each hierarchical level by Eα. The

set of Bézier elements HE corresponding to a spline hierarchy can be determined recursively by selecting

speci�c Bézier elements from each Eα, α = 1, . . . , nh. We will use the index e to enumerate the elements in

HE and we denote by ne the number of elements in HE. The parametric domain of an element e is denoted

by Ω̂e and we use Ωe to denote the physical domain corresponding to Ω̂e under the geometric map (23).220

The set of all Bézier elements is also called the Bézier mesh. We build HE as follows:

1. Initialize HE1 = E1.

2. Recursively construct HEα+1 from HEα and Eα by setting

HEα+1 = HEα+1
coarse ∪ HEα+1

fine, α = 1, . . . , nh − 1

where

HEα+1
coarse = {e ∈ HEα : Ω̂e 6⊆ Ω̂α+1}

and

HEα+1
fine = {e ∈ Eα+1 : Ω̂e ⊆ Ω̂α+1}

3. Set HE = HEnh .

The previous algorithm bears much in common with the selection mechanism to build the hierarchical

basis. We exclude from HEαcoarse the elements e ∈ HEα whose parametric domain is also contained in Ω̂α+1
225

because there exists a union of �ner elements in that subdomain that represents Ω̂e. Indeed, HEα+1
fine brings

in those �ner elements. Notice that only the elements contained in the subdomains Ω̂α, α = 1, . . . , N , are

eligible to be part of the Bézier mesh. In Fig. 2, the elements in HE are colored in green across the hierarchy.

Fig. 3 shows the Bézier mesh HE for a two-dimensional hierarchical spline space together with the Bézier

meshes Eα corresponding to each hierarchical level.230
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Figure 3: The Bézier mesh for a two-dimensional hierarchical spline space and the distribution of the elements in HE across

the hierarchical levels. Eα denotes the Bézier mesh at level α. The elements in HE at each level α are depicted with a darker

shade of the same color used to represent the Bézier elements from Eα included in Ωα. Notice that HE ∩ Eα ⊆ Ωα.

4.2. Hierarchical extraction operator

Over each Bézier element it is possible to determine the Bernstein-Bézier representation of the hierarchical

basis functions. This relationship can be written as

He = CeB (25)

where He is the vector containing the hierarchical basis functions with support over the element, Ce is the

element extraction operator whose entries are computed using standard knot insertion techniques [5], and235

B is the vector of Bernstein basis functions.

4.3. Hierarchical reconstruction operator

The element extraction operator Ce for single-level spline representations like B-splines, NURBS and

analysis-suitable T-splines is invertible. The inverse of Ce is called the reconstruction operator [31] and is

denoted by Re. For hierarchical splines there are elements where Ce is not invertible since the hierarchical240
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basis, restricted to the element domain, is not linearly independent. To overcome this limitation we de�ne

the element reconstruction operator as

Re = (LeCe)−1Le (26)

where Le is called a transmission re�nement operator and it is computed following Algorithm 4.1. Fig. 4

illustrates the action of Le.

Algorithm 4.1. Computation of the transmission re�nement operator Le and the reconstruction operator245

Re for an element e.

1. Compute He and Ce over element e.

2. Search through the functions in He �nding the function from the coarsest level αc.

3. Find ec in Eαc such that Ω̂ec ⊃ Ω̂e.

4. Construct a vector Nec of all the functions in Nαc that have support over the element ec. These250

functions form a complete, locally linearly independent basis at level αc over ec.

5. Build the transmission re�nement operator Le from element e to element ec mapping from the functions

in He to Nec , that is

Nec = LeHe. (27)

This can be done using standard knot insertion techniques [1, 2, 32].

6. Build the reconstruction operator Re using Le and Ce in Eq. (26).255

5. Hierarchical re�nement

Local re�nement for hierarchical splines is straightforward due to the multilevel construction of the basis.

Algorithm 5.1. Re�nement of a hierarchical B-spline.

1. Create the re�ned hierarchical destination mesh from a hierarchical source mesh by de�ning the re�ned

subdomains Ω̂αr such that Ω̂α ⊆ Ω̂αr , α = 1, . . . , nh.260

2. Build the re�nement operator Ma,b using knot insertion [1, 2, 32] such that

Nb = Ma,bNa (28)

3. Construct the destination spline coe�cients Pb from the source spline coe�cients Pa as

Pb = (Ma,b)TPa (29)
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Figure 4: Bézier extraction operator Ce and reconstruction operator Re for a bilinear hierarchical spline. The element

marked with a circled cross supports 5 hierarchical basis functions, i.e., He =
{
Ne

1 , N
e
2 , N

e
3 , N

e
4 , N

e
5

}
, which we represent

throughout their support. However, the bilinear Bernstein basis contains only 4 functions, so Ce is not invertible. Le maps

the functions in He to a local independent basis on level 1 over the element, Nec =
{
Nec

1 , Nec
2 , Nec

3 , Nec
4

}
. The functions in

Nec are also represented throughout their support. Now, we can map the functions in Nec to the Bernstein basis throughout

the spline reconstruction operator (LeCe)−1. Then, the hierarchical reconstruction operator over the element is given by

Re = (LeCe)−1Le.

6. Hierarchical coarsening

Bézier projection will be used to perform local coarsening. For a complete exposition on the subject the

interested reader is referred to [31], which also addresses Bézier projection onto and between analysis-suitable265

T-spline spaces, shows the optimal convergence rates of the methodology, and demonstrates its applicability

to hpkr-adaptivity in IGA. Of particular importance is the possibility to use Bézier projection to develop

quadrature-free coarsening algorithms.

Using Eq. (26) as the reconstruction operator we can employ Bézier projection to coarsen hierarchical

splines spaces and to project �elds de�ned over a source mesh onto a coarsened destination mesh.270

Algorithm 6.1. Projection of the control values from m source elements {ei} onto the control values for a
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single coarse element ē in the destination mesh.

