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Abstract

Cell motion plays a key role in many biological processes. Computational models are gaining momentum as a tool
that allows a quantitative understanding of the main biological mechanisms of cell motility and produce testable
hypotheses. Here, we present a phase-field model of the spontaneous motion of a single cell. The model, which
uses a single fixed mesh only, accounts for a generic membrane-bound activator as well as actin and myosin inside
the cell. The biochemical interactions between the cellular agents are described through dynamic, nonlinear partial-
differential equations. These equations are coupled with a momentum balance law that accounts for the forces involved
in cell motion. We propose a computational method based on isogeometric analysis. We show numerical examples
corresponding to stationary states of keratocytes and dynamic motion of Dictyostelium with and without obstacles.
We present a three-dimensional example of cell motion within a fibrous network of obstacles. This simulation is seen
as a preliminary step for the computational study of cellular migration in the extracellular matrix.
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1. Introduction

1.1. Cell motility

Cell motion is a prerequisite for life. Motion manifests itself at different scales, e.g., subcellular, cellular, and tissue
scales. There are cells that swim using cilia or flagella, but most eukaryotic cells produce motion using filaments that
constitute the so-called cytoskeleton. Cellular motion is a tightly regulated action that plays a crucial role in several
biological processes such as tissue formation, wound healing, and immune response. Thus, it is not surprising that an
abnormal behavior of motile cells may lead to serious conditions, including vascular disease and cancer metastasis.
For example, metastatic disease is usually preceded by the so-called epithelial-to-mesenchymal transition, whereby an
epithelial cell acquires a migratory phenotype. In this process, the migratory cell has to move through the extracellular
matrix, interacting with numerous collagen fibers. This process is exceedingly complex and is by no means well
understood. However, a new super-resolved fluorescence microscopy has recently permitted to image a neutrophilic
HL-60 cell migrating through a three-dimensional collagen matrix [1]. This discovery led to a Nobel Prize in 2014.

A key ingredient for cellular motility is actin, a family of globular proteins. These proteins have the ability to
assemble into filaments through a process called polymerization. Actin filaments exert forces on the cell’s membrane,
producing protrusions mostly in its front part. Another key element of the motion process is myosin. The main func-
tion of myosin is the conversion of energy into mechanical force. Myosins comprise a large family of motor proteins.
We are primarily interested in non-muscle myosin II, which is the most relevant myosin isoform for cell motility.
Myosin II is usually located in the back of the cell and propels itself along actin filaments producing contractile
stresses.
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Figure 1: Amoeboid motion is produced by periodic extensions/retractions of pseudopods at the cell’s front and contractions at the cell’s rear. The
bottom part of the figure shows the main elements of our model.

In general, cell migration may be understood as a continuous process including five steps [2], namely, (1) protru-
sion of the leading edge produced by actin polymerization, (2) formation of focal contacts and cell-matrix interaction
(3) extracellular matrix degradation, (4) contraction generated by myosin, and (5) detachment of the trailing edge.
While more details about cellular migration through the extracellular matrix are being unveiled, most research on cell
motion is performed using simplified systems. The most classical one is the planar motion of a single cell on a flat
substrate, which has attracted significant attention in the experimental and computational communities. An example
of particular interest is that of amoeboid migration. In this paper, we propose a phase-field model of amoeboid mi-
gration. By using our model and suitable computational methods, we initiate the study of amoeboid cell migration
in three-dimensional fibrous environments. We believe that modeling cellular migration in three-dimensional fibrous
networks may constitute a first step toward the computational study of cellular motion in the extracellular matrix.

1.2. Amoeboid motion
Amoeboid motion is the most frequent migration mode of eukaryotic cells. It is often studied by performing

experiments with Dictyostelium discoideum, an elongated and deformable cell that uses this type of locomotion.
Amoeboid migration is a crawling-like type of motion that is enabled by protruding and retracting extensions called
pseudopods. Pseudopods are actin-rich protrusions that push forward the leading edge of the cell. They grow and
regress periodically at different points of the cell giving rise to a highly orchestrated process. The dynamic nature of
pseudopods may be attributed to the ability of actin to assemble and disassemble quickly. Actin may be in a globular
state (G-actin) or polymerize to give rise to a filamentous state (F-actin); see Fig. 1. In turn, F-actin can be organized
into protrusive or passive structures. The protrusive structures actively push the membrane forward and are associated
with pseudopods in our model.

The growth of pseudopods and the organization of F-actin into protrusive and passive structures is controlled by
membrane signaling molecules, such as for example, PIP3 [3]. These substances are bound to the cell’s membrane. In
our model, they are conceptualized as a single substance that undergoes biochemical reactions within the membrane.
We call this substance activator; see Fig. 1. The final ingredient to produce motion is myosin, which contracts the
back part of the cell. The organized combination of protrusions at the front and contractions at the rear produces
crawling-like motion.
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1.3. Computational challenges

The three-dimensional simulation of cellular motion poses a number of computational challenges. The transport
and phase transformations of actin need to be resolved on the cell’s interior, which is a moving and deformable
domain. The biochemical reactions inside the cell need to be coupled with the membrane mechanics. And finally,
the activator is transported and undergoes biochemical reactions within the cell’s membrane. The equations that
govern the membrane mechanics include higher-order derivatives in space, posing significant challenges for classical
finite element methods that use C0-continuous basis functions. The traditional computational approach would be to
solve the three-dimensional equations that govern the biochemomechanical processes on the cell’s interior using a
moving-mesh method. This problem would be coupled to partial-differential equations (PDEs) posed on a moving
surface representing the membrane that control the dynamics of the activator. Here, we propose a computational
method entirely based on the phase-field theory. The phase-field method is an emerging technology in computational
mechanics for the treatment of problems with interfaces [4]. Phase-field modeling may be thought of as a methodology
to reformulate problems with interfaces as partial-differential equations on fixed domains. Roughly speaking, sharp
interfaces are replaced with the so-called diffuse interfaces, which are described by a smooth field defined on a fixed
domain. The approach is mathematically rigorous, and in many cases the phase-field theory may be shown to converge
to its corresponding moving boundary problem as a regularization parameter tends to zero. The phase-field method
has been used to model, e.g., liquid-vapor phase transformations [5] or solid-solid martensitic transformations [6]. The
phase-field theory can also be used to solve PDEs on complicated geometries without generating a mesh conforming
to the computational domain. This approach is based on ideas similar to those employed in immersed boundary
methods [7] and is known in the phase-field community as diffuse domain method. In the present work, we use the
phase-field method for both purposes; modeling phase transformations and solving PDEs on the time-dependent cell
geometry without generating a mesh conforming to the cell shape. To be able to follow the derivations in the paper,
basic knowledge about the phase-field method and the diffuse domain approach is needed; see, for example, [4] and
[8].

1.4. Brief bibliographic survey

Early experimental works analyzed cell-motion patterns [9, 10] describing walk models through velocity, persis-
tence time, or contact distributions. New experimental techniques [1, 11] have lead to more detailed studies, where
the modes of cell motion [2, 12, 13, 14] and the cytosol dynamics [15, 16, 17, 18] are explained, as well as the regu-
latory systems involved in the membrane signaling pathways [19, 20, 21]. Those experimental works have allowed to
understand the main mechanisms of cell motility, though there is still a great lack of knowledge.

Computational modeling has been recently proposed as an effective way to test conceptual models of cell motil-
ity. Mathematical models may be classified according to their scale, namely, subcellular, cellular, and tissue-level.
Subcellular models explain particular processes occurring at some regions of the cell, such as actin polymerization
[22], actomyosin networks [23], or cell-substrate adhesion [19, 24]. Cellular-scale models simulate the entire cell.
This kind of models may focus either on the membrane molecules dynamics [25, 26], on the laws governing the
cytosolic components [27, 28, 29], or couple both compartments including the interaction between the cytosolic and
membrane compounds [30, 31]. Tissue-level models represent collective cell motion. Some of them consider each
cell as an individual behaving under certain rules [32, 33], while others treat the cell population under the assumptions
of continuum mechanics [34, 35].

From the computational point of view, another classification arises attending to the methodology employed to track
the cell. Some studies assume that the geometry of the cell remains constant during motion. For example, in [36] the
adhesion molecules, F-actin, and myosin distributions during motion are evaluated on a fixed and non-deformable cell.
Other works [25, 37, 38] have studied the time evolution of membrane-bound proteins by placing some constituents
(e.g., an activator along with global and local inhibitors) on a fixed membrane. However, most models consider
deformable cells. An important example is that of immersed fluid-structure interaction (FSI) algorithms [39, 40],
where a Lagrangian mesh accounting for the cell moves over an Eulerian mesh that spans the whole domain. This
method has allowed the incorporation of different cellular properties such as the poroelasticity of the cytoskeleton [41].
Immersed FSI methods alone are unable to account for membrane signaling components, whose importance in cell
motility is well known. Therefore, the solution of PDEs on deformable surfaces [42, 43] and the membrane-cytosol
interactions have drawn the attention of many authors. Similarly, FSI formulations based on Arbitrary Lagrangian
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Eulerian (ALE) descriptions applied to cell migration may be found in [44, 45]. Particularly, in [44] the membrane-
bound species interact with an extracellular chemoattractant ligand. In these cases, the model only determines the
normal velocity and/or the forces located at the membrane, but the cytosolic machinery is neglected.

The use of moving meshes may be bypassed by several techniques, which also enable the treatment of membrane
and cellular elements. In our opinion, the most significant ones are the level set and the phase-field methods. In the
level set method, a distance map is placed on a fixed domain and evolves in time according to a given velocity. The
distance function defines the location of the cell membrane. A significant example is [46], where a finite volume
method is used to solve the problem. However, we believe that the phase-field method is more advantageous, because,
as we show in this paper, the compounds may be naturally tracked and located inside, outside the cell, and at the
membrane. In recent years several models have used phase-field descriptions to establish evolution equations for the
main actors of cell motility [27, 47, 48]. Some works suggest that actin filament polarity controls the dynamics of
the cell. For example, [49, 50] couple polarity to adhesion, nucleation factors, myosin, or traction on deformable
substrates. Other recent phase-field approaches have included the actin network, modeling it as a viscous fluid [28,
51, 52] governed by a Stokes-type equation that takes into account the cell motion forces. We have recently proposed
a model [30] that includes the membrane signaling reactions and couples them to the myosin and actin network. This
approach allows to consider the interaction between membrane and cytosol in motile cells. More details about cellular
motility models can be found at the reviews [53, 54].

2. Phase-field model of amoeboid cellular motion

Our model may be divided into three main compartments describing the cell’s motion, the cytosol biochemome-
chanics and the activator dynamics. In what follows, we describe each of these compartments separately.

2.1. Cell motion

To define the cell location, we employ the phase-field variable φ(x, t) where t denotes time and x ∈ Rds is a point
in a space of ds dimensions. The function φ undergoes a smooth but quick transition from 0 (outside the cell) to 1
(inside the cell); see Fig. 2. To leading order φ takes a hyperbolic tangent profile in the direction normal to the cell’s
membrane. The membrane is associated to the diffuse interface defined by the phase field. The dynamics of φ are
governed by the equation

∂φ

∂t
+ u · ∇φ = Γφ

(
ε∇2φ −

G′(φ)
ε

+ cε|∇φ|
)
, (1)

where Γφ is a parameter setting the strength of the right hand side, u is the velocity of the actin network (to be defined
later), ε is a length scale that defines the steepness of the diffuse interface, G(φ) = 18φ2(1 − φ)2 is a double well
potential with local minima at φ = 0 and φ = 1 (see [27, 28]), and c = −∇ · (∇φ/|∇φ|) denotes the curvature of the
membrane. The right hand side of Eq. (1) is O(ε) and forces the field φ to maintain a hyperbolic tangent profile in the
direction orthogonal to the cell’s membrane. Essentially, Eq. (1) moves the cell’s membrane with velocity u, while
maintaining a hyperbolic tangent profile. For a full understanding of Eq. (1), basic knowledge about the phase-field
method is required [4, 51].

2.2. Cytosol biochemomechanics

The cytosolic machinery is described by the fields ρ f (x, t), ρg(x, t), and ρm(x, t), which represent the density of
actin filaments (F-actin), globular actin subunits (G-actin), and myosin II, respectively (see Fig. 1). The actin filament
network, which plays a major role in amoeboid motion, is treated as a viscous fluid with velocity u(x, t); see [28] for
a rationale.

2.3. Myosin dynamics

In our model, myosin is transported by the actin network velocity and diffuses throughout the cell. The dynamics
of ρm are governed by the equation

∂(φρm)
∂t

+ ∇ · (φρmu) − ∇ ·
[
Dm(ρ f )φ∇ρm

]
= 0. (2)
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Figure 2: Conceptual description of the diffuse-domain framework used in the model. (a) The cell location is implicitly defined by the phase-field
variable φ. (b) The cell membrane marker δm is defined in terms of φ. (c) φ and δm values across the membrane. The plot corresponds to ε = 2 µm
and ϕ = 25.

Here, Dm(ρ f ) = Dmax/(1 + K2ρ2
f ), where Dmax and K are constants. Note that ρ f will usually vary in space, producing

a non-constant myosin diffusivity. Since ρ f tends to be lower at the back of the cell, Dm will be higher there. This
will produce an effective advection of myosin toward the back end of the cell, which is consistent with experimental
evidence.

Remark 1: In practical computations, Eq. (2) will be solved with no-flux boundary conditions in a sufficiently large
box denoted Ω. The phase field φ : Ω 7→ R will take a hyperbolic tangent profile, such that φ ≈ 1 in Ωc ⊂ Ω and
φ ≈ 0 elsewhere, where Ωc denotes the spatial region occupied by the cell. As we will show later, if suitable initial
conditions are defined, this is approximately equivalent to solving the problem

∂ρm

∂t
+ ∇ · (ρmu) − ∇ ·

[
Dm(ρ f )∇ρm

]
= 0 in Ωc, (3)

∇ρm · nΓc = 0 on Γc, (4)

where Γc is the boundary of Ωc and nΓc is the unit outward normal to Γc. The advantage of Eq. (2) with respect
to Eqs. (3) and (4) is that Ω is a fixed domain, while Ωc is time dependent. This methodology is referred to as the
diffuse-domain method in the phase-field community and will be used frequently throughout the paper. In simple
words, the idea is to introduce the prefactor φ in the space and time derivatives as well as in the reaction terms to
localize the equation to the cell’s interior. The diffuse domain method shares features with immersed approaches; for
further details see [55, 56].

2.4. Actin dynamics
Actin undergoes phase transformations between a globular (G-actin) and a filamentous state (F-actin). In addition,

F-actin may be in the form of a passive structure or exhibit a protrusive behavior (see Fig. 1). To describe these two
forms of F-actin we employ a bistable equation. Passive structures are associated to a stable homogeneous solution
of the governing equation and protrusive structures to the other one. Protrusive structures are identified with areas of
high F-actin concentration that represent pseudopods. We also know that the total amount of actin in the cell, that is,

N[ρ f , ρg] =

∫
Ω

φ(ρ f + ρg)dΩ (5)

must remain constant in time. Finally, actin phase transformations are controlled by the activator concentration that
we call a(x, t). Higher values of a favor the formation of F-actin protrusive structures (see Fig. 1). Taking this into
account, we propose the energy functional

F [ρ f , ρg] =

∫
Ω

φ
[ε2

f

2
|∇ρ f |

2 +
ε2

g

2
|∇ρg|

2 + F
(
ρ f , ρg, a

) ]
dΩ +

α

2
(N0 − N)2 , (6)
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Figure 3: Actin free-energy functional: function F and its derivative with respect to the F-actin density, depending on the activator concentration.
(a) a = 0. (b) a = 0.5. (c) a = 1.0. (d) a = 1.5.

where ε f and εg represent the diffusive length scales of ρ f and ρg, respectively. The quantity N0 denotes the total
amount of actin at the initial time, that is, N0 = N[ρ f (·, 0), ρg(·, 0)]. Therefore, the last term of Eq. (6) energetically
penalizes the variations of N with respect to time and α is a suitable penalty constant. The function F controls actin
phase transitions and is defined as

F
(
ρ f , ρg, a

)
= 10(ρ f − ρ

pr
f )2(ρ f − ρ

pa
f )2 + 7.5(ρg − ρ

eq
g )2 + I(a)(ρ f − ρ

pr
f )2[ρ f + β(a)I(a)], (7)

where I(a) = a2 − 2 exp(−4a) and β(a) = 0.5[1 − (a − 1.8)2/1.82]. The constants ρpr
f = 3/2, ρpa

f = 1/2, and ρeq
g = 1

represent, respectively, the F-actin concentration associated to protrusive and passive filamentous structures and the G-
actin equilibrium concentration. Using the framework of non-conserved dynamics (standard in phase-field methods;
see, e.g., [4]), we derive the evolution equations

∂(φρg)
∂t

+ ∇ · (φρgu) = −Γg
δF

δρg
= Γg

[
ε2

g∇ · (φ∇ρg) − φ
∂F
∂ρg
− αφ

(
N −N0

)]
, (8)

∂(φρ f )
∂t

+ ∇ · (φρ f u) = −Γ f
δF

δρ f
= Γ f

[
ε2

f∇ · (φ∇ρ f ) − φ
∂F
∂ρ f
− αφ

(
N −N0

)]
, (9)

where Γ f and Γg are constants. δF /δρ f and δF /δρg denote the variational derivatives of the functional F with respect
to F-actin and G-actin density, respectively.