1. Use the element extraction operators for the elements {ei} to convert the control values on each element

to Bézier form

Qei = (Cei)TPei . (30)

2. The vector of Bézier control values on ē is given by275

Qē =

m∑
i=1

φiG
−1A−T

i GQei (31)

where φi = vol (Ω̂ei)/vol (Ω̂ē) .

3. Compute the element reconstruction operator for ē using Algorithm 4.1 to convert the Bézier control

values to spline control values

Pē = (Rē)TQē. (32)

Algorithm 6.2. Coarsening of a hierarchical B-spline.

1. Create the coarsened hierarchical destination mesh from a hierarchical source mesh by de�ning the280

coarsened subdomains Ω̂αc such that Ω̂α ⊇ Ω̂αc , α = 1, . . . , nh.

2. Perform the Bézier projection in Algorithm 6.1 to obtain the set of local control values for each element

in the destination mesh.

3. Use the new local control values and the weighting scheme provided by

weA =

∫
Ωe NAdΩ∑

e′∈EA

∫
Ωe′ NAdΩ

, (33)

where EA = HE ∩ supp(NA), to compute the new global control values for the Ath function on the285

coarsened mesh

PA =
∑
e∈EA

ωeAP
e
A. (34)

7. Function support balancing

Balancing controls the overlap of functions across the hierarchy. In other words, it prevents the elements

in level α from supporting hierarchical basis functions from level β where α � β. In the context of IGA,

such a situation would result in poorly conditioned system matrices. Balancing is performed every time290

the hierarchical mesh HE changes. The balancing behavior is controlled by a parameter called the balance

parameter.

To simplify the exposition, we introduce the concept of parent element, grandparent element, and children

element. Given an element e ∈ Eα, we say that the parent element of e is another element p ∈ Eα−1 such

that Ω̂p ⊃ Ω̂e. Likewise, the k grandparent of element e is an element g ∈ Eα−k−1 such that Ω̂g ⊃ Ω̂e. The295

children of element e are the set of elements {ei} ∈ Eα+1 such that Ω̂ei ⊂ Ω̂e.

Algorithm 7.1 outlines ring balancing, a simple strategy which was introduced in [43].
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Algorithm 7.1. Balancing of a hierarchical spline for a given value of the ring balance parameter, nrb ∈ N.

1. Partition HE by sorting the elements according to their hierarchical level, hence building the subsets

pHEα = Eα ∩ HE300

2. For α = nh, nh − 1, . . . , 1, do the following for each element e ∈ pHEα:

(a) Construct a set P1 ⊂ Eα−1 consisting of the parent of element e, p, and nrb rings of neighbors of

p that lie immediately around p.

(b) Construct a set P2 ⊂ Eα−2 consisting of the parents of the elements in P1.

(c) Update P1 including all the children elements of the elements in P2.305

(d) De�ne the new subdomain Ω̂α−1
b = P1 ∪ Ω̂α−1.

(e) De�ne the new subdomain Ω̂α−2
b = P2 ∪ Ω̂α−2.

As depicted in Fig. 5, a reduction in basis overlap is achieved with higher values of the ring balance

parameter. However, some elements might still support hierarchical basis functions from distant levels after

balancing. For instance, in Fig. 5(e), element e supports a function from level 1 after balancing with either310

nrb = 1 or nrb = 2.

1

2

3

4

5

Hierarchy 

Levels

nrb=2

nrb=1

(a) HE (b) E3 (c) E2 (d) E3 (e) HE

Figure 5: Ring balancing of a bilinear hierarchical mesh over an element e for nrb = 1 and nrb = 2. The considered element

e is marked with a circled cross. (a) Original hierarchical mesh. (b) Construction of P1 over E3 with the parent of element e,

p (shaded in darker gray), and nrb rings of elements surrounding p. (c) Construction of P2 over E2 with the parents of the

elements in P1. (d) Update of P1 over E3 with all the children of the elements in P2. The new elements added to P1 are

shown in darker gray. (e) Final mesh, after rede�ning the subdomains Ω̂3
b = P1 ∪ Ω̂3 and Ω̂2

b = P2 ∪ Ω̂2. In sub�gures (b)-(d),

elements in higher levels are shown with lighter contours.

To overcome this limitation, we developed function support balancing. Function support balancing is an

elementwise balancing procedure that speci�cally accounts for the level of each element e, the levels of the
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hierarchical basis functions in He, and the extent of the support of these functions. Algorithm 7.2 outlines

this new balancing strategy.315

Algorithm 7.2. Balancing of a hierarchical spline for a given value of the function support balance param-

eter, nfsb ∈ N.

1. Partition HE by sorting the elements according to their hierarchical level, hence building the subsets

pHEα = Eα ∩ HE

2. For α = nh, nh − 1, . . . , 1, do the following for each element e ∈ pHEα:320

(a) Construct a set P ∈ Eα−nfsb−1 consisting of the nfsb grandparent of element e, g, and the neigh-

bors of g that support e's hierarchical basis functions.

(b) Construct a set C ∈ Eα−nfsb consisting of the children of the elements in P.

(c) De�ne the new subdomain Ω̂
α−nfsb−1
b = P ∪ Ω̂α−nfsb−1.

(d) De�ne the new subdomain Ω̂
α−nfsb

b = C ∪ Ω̂α−nfsb .325

(e) If nfsb > 1, ring balance the current element with nrb = 1.

The function support balance parameter enables us to set a maximum level for the hierarchical basis

functions with support over an element as follows: an element in level α can only support functions in levels

α, α− 1 . . . α−nfsb. Should a function from level β < α−nfsb be nonzero over this element, Algorithm 7.2

will re�ne its support until the balancing constraint is satis�ed. Thus, function support balancing sets an330

explicit limit to the overlapping of functions over the elements in HE that we can control directly. The

performance of nfsb is illustrated in Fig. 6 on a simple two-dimensional scenario. Additional analysis of

function support balancing will be presented in Section 8.6.1.