To gain insight into the dynamics of Eqs. (8) and (9), we show in Fig. 3 plots of F for different values of the
activator concentration. It may be observed that for a non-moving cell (u = 0) with α = 0, the homogeneous (constant
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in space and time) solutions to Eqs. (8) and (9) are given by the local minima of F. Eq. (7) shows that F is a convex
function of ρg for all values of a. The term ∂F

∂ρg
, which acts as a driving force in Eq. (8), vanishes at ρg = ρ

eq
g , which

makes this homogeneous state an attractor of the solution. The dynamics of F-actin are more complex because the
filaments can undergo phase transformations from a passive to a protrusive structure and vice versa depending on the
value of the activator concentration. For sufficiently large values of the activator concentration [see Fig. 3(d)], F is a
convex function of ρ f with ∂F

∂ρ f
vanishing at ρ f = ρ

pr
f . The homogeneous solution ρ f = ρ

pr
f is associated to protrusive

structures which represent pseudopods. For lower values of a, however, F may be a non-convex function of ρ f with
∂F
∂ρ f

vanishing at ρ f = ρ
pr
f and ρ f ≈ ρ

pa
f . The value ρ f ≈ ρ

pa
f is associated to passive networks. Within the range of

values of a in which F is a non-convex function of ρ f , passive networks are energetically favored for lower values of
a [see Fig. 3(a)] and protrusive structures for larger values of a [see Fig. 3(c)].

2.5. Actin flow
The actin filament network is treated as a viscous fluid governed by a Stokes-type equation. At the cellular scale

the Reynolds number is very small and we can neglect the nonlinear convective term and inertial forces1. Following
the rationale presented in [57] we also neglect the pressure term. Therefore, the governing equation is given by

∇ · (σ + σmyo + σprot) + Fadh + Fmem + Frep = 0, (10)

where σ, σmyo, and σprot are Cauchy stress tensors that define the rheology of the actin filament network. Fadh, Fmem,
and Frep are additional forces acting on the filament network. These include adhesion forces, the membrane forces,
and repulsion forces created by rigid obstacles in the cell’s path. These forces will be described later. Let us focus
first on the rheology of the actin network.

2.5.1. Rheology of the actin network
The stress tensor

σ = φ[µ(∇u + ∇uT ) + λ(∇ · u)I] (11)

is the classical stress tensor of a Newtonian fluid with viscosity coefficients µ and λ. The prefactor φ is added to apply
the diffuse domain method. The tensor σprot accounts for F-actin protrusive structures and is given by

σprot = −φρ f η f (ρ f )δ f∇φ ⊗ ∇φ. (12)

Here, φ is included again to use the diffuse domain method. The term ρ f η f (ρ f ), where

η f (ρ f ) = Bη f + (1 − B)η fH[ρ f − (ρpr
f + ρ

pa
f )/2], (13)

controls the protrusive stress such that it is only significant for large values of ρ f (pseudopods). In Eq. (13), B and
η f are constants, while H is a smoothed-out Heaviside function2. The term δ f annihilates protrusive stresses in the
vicinity of rigid obstacles. We take δ f (x) = H(do(x) − d f

o ) where do(x) is the distance from the point x to the closest
rigid obstacle and d f

o = 1.6 µm represents an effective distance at which the presence of an obstacle starts to suppress
protrusion forces. Since the normal to the cell’s membrane nΓc is parallel to ∇φ, it may be easily shown that the
traction σprotnΓc is normal to the membrane. In addition, the term ∇φ ⊗ ∇φ localizes σprot to a neighborhood of the
cell’s membrane.

The tensor σmyo accounts for the isotropic contractile stresses produced by myosin. We propose the expression

σmyo = φρmηm(ρm)I, (14)

where I is the identity tensor and ηm(ρm) = Aηm + (1 − A)ηmH(ρm − 0.9) is a function producing greater stress where
myosin concentration is higher. The parameters A and ηm play a similar role to B and η f in η f (ρ f ). Eq. (14) is a
generalization to amoeboid motion of the model proposed in [28].

1Note that due to negligible inertia, cells have to permanently produce forces in order to move.
2Throughout this work, the smoothed-out Heaviside function is defined as H(x) = 0.5 + 0.5 tanh(7x). We use smooth approximations of the

Heaviside function to increase the convergence rate of our Newton–Raphson algorithm.
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2.5.2. Membrane, adhesion and contact forces
The term Fmem represents the forces exerted by the membrane. Our starting point to derive Fmem is the so-called

Helfrich membrane energy [58, 59]. Let us define a closed surface Γc that represents the cell’s membrane. For
vanishing spontaneous curvature, the Helfrich energy is defined as

FH(Γc) = F B
H (Γc) + F T

H (Γc), (15)

where
F B

H (Γc) =
Kc

2

∫
Γc

c2dΓ and F T
H (Γc) = γ

∫
Γc

dΓ. (16)

Here, Kc is the bending rigidity of the membrane, c is the additive curvature of the surface, and γ denotes the surface
tension. Computing the membrane energy (and eventually membrane forces) using Eq. (16) requires an explicit
tracking of the membrane. However, we wish to use a formulation consistent with that of the rest of the model and
avoid any explicit interface tracking. To do so, we will use the phase-field method, describing Γc by the level set
φ = 1/2. We will also use several properties of the phase-field method; see [4] for a rationale. One of the most useful
properties of the phase-field method is that it allows to replace integrals on surfaces with integrals on volumes. For
example, it may be shown that

F T
H (Γc) = lim

ε→0
F T
ε (φε). (17)

Here,

F T
ε (φ) = γ

∫
Ω

(
G(φ)
ε

+
ε

2
|∇φ|2

)
dΩ (18)

and φε(x) = tanh(dΓc (x)/ε), where dΓc (x) is a scaled distance from the point x to the surface Γc and Ω is a sufficiently
large subset of R3 which may be associated to our computational domain. The advantage of the functional F T

ε with
respect to F T

H is that the integral in F T
ε is defined on a known and fixed domain. We will also make use of an important

property of phase fields referred to as equipartition of energy [60], that is,

G(φε) −
ε2

2
|∇φε|2 → 0 as ε→ 0. (19)

The equipartition property allows us to find alternative expression for F T
ε . For example, we know that

F T
ε (φ)→ γ

∫
Ω

ε|∇φ|2dΩ as ε→ 0 (20)

if φ is of the form of φε, which is guaranteed because Eq. (1) produces solutions with a hyperbolic tangent profile. We
can also express the additive curvature of Γc , namely c, implicitly in terms of the phase field φ. From basic differential
geometry, we know

c = ∇Γc · nΓc , (21)

where ∇Γc · denotes the divergence operator on the surface Γc . The vector nΓc can be expressed in terms of the phase
field as nΓc = −∇φ/|∇φ| and standard identities of differential geometry may be used to show that

c = −
1
|∇φ|

(
∇2φ −

1
2|∇φ|2

∇φ · ∇(|∇φ|2)
)
. (22)

Utilizing the property of equipartition of energy, this can be simplified to

c ≈ −
1
|∇φ|

(
∇2φ −

1
ε2 G′(φ)

)
. (23)

Using Eqs. (20) and (23), it may be shown that

F B
H (Γc) ≈ F B

ε (φ) =
Kc

2

∫
Ω

ε

(
∇2φ −

1
ε2 G′(φ)

)2

dΩ. (24)
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From Eq. (18), we conclude that

F T
H (Γc) ≈ F T

ε (φ) = γ

∫
Ω

(
G(φ)
ε

+
ε

2
|∇φ|2

)
dΩ. (25)

Defining Fε(φ) = F T
ε (φ) + F B

ε (φ) ≈ FH(Γc), the membrane forces per unit volume may be computed as

Fmem = −
δFε(φ)
δΓc

, (26)

where δFε(φ)
δΓc

denotes the variational derivative of Fε(φ) with respect to variations of the surface Γc in its normal
direction. This may be also expressed as

Fmem =
δFε(φ)
δφ

∇φ. (27)

Membrane forces can be split as Fmem = Fbend + Ften where

Fbend =
δF B

ε (φ)
δφ

∇φ = Kcε∇φ

[
∇2

(
∇2φ −

G′(φ)
ε2

)
−

G′′(φ)
ε2

(
∇2φ −

G′(φ)
ε2

)]
, (28)

Ften =
δF T

ε (φ)
δφ

∇φ = γ∇φ

(
G′(φ)
ε
− ε∇2φ

)
. (29)

It may be easily shown that Ften is a force orthogonal to the cell’s membrane and proportional to its curvature.
Once we have derived membrane forces, we focus on adhesion and contact forces. The force Fadh = −ςu models

a hydrodynamic drag3. The force Frep models repulsive contact forces produced by rigid solid obstacles in the cell’s
path. It may be expressed as

Frep = ∇ · σrep = ∇ · (φηrepδrep∇φ ⊗ ∇φ), (30)

where ηrep is a constant and δrep is a function that depends on the position and acts as a localizer of obstacles. We take

δrep = H(def
o − do(x)), (31)

where do(x) is the distance between the point x and the closest obstacle and def
o is a small constant that represents an

effective distance at which the cells feel an obstacle. In the computations we took def
o = 0.7 µm. It can be easily shown

that Frep is a force normal to the membrane and pointing towards the interior of the cell.

2.6. Activator dynamics
The growth of pseudopods is controlled by membrane signaling molecules (e.g., PIP3 [3]), which trigger actin

nucleation. We model the membrane signaling dynamics by using a single membrane-located compound that we
call activator a(x, t). We make use of the diffuse domain method to localize the activator dynamics to the membrane
without resorting to surface PDEs [55]. This is accomplished by using the smooth membrane marker

δm(φ) = exp[−ϕ(φ − 0.5)2], (32)

which has been plotted in Fig. 2. The constant parameter ϕ defines the thickness of the marker. Our model for the
activator dynamics is given by the equation

∂(δma)
∂t

+ ∇ · (δmau) = ∇ · (Daδm∇a) − raδma + baδmS a, (33)

which accounts for the advective transport, diffusion throughout the membrane (with diffusion constant Da), a natural
decay (with rate ra), and a growth term S a whose strength is controlled by the parameter ba. A fundamental model
of the term S a requires knowledge about the mechanisms that control the autocatalysis of membrane-bound activa-
tors. Since these mechanisms are not well understood [61], we resort to experimental data [62]. These data consist
of several probability distribution functions that control the position and time at which the activator triggers actin

9



Figure 4: Determination of pseudopod formation. The probability distributions are derived from [62]. (a) Pseudopod growth time probability. (b)
Pseudopod interval time distribution. (c) Perimeter distance from previous source. (d) Probability distribution for next pseudopod location in terms
of the perimeter distance. (e) Right/left bias function. (f) Probability distribution for next pseudopod extension.

nucleation. For simplicity, we initially describe this procedure in a 2D scenario. The probability distributions (see
Fig. 4) are used to define S a, which creates peaks in the activator concentration at certain points in space and time. In
particular, we take S a = (amax − a)

∑
i δx,iδt,i that drives a to amax at certain time intervals (δt,i) and spatial areas (δx,i)

of the membrane. To define the temporal localizers we make use of the interval and the growth time. The interval ∆τi

represents the period of time between the extension of two consecutive pseudopods. Therefore we can define the set
of times {τ0,1, τ0,2, ...}, where τ0,1 = 0 and τ0,i = τ0,i−1 + ∆τi, such that τ0,i indicates the time at which the activator
peak i is switched on. Each peak will be active during a growth time ∆Ti. Thus, the temporal localizer is defined
by δt,i = H(∆Ti − (t − τ0,i)). The growth time (∆Ti) and the interval (∆τi) are two random variables given by the
probability functions plotted in Figs. 4(a) and (b), respectively. Note that there may be none, one, or more than one
active sources at the same time. The spatial location is given by the function δx,i = H(rp − di(x)), where di represents
the distance to the center of the activator source i (si) and rp is its approximate radius. In the case of a two-dimensional
problem, the location of si is derived from the probability function plotted in Fig. 4(f) that depends on the location of
the two previous sources (si−1 and si−2). To establish the location of a new peak (si), we need to define the probability
distribution along the membrane using the functions in Figs. 4(d) and (e). The probability function will be PPE PR/L
on the side of the membrane where si−2 is located, and PPE Phop on the other side of the membrane. Note that each
source moves together with the membrane and therefore, the probability distribution in Fig. 4(f) changes over time.
In addition, the cell-obstacle contact impedes pseudopod formation [63] modifying the probability function such that
PPE(x) = 0 if do(x) <1.3 µm. In summary, each time a new peak emerges, we select three random values using
the probability distributions shown in Fig. 4. These quantities represent growth time (time during which the peak is
active), interval (permits to compute the time at which the next peak will arise), and location of pseudopod extension.

The extension of this procedure to 3D problems is not straightforward, primarily due to the absence of experi-

3In a two-dimensional simulation that represents cell motion on a planar substrate, this force may be interpreted as a friction force between the
cell and the underlying substrate. In the biological problem, this force is accomplished by the transmembrane protein family called integrin.
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mental data in three dimensions. To avoid computing the probability distribution over the entire cell surface, in the
case of a 3D calculation, we proceed as follows: We compute the growth time and the interval as before. Then, we
determine the distance between si−1 and each point of the cell’s surface following the shortest path contained in the
membrane. From this computation, we obtain di−1,max as shown in Fig. 4(c) for the 2D case. Once we have di−1,max,
we generate a random number using the probability distribution in Fig. 4(d). This number represents the actual value
of the distance between si−1 and si that we call di

i−1. We can now enter in Fig. 4(e) with di
i−1 and obtain PR/L and Phop.

Knowing the probabilities of the cell to alternate left and right (PR/L) or to hop (Phop), we can use a random number
generator to determine if the cell will alternate left and right or hop. Then, we can compute the locus of the points of
the membrane that are located at a distance di

i−1 of si−1. The locus of these points is one (or several) curve(s) that we
denote by ldi

i−1
. The source activator si will be located on the curve(s) ldi

i−1
. The next step is to compute two points of

ldi
i−1

, namely Ci and Di. The point Ci (respectively, Di) is the closest (respectively, the farthest) point of ldi
i−1

to si−2. If
the cell is to alternate left and right (respectively, hop) the location of si will be determined by a normal probability
distribution that is centered at Ci (respectively, Di).

2.7. Continuous problem in strong form

Let Ω ⊂ Rds be an open set that represents our computational domain. Unless otherwise stated, Ω is simply a box
sufficiently large to enclose the cell. Let Γ be the boundary of Ω, assumed sufficiently smooth. The strong form of
the problem can be stated as: Given a time interval of interest [0,T ] and suitable initial and boundary conditions, find
φ : Ω × (0,T ) → R, ρm : Ω × (0,T ) → R, ρ f : Ω × (0,T ) → R, ρg : Ω × (0,T ) → R, a : Ω × (0,T ) → R, and
u : Ω × (0,T )→ Rds such that

∂φ

∂t
+ u · ∇φ = Γφ

(
ε∇2φ −

G′(φ)
ε

+ cε|∇φ|
)

in Ω × (0,T ), (34.1)

∂(φρm)
∂t

+ ∇ · (φρmu) = ∇ ·
[
Dm(ρ f )φ∇ρm

]
in Ω × (0,T ), (34.2)

∂(φρ f )
∂t

+ ∇ · (φρ f u) = Γ f

[
ε2

f∇ · (φ∇ρ f ) − φ
∂F
∂ρ f
− αφ

(
N −N0

)]
in Ω × (0,T ), (34.3)

∂(φρg)
∂t

+ ∇ · (φρgu) = Γg

[
ε2

g∇ · (φ∇ρg) − φ
∂F
∂ρg
− αφ

(
N −N0

)]
in Ω × (0,T ), (34.4)

∂(δma)
∂t

+ ∇ · (δmau) = ∇ · (Daδm∇a) − raδma + baδmS a in Ω × (0,T ), (34.5)

∇ · (σ + σmyo + σprot) + Fadh + Fmem + Frep = 0 in Ω × (0,T ). (34.6)

3. Numerical formulation

3.1. Continuous problem in weak form

Let S =
{
φ | φ(·, t) ∈ H3(Ω)

}
be the trial solution space. Here, H3(Ω) denotes the Sobolev space of square-

integrable functions with square-integrable first, second, and third derivatives. Analogously, we define a weighting
function spaceV =

{
w | w ∈ H3(Ω)

}
.

We derive a weak form of Eqs. (34.1)–(34.6) by multiplying them with weighting functions and integrating by
parts repeatedly. We work under the assumptions of periodic boundary conditions and sufficient regularity. Let (·, ·)Ω

denote the L2 inner product with respect to the domain Ω. We call ndof = 5 + ds the number of scalar unknowns.
Thus, the problem can be stated as: Find U = {φ, ρm, ρ f , ρg, a,u} ∈ Sndof such that for all W = {p, q, r, s, v,w} ∈ Vndof

B(W,U) = 0 (35)
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with

B(W,U) =

(
p,
∂φ

∂t

)
Ω

+

(
q, φ

∂ρm

∂t

)
Ω

+

(
q, ρm

∂φ

∂t

)
Ω

+

(
r, φ

∂ρ f

∂t

)
Ω

+

(
r, ρ f

∂φ

∂t

)
Ω

+

(
s, φ

∂ρg

∂t

)
Ω

+

(
s, ρg

∂φ

∂t

)
Ω

+

(
v, δm

∂a
∂t

)
Ω

+

(
v, aδm

′ ∂φ

∂t

)
Ω

+

(
p,u · ∇φ

)
Ω

+

(
∇p,Γφε∇φ

)
Ω

+

(
p,Γφ

G′

ε

)
Ω

−

(
∇p,Γφε∇φ

)
Ω

−

(
p,

Γφε

|∇φ|
∇φ · ∇(|∇φ|)