Notice that function support balancing also brings an improved control over the computation of Le:

nfsb enables us to explicitly de�ne the distance from the level α of each element to the coarse level αc in335

Algorithm 4.1. This also implies an enhanced control of the computation of the reconstruction operator Re

and the performance of coarsening as described in Algorithms 6.1 and 6.2.

8. Applications in mathematical oncology

In this section, we present a series of numerical examples that highlight the advantages of hierarchical

adaptivity over uniform meshes in a promising, cutting-edge �eld: the modeling and simulation of cancer. In340

particular, we will focus on localized prostate cancer growth, as introduced in Section 1.1. We will show that

the use of the techniques described in Sections 5, 6 and 7 are fundamental in order to perform patient-speci�c

tissue-scale simulations in an accurate and e�cient way � a requisite for the implementation of predictive

models of tumor progression on a clinical scenario.
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Figure 6: Function support balancing of a bilinear hierarchical mesh over an element e for nfsb = 1 and nfsb = 2. The

considered element e is marked with a circled cross. (a) Original hierarchical mesh. (b) Hierarchical basis functions in He,

represented throughout their support with lighter shades for each level. The support of the only hierarchical basis function

in He from level 1 covers Ω̂ completely. (c) Resulting hierarchical mesh after balancing with nfsb = 1 over e. Following

Algorithm 7.2, P = E2 and, then, C = E3. Consequently, Ω̂2
b = E2 and Ω̂3

b = E3, so that no function from any level α < 3

enters in He. (d) Resulting hierarchical mesh after balancing with nfsb = 2 over e. Now, Algorithm 7.2 renders P = E1 and

C = E2. Hence, the balancing constraint only applies to hierarchical basis functions in level 1. Finally, we ring balance the

element e with nrb = 1.

.

8.1. Tumor growth model345

The model described herein comes from our prior work on the modeling and simulation of localized

prostate cancer [30]. We will only consider two cell species: cancerous and non-cancerous. Prostate cancer

growth is driven by a complex array of nutrients, hormones and proteins that interact leading to very

di�erent behaviors of the disease. Following other approaches to model cancer growth, we will simply

consider a generic nutrient σ. We will assume that σ follows the dynamics of glucose. However, the e�ect of350

other regulatory substances on cancer growth could be included as an equivalent in terms of glucose. This

model also accounts for the dynamics of a prostate cancer biomarker known as Prostate Speci�c Antigen

(PSA), which is measured with a blood test and plays a crucial role during the diagnosis, treatment selection,

and follow-up of the patients [60]. Both healthy and tumoral cells produce PSA, but the latter generally

secrete it at a much higher rate than healthy cells, which is the key idea behind PSA testing. In particular,355

we will include an equation for the dynamics of the tissue PSA p, de�ned as the serum PSA1 concentration

leaked to the bloodstream per unit volume of prostatic tissue.

Leveraging the phase �eld method, we de�ne an order parameter φ that measures the cell microstructure:

it will vary from the value of 0, corresponding to the healthy host tissue, to the value of 1, representing a

1Serum PSA is the concentration of PSA in the patient's blood.
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tumor region. The level set φ = 0.5 implicitly de�nes the interface between healthy and cancerous tissue,360

with no need to explicitly track it. The dynamics of the tumor is governed by the equation

∂φ

∂t
= λ∆φ− 1

τ

dF (φ)

dφ
+ χσ −Aφ (35)

where F (φ) = 16φ2(1−φ)2 is a double-well potential, a typical function within the phase-�eld method that

makes possible the coexistence of both phases in the model. The third and fourth terms in Eq. (35) model

the nutrient-driven growth and apoptosis (i.e., programmed cell death), respectively. We assume that the

tumor grows linearly at a rate χ in the presence of the nutrient [87]. We further suppose that apoptosis365

follows �rst order kinetics with a rate A, as this is the natural response in the prostatic tissue.

The nutrient σ will follow the di�usion-reaction dynamics described by

∂σ

∂t
= ε∆σ + s− δφ− γσ (36)

where we have assumed that convection has a negligible e�ect on nutrient transport. This is consistent with

the results found in [88]. Furthermore, we will consider a constant nutrient supply s, we will assume that

the tumor consumes the nutrient at a linear rate δ, and we will set a linear natural decay for σ at a rate γ.370

We will also consider that the concentration of tissue PSA p follows di�usion-reaction dynamics, modeled

by

∂p

∂t
= η∆p+ αh(1− φ) + αcφ− γpp (37)

where αh and αc are the rates of production of PSA per unit volume by healthy and cancerous tissue,

respectively. We will also assume that tissue PSA decays naturally following �rst order kinetics at a rate

γp. From the de�nition of the tissue PSA p, it follows that the value of serum PSA Ps can be computed as375

the integral of p over the whole prostatic gland Ω,

Ps =

∫
Ω

p dΩ (38)

The majority of the parameters in Eq. (35), Eq. (36) and Eq. (37) can be found in the literature

[30, 73, 87, 89, 90, 91, 92]. In order to keep the simulations tractable, we will take λ ∼ h2/T , where h is the

characteristic length scale of the computational mesh and T is the characteristic time scale, which we have

considered to be T = 1 year (see [20] for rationale). Furthermore, it is known that nutrient dynamics is one380

to two orders of magnitude faster than tumor dynamics. Consequently, we have taken a value for nutrient

di�usivity between ε ∼ 10λ and ε ∼ 100λ.

The model for localized prostate cancer growth that we have described in this section develops steep

layers representing the interface between the tumor and the host tissue. In order to capture the interface
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accurately we require very �ne meshes. However, within healthy tissue (φ = 0) or the tumor (φ = 1)385

we could use a much coarser mesh to represent the constant value of the phase �eld over these regions.

Consequently, localized prostate cancer growth is a paradigmatic problem that can bene�t from our local

adaptive techniques.

8.2. Spatial discretization

The strong form of our cancer growth problem is composed of Eqs. (35)-(37). We will approximate its390

solution by means of IGA based on a Bubnov-Galerkin approach that leverages a hierarchical spline basis

H, as introduced in Section 3. Let us denote by V the trial solution and the weighting function spaces,

which are assumed to be identical. The space V is a subset of H1, the Sobolev space of square integrable

functions with square integrable �rst derivatives. We will only work with free-�ux, periodic or zero-valued

Dirichlet boundary conditions. Let us de�ne the discrete space Vh = H, which is a subset of V. Hence, the395

corresponding variational problem to Eqs. (35)-(37) over the �nite dimensional space Vh can be stated as

follows: �nd φh, σh, ph ∈ Vh ⊂ V such that ∀uh, vh, wh ∈ Vh ⊂ V

∫
Ω

∂φh

∂t
uhdΩ + λ

∫
Ω

∇φh · ∇uhdΩ−
∫

Ω

uh
(
χσh −Aφh − 1

τ

dF

dφ

(
φh
))

dΩ = 0 (39)

∫
Ω

∂σh

∂t
vhdΩ + ε

∫
Ω

∇σh · ∇vhdΩ−
∫

Ω

vh
(
s− δφh − γσh

)
dΩ = 0 (40)

∫
Ω

∂ph

∂t
whdΩ + η

∫
Ω

∇ph · ∇whdΩ−
∫

Ω

wh
(
αh(1− φh) + αcφ

h − γpph
)
dΩ = 0 (41)

Here φh, σh and ph are de�ned as

φh(x, t) =

nf∑
A=1

φA(t)NA(x) (42)

σh(x, t) =

nf∑
A=1

σA(t)NA(x) (43)

ph(x, t) =

nf∑
A=1

pA(t)NA(x) (44)

where the coe�cients φA, σA and pA are the so-called control variables in the context of IGA. The weighting

functions uh, vh, and wh are de�ned analogously.400
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8.3. Time integration

We have chosen the generalized-α method [93, 94] in order to perform time integration. This technique

is second-order accurate and A-stable. The generalized-α method leads to a nonlinear problem at each

time step, which we linearize using the Newton-Raphson method. We used the linear solvers available in

the Trilinos open-source package for all the simulations in this paper [95]. In particular, we have used405

the GMRES algorithm [96] with a basic block diagonal preconditioner to solve the linear system during

each corrector step. We also implemented a local update for the consistent tangent matrix during each

corrector step because only the term corresponding to the double-well potential in Eq. (35) changes during

the corrector phases. We set the parameters of the generalized-α method as in [20]. We chose a constant

time step ∆t = 0.001 years for all the examples in this paper.410

8.4. Automatic adaptivity

We have automated the operations of re�nement and coarsening in our code. To do so, we have introduced

two basic features: �rst, an indicator to determine which elements must undergo an adaptive procedure,

and second, a time-step o�set for each operation.

We re�ne the mesh every 5 time steps in order to keep track of the moving interface. However, coarsening415

is performed every 10 time steps to clean up the �ner elements left in the rear of the moving interface and

that are no longer required. This means that every 10 time steps we re�ne and then we coarsen the mesh.

To determine whether to perform an adaptive procedure or not we de�ne the gradient-based indicator

ρe =
1

vol (Ωe)

∫
Ωe

| ∇φ |2 dΩe, (45)

where we compute the squared L2-norm of the gradient of the phase �eld over each element Ωe and normalize

it with respect to its corresponding volume vol (Ωe). During a re�nement step, we compare ρe to its average420

over all elements and proceed to �ag for re�nement those elements that exceed an arbitrary threshold.

Likewise, during a coarsening step, if ρe is smaller than a certain preset value dependent on the average ρe,

we mark the element for coarsening. These procedures can be expressed algorithmically as

ρe >
CR
ne

ne∑
e=1

ρe =⇒ re�nement (46)

ρe <
CC
ne

ne∑
e=1

ρe =⇒ coarsening (47)

The constants CR and CC in Eq. (46) and Eq. (47) enable us to control the intensity of re�nement and

coarsening, respectively.425
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8.5. Initial conditions

The initial condition for the phase �eld φ0 is an elliptic (2D) or ellipsoidal (3D) tumor that we model with

a hyperbolic tangent �eld. The initial conditions for the nutrient σ and the tissue PSA p are approximations

based on φ0 given by σ0 = c0σ + c1σφ0 and p0 = c0p + c1pφ0, respectively. The values of the constants c
0
σ, c

1
σ,

c0p, and c
1
p are computed so that σ0 and p0 reproduce the constant value of the nutrient and the tissue PSA430

within the tumor and the host tissue, respectively.

We use an adaptive L2-projection procedure in order to tailor an appropriate initial mesh that �ts the

initial condition for the tumor phase �eld. Beginning with a Bézier mesh only composed of elements on level

1, we perform nh rounds of re�nement to progressively enlarge HE with elements in higher levels. During

each step k of this procedure we L2-project φ0 over an initial Bézier mesh composed of elements in levels435

α = 1, . . . , k. Then we use the gradient-based indicator in Eq. (45) to �ag the elements to re�ne. Finally

we re�ne and balance the resulting Bézier mesh now having elements from levels α = 1, . . . , k + 1. In the

last re�nement round the initial Bézier mesh already includes elements across the whole hierarchy, but we

perform one last round of re�nement to �ne-tune the mesh.

8.6. Results440

We carried out several simulations of localized prostate cancer growth leveraging the integrated adaptive

methodology presented in this paper. We begin with simple 2D and 3D computational domains in order to

focus on the performance of the adaptive algorithms. Then we show the application of these algorithms in

the �eld of mathematical oncology with a tissue-scale, patient-speci�c simulation of prostate cancer growth.