)
Ω

−

(
∇q, φρmu

)
Ω

+

(
∇q,Dmφ∇ρm

)
Ω

−

(
∇r, φρ f u

)
Ω

+

(
∇r,Γ f ε

2
fφ∇ρ f

)
Ω

+

(
r,Γ fφ

∂F
∂ρ f

)
Ω

+

(
r,Γ fαφ(N −N0)

)
Ω

−

(
∇s, φρgu

)
Ω

+

(
∇s,Γgε

2
gφ∇ρg

)
Ω

+

(
s,Γgφ

∂F
∂ρg

)
Ω

+

(
s,Γgαφ(N −N0)

)
Ω

−

(
∇v, δmau

)
Ω

+

(
∇v,Daδm∇a

)
Ω

+

(
v, raδma

)
Ω

−

(
v, baδmS a

)
Ω

−

(
∇w, φ

[
µ(∇u + ∇uT ) + λ(∇ · u)I

] )
Ω

−

(
∇w, φρmηmI

)
Ω

+

(
∇w, φρ f η f δ f∇φ ⊗ ∇φ

)
Ω

−

(
w, ςu

)
Ω

−

(
w, γ

(
ε∇2φ −

G′

ε

)
∇φ

)
Ω

−

(
∇(w · ∇φ),Kcε∇(∇2φ)

)
Ω

+

(
∇(w · ∇φ),

Kc

ε
G′′∇φ

)
Ω

−

(
w,

Kc

ε
G′′∇2φ∇φ

)
Ω

+

(
w,

Kc

ε3 G′G′′∇φ
)
Ω

−

(
∇w, φηrepδrep∇φ ⊗ ∇φ

)
Ω

. (36)

3.2. Semidiscrete formulation
The discretization of Eqs. (35) and (36) cannot be done using classical finite elements because the discrete trial and

weight function spaces need to be a subset of H3(Ω); otherwise the integrals in (36) are not well defined. Classical
finite element spaces spanned by basis functions which are C0-continuous across element boundaries do not permit to
generate discrete spaces contained in H3. To overcome this limitation, we make use of isogeometric analysis (IGA)
[64, 65], which is a generalization of the finite element method that aims at unifying design and analysis. IGA uses
B-splines or non-uniform B-splines (NURBS) to define the discrete spaces. B-splines and NURBS have controllable
global continuity which permits to define discrete spaces that are subsets of H3(Ω). The discretization of Eqs. (35)
and (36) requires the use of at least cubic splines with C2-global continuity. These functions can be easily generated
as shown in [66]. Let us call Sh and Vh the trial and weighting function discrete spaces, which are assumed to be
identical. The spline basis functions are generically denoted by NA so that Sh = Vh = span{NA}

nb
A=1, where nb is the

dimension of the discrete space.
The discrete problem can be stated as: Find Uh = {φh, ρh

m, ρ
h
f , ρ

h
g, a

h,uh} ∈ (Sh)ndof such that for all Wh =

{ph, qh, rh, sh, vh,wh} ∈ (Vh)ndof

B(Wh,Uh) = 0 (37)

where

φh(x, t) =

nb∑
A=1

φA(t)NA(x), ph(x) =

nb∑
A=1

pANA(x). (38)

The rest of the variables in Uh and Wh are defined analogously.

Remark 2: In Section 4.2.1 we will show that the bending resistance of the membrane is negligible with respect to
the acting forces. In all sections other than 4.2.1 our computations do not include the bending energy and, therefore,
the discrete space needs to be H2-conforming only. In this case, employing quadratic NURBS basis functions,
which are globally C1-continuous, the Galerkin form is well defined and the computations are usually faster in our
implementation4

4C2-continuous cubic functions are slower than C1 quadratics due to the use of sub-optimal element-based Gaussian quadrature in our imple-
mentation. Alternative quadratures and/or assembly methods can be used that speed up the computations dramatically [67]. Another alternative is
to use collocation methods [68]. An important feature of IGA that was recently noticed is that it is possible to define collocation points that render
the Galerkin solution exactly [69].
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3.3. Time discretization and numerical implementation

At this stage, our formulation remains continuous in time. Here, we describe our time-stepping scheme, which
is based on the generalized-α method. The generalized-α method was originally derived in [70] for the equations of
structural dynamics and subsequently applied to turbulence computations [71] and to the Cahn–Hilliard phase-field
model in [72].

3.3.1. Time stepping scheme
To illustrate our method, let us divide the time interval of interest [0,T ] into a sequence of subintervals (tn, tn+1)

with fixed time-step size ∆t = tn+1 − tn. We define the following residual vectors

RΦ =
{
RΦ

A

}
, RM =

{
RM

A

}
, RF =

{
RF

A

}
, RG =

{
RG

A

}
, RA =

{
RA

A

}
, RU =

{
RU

A, j

}
. (39)

Here, A ∈ {1, . . . , nb} is a control-variable index, and j is a dimension index which runs from 1 to ds. The components
of the residual vector are given by

RΦ
A = B

(
{NA, 0, 0, 0, 0, 0}, {φh, ρh

m, ρ
h
f , ρ

h
g, a

h,uh}
)
, (40.1)

RM
A = B

(
{0,NA, 0, 0, 0, 0}, {φh, ρh

m, ρ
h
f , ρ

h
g, a

h,uh}
)
, (40.2)

RF
A = B

(
{0, 0,NA, 0, 0, 0}, {φh, ρh

m, ρ
h
f , ρ

h
g, a

h,uh}
)
, (40.3)

RG
A = B

(
{0, 0, 0,NA, 0, 0}, {φh, ρh

m, ρ
h
f , ρ

h
g, a

h,uh}
)
, (40.4)

RA
A = B

(
{0, 0, 0, 0,NA, 0}, {φh, ρh

m, ρ
h
f , ρ

h
g, a

h,uh}
)
, (40.5)

RU
A, j = B

(
{0, 0, 0, 0, 0,NAe j}, {φ

h, ρh
m, ρ

h
f , ρ

h
g, a

h,uh}
)
, (40.6)

where e j denotes the j-th unit vector of the Cartesian basis. Let us call V and V̇ the global vector of control variables
of the degrees of freedom and its time derivative. Let us denote Vn and V̇n the time-discrete approximations of V and
V̇ at time tn. Using this notation, our time-integration algorithm may be defined as follows: Given V̇n, Vn, and ∆t, find
V̇n+1, Vn+1, V̇n+αm , and Vn+α f such that

RΦ
(
V̇n+αm ,Vn+α f

)
= 0, (41.1)

RM
(
V̇n+αm ,Vn+α f

)
= 0, (41.2)

RF
(
V̇n+αm ,Vn+α f

)
= 0, (41.3)

RG
(
V̇n+αm ,Vn+α f

)
= 0, (41.4)

RA
(
V̇n+αm ,Vn+α f

)
= 0, (41.5)

RU
(
V̇n+αm ,Vn+α f

)
= 0, (41.6)

V̇n+αm = V̇n + αm

(
V̇n+1 − V̇n

)
, (41.7)

Vn+α f = Vn + α f (Vn+1 − Vn) , (41.8)

Vn+1 = Vn + ∆tV̇n + χ∆t
(
V̇n+1 − V̇n

)
, (41.9)

where αm, α f , and χ are real-valued parameters that define the method. These parameters are selected based on
considerations of accuracy and stability. Jansen et al. [71] proved that, for a model problem, second-order accuracy
in time is achieved if

χ =
1
2

+ αm − α f , (42)

while unconditional stability is attained if

αm ≥ α f ≥
1
2
. (43)
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The method parameters can be expressed in terms of %∞, the spectral radius of the amplification matrix as ∆t → ∞,
by way of the relations

αm =
1
2

(
3 − %∞
1 + %∞

)
, (44)

α f =
1

1 + %∞
. (45)

Setting χ according to Eq. (42), a family of second-order accurate and unconditionally A-stable time integration
schemes is defined in terms of the parameter %∞ ∈ [0, 1]. The value %∞ = 0.5 has proved an effective choice for
turbulence computations and for the Cahn–Hilliard phase-field model [72]. We adopt this value for all the simulations
presented in this paper.

The nonlinear system of equations (41) is approximated by using Newton–Raphson’s method. Our initial guesses
for the control variables at time tn+1 are:

Vn+1,(0) = Vn, (46)

V̇n+1,(0) =
χ − 1
χ

V̇n. (47)

Then, we perform the nonlinear iterations by repeating the following steps for i = 1, 2, · · · , imax, or until convergence
is achieved:

1. Evaluate the global unknowns at intermediate time levels

Vn+α f ,(i) = Vn + α f
(
Vn+1,(i−1) − Vn

)
, (48)

V̇n+αm,(i) = V̇n + αm

(
V̇n+1,(i−1) − V̇n

)
. (49)

2. Use the intermediate time levels of the i-th Newton iteration to compute the tangent matrix K,(i) and the residual
vector R,(i). Once the tangent matrix and the residual vector are computed, the global linear system

K,(i)∆Vn+1,(i) = −R,(i), (50)

is solved up to a given tolerance using the GMRES method [73] with the incomplete LU preconditioner [74].
3. Use ∆Vn+1,(i) to update the Newton–Raphson iterates as follows

Vn+1,(i) = Vn+1,(i−1) + ∆Vn+1,(i), (51)

V̇n+1,(i) = V̇n+1,(i−1) +
1
χ∆t

Vn+1,(i). (52)

This completes one nonlinear iteration.

The nonlinear iterative algorithm is repeated until the norm of each of the residual vectors RΦ, RM , RF , RG, RA,
and RU has been reduced to a given tolerance. In our computations, we set this tolerance to 10−4.

3.3.2. Redefinition of the tangent matrix and the residual vector to avoid singularities
Due to the use of the diffuse domain method, we embedded the cell in a larger computational box. Outside of

the cell most of the unknowns approach the value zero and the governing equations are not relevant. This increases
dramatically the condition number of the tangent matrix, leading to an inefficient algorithm. The unknowns that create
this problem outside the cell (φ ≈ 0) are ρm, ρ f , and ρg. A similar situation occurs with the unknown a outside of the
cell membrane (δm ≈ 0). To overcome this problem we propose the following procedure. After assembling the global
residual vector and tangent matrix, we proceed as follows:

i) Establish the thresholds φT = 10−8 and δT
m = 10−4 using the current nonlinear iteration of φ at the α f time level;

see Fig. 5.
ii) Define the spatial domains Ωφ = { x | φ > φT } and Ωδ = { x | δm > δT

m}.
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Figure 5: Different subdomains defined in our problem. (a) Ωδ is the region where the entries of the residual and the tangent associated to the
unknown a are not modified. (b) Ωφ is similar to Ωδ, but for the unknowns ρm, ρ f , and ρg. (c) ΩM and ΩK are the supports of the basis functions
NM and NK . ΩM overlaps with Ωφ, while ΩK does not.

iii) Denote by kmax = nb ndof the number of entries of the global vector of control variables V. Let Vk be the k-th
entry of V. For k = 1, · · · , kmax, proceed as follows:
1. If Vk is a control variable of the unknowns ρm, ρ f , ρg, or a associated to the basis function NA, compute the

support of NA and denote it by ΩA.
2. If Ωφ ∩ΩA = Ø or Ωδ ∩ΩA = Ø, then, perform the following two steps:

2.1. Replace the row k of the global tangent matrix by the row k of the kmax × kmax identity matrix.
2.2. Replace the k-th entry of the global residual vector by 0.

iv) Solve the linear system (50) with the updated tangent matrix and residual vector.

We found that this strategy worked successfully in all our numerical examples and rendered tangent matrices with
acceptable condition numbers.

Remark 3: Note that the entries of the tangent matrix and residual vector corresponding to velocity control variables
are not modified in the procedure outlined above. This is because the adhesion force has been defined as Fadh = −ςu.
This produces a contribution to the tangent matrix that is proportional to the mass matrix. Therefore, those blocks
of the tangent matrix are well defined. The Stokes-type equation (34.6) essentially becomes ςu≈ 0 outside the cell,
which leads to a vanishing velocity away from the cell. Having said this, we acknowledge that perhaps a more
conceptually consistent strategy would have been to define Fadh = −ςφu and use the redefinition of the tangent and
residual described before also for the velocity control variables. We have opted for simplicity rather than conceptual
consistency in this case.

Remark 4: The quantity Γφcε|∇φ| of the phase-field equation (34.1) produces the term−(∇NA,Γφε∇φ)−
(
NA,

Γφε

|∇φ|
∇φ · ∇(|∇φ|)

)
in the component RΦ

A of the residual vector. At regions far from the membrane, where |∇φ| ≈ 0, the above-mentioned
term of the residual as well as its contribution to the tangent are not well defined. To overcome this problem, we
have set the term Γφcε|∇φ| to zero when computing the residual and tangent in the region Ω|∇φ| = { x | |∇φ| < |∇φ|T }
with |∇φ|T = 10−5. In the subdomain Ω|∇φ|, Eq. (34.1) becomes the Allen–Cahn equation [75] that keeps stable the
values φ = 0 and φ = 1, producing the desired solution. Note that there are other ways to achieve a similar result,
e.g., using for the control variables of φ the same procedure used for the control variables of a; see the initial part of
Section 3.3.2.

Remark 5: To achieve accurate results in the activator equation [Eq. (34.5)] it is necessary to use a steep marker δm

[55]. A steep marker can be obtained by taking a large value of ϕ in Eq. (32), but as a consequence, the numerical
approximation of the activator equation requires a very fine mesh. The requirement to use a very fine mesh can
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Figure 6: (a) Definition of the mapping ψ that projects a given point to its closest point on the membrane. (b) Mapping redefining the domain.
Computational domain Ω and translated domain Ω′. (c) Distance to si−1 measured using geodesics and Euclidean distance.

be bypassed by replacing u by u? in Eq. (34.5). The field u? can be defined as a constant extension of the field
u at the level set φ = 1/2 in the direction orthogonal to the membrane. Mathematically, this can be expressed as
u?(x) = u (ψ(x)) where ψ(x) is the closest point to x such that φ (ψ(x)) = 1/2; see Fig. 6(a). We found that this
procedure significantly speeds up the computations, introducing negligible errors. A similar procedure was also used
to compute δrep in Eq. (31) where we replaced do(x) with d?o (x) = do (ψ(x)).

Remark 6: Our numerical experiments indicate that it may be beneficial to treat explicitly, rather than implicitly,
some of the terms of the residual vector and the tangent matrix. In particular, treating explicitly N , δ f , δrep, and u?
speeds up the computations significantly without compromising the accuracy and stability of the algorithm. In all the
numerical examples presented in this paper we treated N , δ f , δrep, and u? explicitly.

Remark 7: The cells that we analyze in this study can move up to a distance equivalent to their diameter in one
minute. Therefore, to perform simulations for a time interval of ∼20 minutes, which is what we are interested on, we
would need a computational box with side length 20 times larger than the cell if we want to avoid the cell touching the
boundary. This is not viable from the computational point of view, so we use periodic boundary conditions. The use
of periodic boundary conditions solves the problem, but we have to consider two important points: (1) The periodic
box should be large enough to avoid that the cell front touches the cell back. (2) Some of the terms in the governing
equations depend on distances. On a periodic box, the cell may, e.g., exit the box through the right boundary and enter
again through the left side. At an intermediate step the cell may look like “broken” in the computational box. In a
situation like this, we proceed as follows: Consider the 2D example presented in Fig. 6(b), in which the cell is split
into four pieces. The solid square represents the computational domain Ω = [0, Lx] × [0, Ly]. Right after computing
every time step, we define the domain Ω′ [dashed line in Fig. 6(b)], which has the same geometry as Ω, but is centered
at the cell’s center of mass xG. Once Ω′ is determined, we can define Ω1, Ω2, and Ω3 as shown in Fig. 6(b). To
reconstitute the cell and all field variables in the domain Ω′, we define the transformation Σ(x) such that x′ = Σ(x)
where

Σ(x) =


x + {0, Ly}

T if x ∈ Ω1
x + {Lx, Ly}

T if x ∈ Ω2
x + {Lx, 0}T if x ∈ Ω3
x otherwise.

(53)

Then, a function f (x) defined in Ω can be defined in Ω′ as f
(
Σ−1(x′)

)
. Once all the relevant fields are defined in Ω′,

we can directly compute distances. Note that in a problem of cellular migration with obstacles, the transformation
Σ also needs to be applied to the obstacles; see Fig. 6(b) where we represented a rigid rectangular obstacle in brown
color. Although we illustrated the concept in 2D, the procedure can be easily extended to 3D problems.
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Remark 8: The process described in Section 2.6 to determine the centers of the activator source (si in our notation)
requires computing the distance between two points of the cell’s surface following the shortest path contained in the
membrane [di−1(x) in the top plot of Fig. 6(c)]. This process can be computationally expensive and, thus, an alternative
is desirable. A simple strategy is to replace the distance along the membrane by the Euclidean distance [dE

i−1(x) in the
bottom plot of Fig. 6(c)]. In our 3D computations we used the Euclidean distance rather than geodesics of the cell’s
membrane.

Remark 9: The locations of the activator sources move together with the cell’s membrane. In our computations, the
locations are updated using the midpoint rule and the membrane’s velocity u?. Thus, for the activator source located
at si, we assume si(tn+1)≈ si(tn) + ∆t

2
(
u?(tn) + u?(tn+1)

)
. When we compute the residual in the Newton–Raphson loop,

u?(tn+1) is replaced by the current approximation of the membrane velocity. The locations of the activator sources
that enter the residual are evaluated at α f time level. When the centers of the activator sources are sufficiently close to
the boundary, we resort to the mapping Σ defined in Eq. (53).