All the simulations presented herein were run in a parallel environment.445

8.6.1. Prostate cancer growth in a square domain

We begin investigating the behavior of our adaptive methods on a basic 2D scenario for prostate cancer

growth: a 2000×2000 µm square with periodic boundaries. The initial tumor is placed in the center of

the computational domain and the lengths of its semiaxes are 100 µm and 150 µm. We used a quadratic

hierarchical B-spline space with 5 levels, going from 32×32 elements in E1 to 512×512 elements in E5.450

Table 1 provides the values of the model parameters that we have used in this simulation. We have set

CR = 1 and CC = 0.001.

Fig. 7 and Fig. 8 show the evolution of the tumor phase �eld and the supporting adaptive mesh using

two di�erent values of our new function support balance parameter, nfsb = 1 and nfsb = 2, respectively.

The phenomenon of prostate cancer growth is perfectly captured in both simulations (cf. [30]). Initially, the455

elliptic tumor grows spheroidally but this pattern of growth leads to very low levels of the nutrient inside the

tumor. Should the tumor continue to develop with this morphology, it would su�er from starvation, hypoxia,

and, eventually, necrosis, which would hamper cancer growth. Alternatively, the tumor undergoes a shape
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Table 1: List of parameters in the model of prostate cancer growth: square and cubic domain simulations.

Parameter Notation Value

Di�usivity of the phase �eld λ 1.6 · 105
µm2/year

Time scale for the phase �eld τ 0.01 years

Nutrient-induced tumor growth rate χ 600 l/(g·year)

Apoptosis rate A 600 1/year

Nutrient di�usivity ε 6.0 · 106
µm2/year

Nutrient supply s 2.70 g/(l·day)

Nutrient consumption rate δ 2.75 g/(l·day)

Nutrient natural decay rate γ 1000 1/year

Tissue PSA di�usivity η 1.6 · 105
µm2/year

Tissue PSA production rate in healthy tissue αh 6.25 (ng/ml)/(cm3·year)

Tissue PSA production rate in cancerous tissue αc αc = 15αh

Tissue PSA natural decay rate γp 100 1/year

instability towards a �ngered pattern of growth. This shift in morphology begins with a sort of bottleneck,

as shown in Fig. 7(b) and Fig. 8(b). Then, in the evolving geometries in Fig. 7(c)-(d) and Fig. 8(c)-(d),460

the distance from the inner areas of the tumor to the surrounding healthy tissue is much shorter that in an

spheroidal morphology, thus preventing the tumoral cells from starving.

The design of the hierarchy is not trivial. For this problem of prostate cancer growth, we knew that a

quadratic uniform B-spline mesh of 512× 512 elements produced an accurate solution. Then, we started to

add levels on top of this original mesh, each consisting of a uniform B-spline mesh with half the elements465

per parametric direction than the last added. This strategy enabled us to study the bene�ts of using

hierarchical spaces with increasing number of levels, but such that the interface would always be supported

by the elements in the original 512× 512 mesh.

Leveraging a 5-level hierarchy, the resulting �nite element meshes depicted in Fig. 7 and Fig. 8 accomplish

our expectation: �ner elements to support the interface and coarser elements within the tumor and in healthy470

tissue regions, where the phase �eld is constant. The main di�erence between the meshes in Fig. 7 and Fig. 8

is the distribution of the elements in HE across the hierarchy during the simulation. Fig. 9 portrays the

subdomains Ω̂α, α = 1, . . . , nh, and the elements in HE that belong to each of these subdomains for the

balance parameter values nfsb = 1 and nfsb = 2. In Fig. 9, we can also observe how the elements in HE∩Eα,

α = 1, . . . , nh, can be collapsed from a multilevel topology onto the single-level �nite element representation475

provided by the Bézier mesh HE. The balance parameter nfsb a�ects how adaptivity is performed beyond

re�nement and coarsening, limiting the overlapping of the basis functions in H across the hierarchy on each
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Figure 7: Tumor phase �eld and adaptive mesh for a simulation of 2D prostate cancer growth using a quadratic hierarchical

B-spline space with 5 levels and balance parameter nfsb = 1. Level 1 is the coarsest level, with 32 × 32 elements in E1, and

level 5 is the �nest, with 512× 512 elements in E5. The size of the tissue domain is 2000× 2000 µm.

element. Hence, the di�erences in the hierarchical meshes depicted in Fig. 7, Fig. 8, and Fig. 9 are a direct

consequence of the selected value for the balance parameter.

When nfsb = 1, an element in level α can only support hierarchical basis functions in level α or level480

α − 1. Consequently, after re�nement or coarsening, balancing enforces a considerable amount of further

re�nement to enforce the overlapping constraint. Let us illustrate this with an example of the operation of

balancing after re�nement and coarsening. Consider the elements in an intermediate level α. If a su�cient

amount of elements in level α are re�ned to level α+1, some hierarchical basis functions in level α−1, which

originally had some support on those re�ned elements in level α, may have support in level α+1 now. During485

balancing, these functions will be �agged for re�nement and their entire support will be re�ned to level α.

Let us consider an alternative example. After performing coarsening in level α, we might eliminate enough

elements in this level so that some functions in level α−1 enter in the hierarchical basis. However, functions

in level α− 1 have a larger support and part of it may lie in level α+ 1 or even deeper. Balancing will �ag

these new functions in level α− 1 and their whole support will be re�ned to level α. Hence, when nfsb = 1490

the borders between the subdomains Ω̂α, are very distant one another in order to prevent the hierarchical

basis functions in levels above α− 1 and below α+ 1 from overlapping. As a result, this constraint produces

a smooth transition between the levels of the hierarchy, whose elements are disposed in wide rings for each
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Figure 8: Tumor phase �eld and adaptive mesh for a simulation of 2D prostate cancer growth using a quadratic hierarchical

B-spline space with 5 levels and balance parameter nfsb = 2. Level 1 is the coarsest level, with 32× 32 cells in E1, and level 5

is the �nest, with 512× 512 cells in E5. The size of the tissue domain is 2000× 2000 µm.

level, as shown in Fig. 7 and Fig. 9(a)-(b).

The previous examples considered a situation close to the threshold level to perform balancing, that is,495

a global function in level α − 1 that has support in level α + 1. However, balancing propagates across the

hierarchy and it also prevents the overlapping of basis functions in HE in more distant levels. For example,

consider hierarchical basis functions in a shallow level α−m, m >> nfsb, that after an adaptive operation

have support on elements in level α. In this case, balancing re�nement is triggered in an element in level α

and it will a�ect functions from level α−m downwards until all the hierarchical basis functions with support500

in that element meet the balancing constraint.

If we set nfsb = 2, the elements in level α can now support hierarchical basis functions in levels α, α− 1

and α − 2. The overlapping between the functions of di�erent levels of the hierarchy is stronger than for

nfsb = 1. Hence, the re�nement operation caused by balancing is signi�cantly reduced: to trigger re�nement

to balance the mesh when nfsb = 2 it is necessary that an element in level α supports a hierarchical basis505

function in level α − 3 or above. Consequently, the transition between levels in the hierarchical mesh is

sharper for nfsb = 2, with the elements describing thinner rings, as depicted in Fig. 8 and Fig. 9(c)-(d).

Fig. 9 shows that the coarsest elements in the hierarchy, belonging to level 1, only appear su�ciently

far from the interface. In these areas, the gradient is small and the hierarchical basis functions in level 1
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(a) Bézier mesh HE, nfsb=1 (b) Bézier meshes Eα at each hierarchical level α, nfsb=1
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Figure 9: The distribution of elements across the hierarchical levels and the corresponding Bézier meshes for nfsb = 1 and

nfsb = 2 at t = 0.4 years.

do not overlap with basis functions in much deeper levels. However, the gradient is also approximately zero510

in the inner tumor but only elements in level 2 appear here. This is caused by balancing: the vicinity of

the interface requires the �nest elements and the �ngered morphology does not have enough space in the

internal areas of the tumor to enable the transition from elements in level 5 to level 1 satisfying the balancing

constraint. A similar situation takes place with the elements in level 2 between the branches of the tumor,

26



chie�y when nfsb = 2, as depicted in Fig. 9(c)-(d). When nfsb = 1, most of those elements in level 2 are515

re�ned to level 3 near the interface (see Fig. 9).

The plots in Fig. 10 o�er a deeper insight in the di�erences between a mesh balanced with nfsb = 1 and

nfsb = 2. The parameters that describe the distribution of the number of basis functions per element take

higher values when we select nfsb = 2 in Fig. 10(a). This feature is caused by the increased overlapping of

hierarchical basis functions that is inherent to higher values of the balance parameter. However, the total520

number of hierarchical basis functions is lower for nfsb = 2 than for nfsb = 1, as shown in see Fig. 10(b).

This is due to the more localized e�ect of the adaptive operations when balancing is more indulgent. The

number of elements is also lower for nfsb = 2 than for nfsb = 1, as depicted in Fig. 10(c). However, notice

that the di�erence between both choices of balance parameter is mild in Fig. 10(b)-(c) and both led to a

remarkable decrease in ne with respect to the 512 × 512 element mesh. For instance, at t = 0.4 years, the525

total number of elements is reduced to a 15.1% with nfsb = 1 and a 12.2% with nfsb = 2.

The minimal number of hierarchical basis functions over a 2D element is exactly (p + 1)2, as in the

corresponding single-level B-spline mesh that con�gures each hierarchical level. We consider the ratio of the

number of elements with minimal number of hierarchical basis functions to the total number of elements.

Higher values of this ratio re�ect minimal overlapping of functions. In the context of our adaptive algo-530

rithms, this means that there is a smooth transition between the regions of the mesh corresponding to each

hierarchical level, Ω̂α. Superior accuracy is expected from these meshes because they are composed of broad

regions of �ner elements near the interface and coarser elements su�ciently far from it (see Fig. 9); not to

mention that reduced overlapping improves numerical conditioning. In Fig. 10(c) the number of elements

supporting a minimal number of hierarchical basis functions is considerably superior for nfsb = 1 than for535

nfsb = 2. Indeed, such di�erence is of greater magnitude than in terms of the total number of elements.

Hence, the ratio of elements with minimal number of hierarchical basis functions to total elements is higher

when we choose nfsb = 1, as shown in Fig. 10(d).

The cumulative histograms in Fig. 11 show the distribution of the number of hierarchical basis functions

per element along the simulations corresponding to Fig. 7 and Fig. 8. Notice the increased dispersion and540

higher variability for the case nfsb = 2, which is caused by the increased overlapping of functions for this

choice of balance parameter.

In order to test the accuracy of the solutions computed with a hierarchical basis, in Fig. 12 we provide

a comparison between these and a reference solution obtained on a quadratic single-level B-spline mesh of

1024 × 1024 elements. When we select nfsb = 1 the reference and hierarchical solutions are practically545

indistinguishable, as depicted in Fig. 12(a). If we set nfsb = 2, some slight di�erences between the reference

and the hierarchical solution appear, as seen in Fig. 12(b). However, the overall quality of the hierarchical

solution is still acceptable. The decrease in the accuracy for nfsb = 2 is caused by the increased overlapping

of hierarchical basis functions. Consequently, the mesh presents coarser elements closer to the interface,
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Figure 10: Analysis of the number of hierarchical basis functions (HBF) and elements along the simulations in Fig. 7 and

Fig. 8. (a) Time history of the parameters that describe the distribution of the number of HBF, including the mean, the

median, the standard deviation (StdDev), the minimum, and the maximum. The minimum number of HBF is exactly (p+ 1)2.

(b) Time history of the total number of HBF. (c) Time history of the total number of elements and the number of elements with

minimal number of hierarchical basis functions (MinHBF). (d) Time history of the ratio of the number of MinHBF elements

to the total number of elements.
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Figure 11: Time history of the distribution of the number of hierarchical basis functions per element for nfsb = 1 (a) and

nfsb = 2 (b).

which reduce the accuracy of the overall hierarchical solution. The balance parameter value nfsb = 2 does550

not bring major savings in the number of elements or functions in the hierarchy (see Fig. 10) and the

solution is not more accurate. Hence, we conclude that nfsb = 1 su�ces to balance the mesh accurately

while preserving all the advantages of local adaptivity.