4. Numerical examples

In this section we present several 2D and 3D numerical examples computed using our proposed model and dis-
cretization scheme. We used different computational domains and meshes, but we took the same time step ∆t = 0.05
s for all the numerical examples. The code used to perform these simulations has been developed on top of PetIGA
[76, 77], which adds NURBS discretization capabilities and integration of forms to the scientific library PETCs [78].

4.1. Diffuse domain approach
Here, we show how the diffuse domain approach can be utilized to solve PDEs on moving domains using a fixed

background mesh only. We focus on an idealized case in which a perfectly circular cell is traveling with constant
velocity uφ. Since the cell’s velocity is known and fixed, we neglect the actin flow and the presence of membrane-
bound components. We consider only a generic cytosolic compound ρc that diffuses within the cell. To test the diffuse
domain approach we compute a reference solution by solving the problem: Find ρc : ΩR × (0,T )→ R such that

∂ρc

∂t
= D∇2ρc, in ΩR × (0,T ) (54.1)

∇ρc · nΓR = 0, on ΓR × (0,T ) (54.2)

ρc(x, 0) = ρ0
c(x), in ΩR (54.3)

where ρ0
c : ΩR → R is a function that represents the initial value of ρc and ΩR is a fixed circular domain. ΓR denotes

the boundary of ΩR and nΓR its unit outward normal. The circle ΩR is centered at the origin of coordinates and its
radius is 10 µm. The reference solution is computed as ρRef

c (x, t) = ρc(x − uφt, t) to account for the cell’s motion. The
boundary-value problem (54) is solved using a NURBS mesh that represents exactly the circular domain ΩR. We used
quadratic functions with 200 elements in the circumferential direction and 100 elements in the radial direction; see
Fig. 7(a).

To solve this problem using the diffuse domain method we define the box Ω = [−L, L]2 where L = 20 µm and we
solve the problem: Find φ : Ω × (0,T )→ R and ρ̂c : Ω × (0,T )→ R such that

∂φ

∂t
+ uφ · ∇φ = Γφ

(
ε∇2φ −

G′(φ)
ε

+ cε|∇φ|
)
, in Ω × (0,T ) (55.1)

∂(φρ̂c)
∂t

+ ∇ · (φρ̂cuφ) = ∇ · (Dφ∇ρ̂c) , in Ω × (0,T ) (55.2)

φ(x, 0) = φ0(x), in Ω (55.3)
ρ̂c(x, 0) = ρ0

c(x), in Ω (55.4)

with periodic boundary conditions in all directions. Here, ρ̂c is meant to be an approximation to ρRef
c and φ0 : Ω→ R

is a phase field that defines the initial position of the cell. More specifically, we took φ0(x) = 1
2 −

1
2 tanh[3(dc(x)−10)]
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Figure 7: Diffuse domain approach. (a) NURBS mesh used to solve the boundary-value problem (54). (b) NURBS mesh used to solve problem (55)
and implicit representation of the circular cell using the phase-field φ. Both meshes are coarser than the meshes used in the actual computations to
allow for a clearer visualization.

where dc(x) is the distance between the point x and the origin of coordinates. Note that the field φ0 takes the value
∼1 in ΩR and ∼0 in the rest of the box; see Fig. 7(b). Eq. (55.1) essentially moves the cell with velocity uφ while
maintaining a hyperbolic tangent profile in the direction orthogonal to the membrane. We meshed the computational
domain Ω using 4002 quadratic NURBS elements.

We used the parameters D = 10 µm2s−1 and uφ = {0.6, 0}Tµm s−1 for both the reference solution and the diffuse
domain approach. For the diffuse domain approach we also set ε = 1.0 µm and Γφ = 0.4 µm s−1, which provides a
reasonable compromise between accuracy and computational time for the purpose of this paper.

We first solved the problem taking ρ0
c(x) = 10H(5.0 − dc(x)) where H denotes the Heaviside function. Fig. 8(a)

shows contour lines of ρRef
c and ρ̂c in the cell’s interior at times 0, 10, 20, and 30 s. The solution provided by the

diffuse domain method is indistinguishable from the reference solution at the scale of the plots. More accurate results
could be obtained using a finer mesh and a smaller value of ε.

We performed a similar computation using as initial distribution of ρc the function ρ0
c(x) = 10 exp(−0.1d2

p(x))
where dp(x) denotes the distance between x and xp = {2, 0}T . Using this initial condition, the solution does not exhibit
circular symmetry anymore, which allows to check the accuracy of the diffuse domain method to impose the boundary
condition (54.2). Fig. 8(b) shows contour lines of ρRef

c and ρ̂c. Again, the solutions are almost indistinguishable, but it
may be observed that the error is larger close to the membrane; see, e.g., t = 20 s, level set 0.25.

In all, this example shows that the diffuse domain method can be safely used for cellular migration problems,
introducing negligible errors with respect to the uncertainties in the biological model and the values of the parameters.

4.2. Mesenchymal cellular motion

In preparation for our simulations of amoeboid cellular motion, we first exercise our computational method on
a simpler problem, namely, mesenchymal migration [2, 13]. A phase-field model of mesenchymal motion can be
derived from our theory of amoeboid motion simply neglecting the activator equation and setting I(a) = 0 in Eq. (7).
This model is considerably simpler than that of amoeboid motion because we do not need to resolve the dynamics of
the activator on the membrane. However, mesenchymal cell migration is a very interesting problem in its own right
and one that has triggered significant interest in the experimental and theoretical communities. Mesenchymal motion
is usually studied by way of experiments with keratocytes [36, 79, 80]. These cells move spontaneously (without any
external stimulus) over flat substrates by extending a stationary lamellipodium at the leading edge. As we show later,
keratocytes exhibit a variety of different motions that the model replicates. Unless otherwise stated, for the numerical
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Figure 8: Diffusion of a chemical substance in a perfectly circular cell moving with constant velocity. Comparison of the classical method that
uses a mesh conforming to the geometry of the cell (ρRef

c , black line) and the diffuse domain method which uses a fixed background mesh (ρ̂c,
pink line). (a) Solutions corresponding to the initial condition ρ0

c (x) = 10H(5.0 − dc(x)). (b) Solutions corresponding to the initial condition
ρ0

c (x) = 10 exp(−0.1d2
p(x)).

examples of mesenchymal cellular motion we used the computational domain Ω = [−L, L]2 with L = 20 µm and a
mesh composed of 200 C1-continuous quadratic elements in each direction.

4.2.1. Stationary states of free movement
Consistently with what is observed in experiments of keratocytes, our model of mesenchymal motion predicts

stationary states of free motion5. These stationary states correspond to a cell that migrates with constant velocity and
fixed shape. To understand how the equilibrium cell shapes and velocities depend on the parameters, we conducted
several simulations. The values of all the model parameters except ηm and η f (which are used for a parametric study)
are listed in Table 1. In addition, we initially assumed that Kc = 0. We will show later that this hypothesis is
acceptable.

The initial conditions are the same in all simulations. They represent a circular cell of radius rc = 9 µm with
vanishing velocity and uniform distribution of myosin and G-actin densities. The distribution of F-actin is non-
uniform to produce the cell’s polarization and trigger the motion. Specifically, we take

φ(x, 0) = 0.5 − 0.5 tanh[1.5(dc(x) − rc)], (56.1)
ρm(x, 0) = φ(x, 0), (56.2)

ρ f (x, 0) =

{
1.5 φ(x, 0) if y ≥ 0,
0.5 φ(x, 0) if y < 0, (56.3)

ρg(x, 0) = 1.1 φ(x, 0), (56.4)
u(x, 0) = 0, (56.5)

5By free motion we refer to migration on a planar substrate without obstacles.
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Table 1: Keratocyte motion parameters
Symbol Description Value

Γφ Parameter enforcing a hyperbolic tangent profile 0.52 µm s−1

ε Phase-field interfacial length scale 2 µm
Dmax Myosin diffusion scale 4.16 µm2s−1

K Decay rate of mysosin diffusion 1.55 µm2

ε f Diffusive length scale of F-actin 0.707 µm
εg Diffusive length scale of G-actin 3.16 µm
α Penalty parameter for actin conservation 0.06 µm−2

Γ f F-actin mobility 0.52 s−1

Γg G-actin mobility 0.52 s−1

µ Dynamic viscosity coefficient 1500 pN s µm−1

λ Bulk viscosity coefficient -500 pN s µm−1

A Range of contractile forces 1.0
B Range of protrusive forces 0.07659
ς Substrate friction coefficient 0.7 pN s µm−3

γ Surface tension coefficient 50 pN

where dc(x) represents the distance between x and the coordinates origin. All the simulations reach a stationary
state at time t≈ 120 s. Figs. 9 and 10 show, respectively, the stationary F-actin (ρ f ) and myosin (ρm) distributions
for different values of ηm and η f . The plots show the cell’s polarization: while the lamellipodium (associated to
areas of large F-actin concentration) is pushing the front of the cell (Fig. 9), myosin is located at the back of the
cell (Fig. 10) producing its contraction. The different equilibrium shapes adopted by the cell depend on the balance
between protrusive and contractile forces. The three simulations corresponding to η f = 2000 pN µm3 (see Figs. 9
or 10) clearly show the influence of ηm. For higher values of ηm, which produce greater contractile forces exerted
by myosin, the cell even loses its convex shape (bottom row, middle column). Increasing the value of η f the lack of
convexity can be alleviated as shown in the bottom-right panel. The bottom left image corresponds to an extreme case
in which the contractile forces are so strong compared to the protrusive ones that the cell loses its polarization and
the lamellipodium extends all over the cytoplasm. However, myosin is still concentrated at the back of the cell, which
produces a slow steady motion.