Our adaptive algorithms are fully compatible with global p-re�nement, as shown in Fig. 13. Increasing the

degree of the polynomial functions that build the hierarchical basis enriches the space of functions that can555

be represented with that basis. Consequently, the accuracy of the solution also improves. However, global

p-re�nement also carries some disadvantages, which are mostly manifested for high polynomial degrees,

such as p = 4 or p = 5. First, increasing the polynomial order increments the number of functions on every

element in every level of the hierarchy. Second, elevating the polynomial degree leads to an adaptive mesh

where re�nement and coarsening are less and less local. As the support of each basis function N ∈ Nα is560

(p+ 1)2 elements in Eα, the re�nement operation induced by balancing will a�ect a larger domain. Hence,

the extent of the subdomains Ω̂α is larger and those corresponding to coarser levels might become void. As

a result, a substantial amount of memory is required to store the tangent matrix and the residual and the

simulations run more slowly.
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Figure 12: Comparison between the reference solution (white contour) for the interface (φ = 0.5) at t = 0.4 years and

a hierarchical solution (green contour) computed with a quadratic 5-level B-spline space for the balance parameter values

nfsb = 1 and nfsb = 2.

8.6.2. Prostate cancer growth in a cubic domain565

We tested our adaptive algorithms in a cubic domain with periodic boundaries and side length 2000 µm

to study their performance in a simple 3D scenario. The initial tumor is placed in the center of the cube

and has two semiaxes of length 100 µm and one with length 150 µm. We have set CR = 1 and CC = 0.01

for this simulation. The model parameters take the values indicated in Table 1.

We designed the hierarchy following the same approach as for the previous 2D examples, but reducing the570

mesh size to keep simulations tractable. Our cancer growth problem can be solved with su�cient accuracy

by means of a single-level B-spline mesh with 256 elements per parametric direction. Hence, we used a

quadratic hierarchical B-spline space with 5 levels, ranging from 16 to 256 elements per parametric direction

in E1 and E5, respectively. According to the analysis of the e�ect of the function support balance in the

previous subsection, we chose nfsb = 1 to attain higher accuracy with a reasonable distribution of elements575

across the levels in HE.

Fig. 14 shows the evolution of the tumor and the adaptive mesh along several time steps. Similar to the

2D scenario, tumor morphology evolves from an initial ellipsoid developing branches to gain better access to

the nutrient. The main feature that emerges in this 3D simulation is that some of the �nger-like structures

turn into curved layers of tumoral tissue. However, if we take a cross section of the tumor we obtain again580

the characteristic branches that we observed in the 2D scenario. Interestingly, at t = 0.6 years the tumor

has divided into three independent tumoral regions: a central ellipsoidal mass surrounded by two opposing
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Figure 13: Our adaptive algorithms are compatible with global p-re�nement. (a) Tumor phase �eld at t = 0.4 years computed

with a quadratic hierarchical B-spline basis with 5 levels as in Fig. 7. (b)-(f) Two-dimensional meshes at t = 0.4 years using a

5-level hierarchical B-spline space with increasing polynomial degrees from p = 1 to p = 5 in both parametric directions. The

white contour depicts the level set φ = 0.5, which represents the interface between the tumor and the healthy tissue. We set

the balance parameter value to nfsb = 1.

concave shell-like structures with a satellite directed outwards. These satellites eventually detach, hence

de�ning two additional cancerous regions.

The adaptive mesh follows the evolution of the interface between healthy and tumoral tissue e�ciently585

along the simulation. Our algorithms to implement local adaptivity dramatically lower the total number

of elements with respect to an uniform mesh with 256 elements per parametric direction. For example, at

t = 0.4 years ne is reduced to 6.9%, and it stays below 15% until t = 0.56 years. These rates reveal the

promising potential of our algorithms to e�ciently resolve local features with IGA in 3D scenarios.
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Figure 14: Tumor phase �eld and adaptive mesh for a simulation of 3D prostate cancer growth using a quadratic hierarchical

B-spline space with 5 levels and balance parameter nfsb = 1. Level 1 is the coarsest level, with 16 × 16 × 16 elements in E1,

and level 5 is the �nest, with 256× 256× 256 elements in E5. The size of the tissue domain is 2000× 2000× 2000 µm.

8.6.3. Tissue-scale, patient-speci�c simulation of prostate cancer growth590

Our �nal example consists of a simulation of prostatic tumor growth over the geometry of a patient's

prostate, which we extracted from CT images provided by the Austin Radiological Association. Solid

anatomic NURBS models can be constructed following numerous approaches [97, 98, 99]. The geometry of

the prostate organ is topologically equivalent to that of a torus. Hence, we leverage a parametric mapping

method that deforms a basic torus NURBS model to match the surface of the prostate obtained from the595

patient's CT data. The original torus and the resulting prostate mesh are both discretized with 32 elements

along the toroidal direction, 32 elements along the cross-section circumferential direction, and 8 elements
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Figure 14: (Continued) Tumor phase �eld and adaptive mesh for a simulation of 3D prostate cancer growth using a quadratic

hierarchical B-spline space with 5 levels and balance parameter nfsb = 1. Level 1 is the coarsest level, with 16 × 16 × 16

elements in E1, and level 5 is the �nest, with 256×256×256 elements in E5. The size of the tissue domain is 2000×2000×2000

µm.

along the cross-section radial direction.

We have approximated the initial tumor geometry to an ellipsoidal mass placed in the left posterior

region of the prostate. We recursively re�ne the extracted prostate mesh in order to adapt to this initial600

tumor by following the approach described in Section 8.5. The values of the model parameters for this

simulation are summarized in Table 2.

Patient-speci�c, tissue scale prostate cancer growth can be solved using a single-level NURBS with 256

elements in the toroidal direction, 256 elements in the cross-section circumferential direction, and 64 elements
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Table 2: List of parameters in the model of prostate cancer growth: patient-speci�c, tissue-scale simulation.

Parameter Notation Value

Di�usivity of the phase �eld λ 175 mm2/year

Time scale for the phase �eld τ 0.01 years

Nutrient-induced tumor growth rate χ 550 l/(g·year)

Apoptosis rate A 600 1/year

Nutrient di�usivity ε 5.47 · 103 mm2/year

Nutrient supply s 2.70 g/(l·day)

Nutrient consumption rate δ 2.75 g/(l·day)

Nutrient natural decay rate γ 1000 1/year

Tissue PSA di�usivity η 175 mm2/year

Tissue PSA production rate in healthy tissue αh 6.25 (ng/ml)/(cm3·year)

Tissue PSA production rate in cancerous tissue αc αc = 15αh

Tissue PSA natural decay rate γp 100 1/year

in the cross-section radial direction. Therefore, we chose a quadratic hierarchical NURBS space with 4 levels.605

We place the previous single-level discretization in the highest level and the prostate mesh extracted from

CT in level α = 1. We set nfsb = 1 again to attain higher accuracy with a reasonable distribution of

elements across HE. We set CR = 0.1 and CC = 0.0005 for this simulation.

Fig. 15 and Fig. 16 show the evolution of the tumor within the prostate and the adaptive mesh from

an anterior and a posterior view, respectively. The initial tumor starts growing as a mass but, eventually,610

it undergoes a shape instability towards a �ngered morphology that grows surrounding the urethra. With

this new pattern of development, the tumor reaches more nutrients and escapes hypoxia, starvation, and,

eventually, necrosis, which would hamper tumor growth.

The mesh e�ciently adapts to the evolution of the tumor in a similar fashion as we described for the

square and cubic domains in Section 8.6.1 and Section 8.6.2, respectively. The �nest elements from level615

α = 4 are localized to the surroundings of the interface between tumoral and healthy tissue to accurately

capture its evolution. The operation of balancing ensures a distribution of elements in coarser levels that

guarantees reduced overlapping of basis functions. These features can be observed in the adaptive meshes

depicted in Fig. 15 and Fig. 16. Notice also that during the simulation coarser elements from levels α = 1

and α = 2 cover the majority of the volume of the prostate. As a result, we dramatically reduce the number620

of elements with respect to the reference single-level NURBS mesh. For instance, at t = 0.3 years ne is

reduced to 6.6%, and it stays below 15% until t = 0.55 years. Consequently, our adaptive algorithms also

reduce the computational resources and time required to run patient-speci�c, tissue-scale simulations of
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Figure 15: Patient-speci�c, tissue scale simulation of prostate cancer growth (anterior view). We used a quadratic hierarchical

NURBS space with 4 levels and balance parameter nfsb = 1. The volume of the prostate is 35.8 cm3.
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Figure 16: Patient-speci�c, tissue scale simulation of prostate cancer growth (posterior view). We used a quadratic hierarchical

NURBS space with 4 levels and balance parameter nfsb = 1. The volume of the prostate is 35.8 cm3.
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prostate cancer growth.

These advantages are of much interest in view of implementing our model for prostate cancer growth in the625

clinic. Physicians could use our model to predict the personalized prognosis of a patient and hence determine

the best course of clinical management, from scheduling new revisions to starting a radical treatment. Our

adaptive algorithms o�er an e�cient and accurate way to solve the cancer growth problem in a reasonable

time. Thus, we believe that our modeling and simulation technology could contribute to improve the medical

management of prostate cancer, from diagnosis to treatment and follow-up [30].630

9. Summary and conclusions

In this paper, we have presented a set of e�cient algorithms to accommodate local h-re�nement and

h-coarsening of hierarchical B-splines and NURBS in IGA. Our methods are based on Bézier projection,

which we have extended to hierarchical spline spaces. We have also introduced the function support balance

parameter in order to control the overlapping of functions across the levels of the hierarchy.635

The technology presented herein enables the resolution of demanding problems of science and engineering

by means of IGA and leveraging hierarchical spline spaces within a �nite element framework provided by

Bézier extraction. In particular, we have focused in the modeling and simulation of localized prostate cancer

growth. We have used a model that we have presented in our previous work [30] in order to demonstrate

the analysis potential of our adaptive strategies for hierarchical splines. In all the simulations presented in640

this paper we obtained remarkable accuracy with very few degrees of freedom in comparison to the uniform

mesh that the same simulation would require.

The simulation of patient-speci�c, tissue-scale prostate cancer growth is a challenging problem. It features

a moving interface that indicates the boundary between the tumor and the neighboring healthy tissue. This

interface, modeled by means of the phase �eld method, evolves in the complex anatomy of the patient's645

prostate driven by nutrients and hormones. Consequently, this is a problem where and adaptive approach

introduces a key advantage: it provides a mesh with �ner elements to support the interface an coarser

elements elsewhere, which leads to dramatic savings of memory and computational time. Hence, we argue

that our adaptive algorithms are a cornerstone for the implementation of predictive models of localized

prostate cancer growth on a clinical scenario in an e�cient and accurate way.650

In future work, we plan to test the technology presented herein with more complex models of prostate

cancer growth. These involve several tumoral cell species, which means that new interfaces between them

must be accurately represented. We also plan to leverage our adaptive strategies in order to test the

accuracy of our models using patient-speci�c anatomical and pathological data extracted from medical

images, in particular, from multiparametric magnetic resonance images (mpMRI [100, 101]). Moreover,655

we will consider p-, k-, and r-adaptivity of hierarchical spline spaces and the extension of our adaptive
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algorithms to the spline forest setting [43]. We believe that our ongoing lines of research will lead to the

development of new design-through-analysis technologies, hence opening the door to the resolution of other

demanding problems in complex geometries.
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