Fig. 11 shows the stationary velocity field for all values of ηm and η f . The color scale represents the velocity
magnitude. We also added arrows at random locations. The plots show that the lamellipodium undergoes retrograde
flow as observed in experiments [36]; see, in particular, the zoomed in region in the central panel. The zoomed
in area clearly shows that the membrane velocity points upwards, but the velocity at nearby points of the cytosol
has opposite sign. Fig. 12 displays the area, aspect ratio (width/length), and the global velocity of the cell for the
stationary states. We can see that if the cell is fully polarized, its area remains fairly constant [Fig. 12(a)]. The aspect
ratio increases as contractile forces become larger with respect to protrusive forces, except when the cell is not fully
polarized. As expected, the unpolarized cell breaks the trend again; see Fig. 12(b). The cell’s velocity increases with
increasing values of protrusive forces and with decreasing values of contractile forces. This is true even in the case of
the unpolarized cell.

To finalize this example, we compute again some of the stationary states using different values for the bending
rigidity Kc. We will show that the bending rigidity of the membrane does not play a significant role in the solution as
anticipated. We maintained the time step and the number of elements, but now we use cubic splines with C2 global
continuity to be able to generate discrete spaces inH3 and compute the integrals in Eq. (37). Fig. 13 shows the results
along with the control parameters for the analysis (all examples correspond to η f = 2000 pN µm3). The figure also
shows the cell’s equilibrium shape by displaying the level set φ = 1/2. We observe that even the value Kc = 80 pN µm2,
which is much greater than measured values [81, 82], produces negligible variations of the equilibrium shape. Fig. 14
shows that the cell’s area, aspect ratio, and global velocity depend on the bending rigidity very mildly. We conclude, in
agreement with other computational works [31], that bending forces can be neglected in the computations. Therefore,
all the subsequent computations in this paper assume Kc = 0. From the computational point of view, this has the
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Figure 9: Mesenchymal cellular migration. Stationary states of keratocyte free motion. The equilibrium cell shape depends on the balance between
contractile and protrusive forces. The color scale represents the F-actin density.
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Figure 10: Mesenchymal cellular migration. Stationary states of keratocyte free motion. The equilibrium cell shape depends on the balance
between contractile and protrusive forces. The color scale represents the myosin density.
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Figure 11: Mesenchymal cellular migration. Stationary states of keratocyte free motion. The equilibrium cell shape depends on the balance
between contractile and protrusive forces. The color scale represents the velocity magnitude. In some random points, we also show the velocity
field with arrows.

Figure 12: Mesenchymal cellular migration. Stationary states of keratocyte free motion. (a) Area of the cell. (b) Aspect ratio. (c) Global cell
velocity.
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Figure 13: Mesenchymal cellular migration. Influence of the membrane’s bending resistance on the stationary cell shape for different values of ηm.
The cell is represented by the level set φ = 1/2. The rightmost column shows the solutions for Kc = 80 pN µm2 (black line) and Kc = 0 (red line).

Figure 14: Mesenchymal cellular migration. Influence of the membrane’s bending rigidity. (a) Area of the cell. (b) Aspect ratio. (c) Cell’s global
velocity.
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Figure 15: Mesenchymal cellular migration. Oscillatory motion of keratocytes in a microchannel. (a) F-actin distribution. (b) Myosin distribution.

advantage that C1-continuous quadratic functions can be used in the computations. This reduces the computational
time in our implementation.

4.2.2. Oscillatory motion of keratocytes in a microchannel
This section shows that our model can reproduce oscillatory motion of keratocytes confined in a microchannel

geometry [52]. We place a microchannel of width 10 µm oriented in the vertical direction and symmetrically located
in the domain. The microchannel walls are modeled as two linear obstacles that exert forces on the cell through the
term Frep in Eq. (10). We place a polarized, elongated cell in the interior of the microchannel and let the simulation
evolve. The cell displays an oscillatory motion which alternates migrations downwards and upwards in the channel.
The model parameters are defined in Table 1 with ηrep = 4550 pN µm, η f = 2000 pN µm3, and ηm = 30 pN µm. The
initial conditions are:

φ(x, 0) =
{
0.5 − 0.5 tanh[1.5(|x| − w/2)]

}{
0.5 − 0.5 tanh[1.5(|y| − l/2)]

}
, (57.1)

ρm(x, 0) =

{
0 if y ≥ 0,
2.1 φ(x, 0) if y < 0, (57.2)

ρ f (x, 0) =

{
1.5 φ(x, 0) if y ≥ 0,
0.5 φ(x, 0) if y < 0, (57.3)

ρg(x, 0) = 1.1 φ(x, 0), (57.4)
u(x, 0) = 0, (57.5)

where w = 10 µm and l = 20 µm are, respectively, the width (x-direction size) and the length (y-direction size) of the
cell. Note that the initial distributions of F-actin and myosin correspond to those of a polarized cell. Figs. 15(a) and
(b) show, respectively, the distributions of F-actin and myosin at several times. For a clearer visualization, we only
show the relevant part of the computational domain. The snapshots corresponding to t = 414 s and t = 494 s represent
a similar cell shape as well as F-actin and myosin distributions, but with the cell moving in opposite directions. Fig. 16
shows the time evolution of the cell’s area, its global (vertical) velocity, and the y-coordinate of its center of mass. We
observe that the cell’s area [Fig. 16(a)] displays variations of up to ∼15% as observed in experiments [79]. Fig. 16(b)
shows that the vertical velocity changes sign periodically, producing the oscillatory motion. Between each two sign
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Figure 16: Mesenchymal cellular migration. Oscillatory motion of keratocytes in a microchannel. (a) Area of the cell. (b) Global velocity. (c)
y-coordinate of the cell’s mass center. The cross marks in the plots correspond to the snapshots in Fig. 15.

changes the velocity presents a non-trivial time evolution; see, e.g., the time interval t ∈ [440, 515]. The reason for
this is that when F-actin depolarizes for the first time in the time interval (t ≈ 478 s) myosin has not moved to the back
of the cell yet and the cell gets polarized in the same direction again (t ≈ 494 s). When F-actin depolarizes for the
second time (t ≈ 510 s) myosin is at the back and the cell is able to reverse motion. The time evolution of the vertical
position of the cell’s center of mass [yc in Fig. 16(c)] is simpler and shows a plain oscillatory motion with period
∼160 s. By modifying the parameters η f or ηm the model can produce oscillatory motions with different periods as
well as stick-slip motion [49] (data not shown).

4.2.3. Bipedal motion of keratocytes in a microchannel
Using exactly the same setup as in the previous example and changing the initial conditions only, the model

predicts bipedal motion [83]. The initial cell’s position defined by φ(x, 0) is the same as before [see Eq. (57.1)]. The
initial velocity is set to zero as in Eq. (57.5) and the G-actin density is given by Eq. (57.4). The distributions of myosin
and F-actin are given by

ρm(x, 0) = φ(x, 0), (58.1)

ρ f (x, 0) =

{
1.5 φ(x, 0) if y ≥ −2x,
0.5 φ(x, 0) if y < −2x. (58.2)

The reason why these initial conditions enable bipedal motion is that the F-actin distribution is non-symmetric in the
vertical and horizontal directions. Figs. 17(a) and (b) show several snapshots of the F-actin and myosin distributions
while the cell is moving upwards. It may be observed that the back part of the cell leaves behind a tail that oscillates
from left to right giving rise to the bipedal motion. The plots show that the cell remains polarized throughout the
entire time interval although the lamellipodium extends over a large area of the cytosol. Figs. 18(a) and (b) show,
respectively, the time evolution of the cell’s area and the x- and y-position of its center of mass. Fig. 18(b) shows that
the bipedal motion is characterized by a quasi-constant vertical velocity and an oscillatory retraction of one side of
the cell body out of phase with the other side [83] – the latter is reflected in the time evolution of the x-coordinate of
the cell’s center of mass. Fig. 18(c) shows the trajectory of the cell’s center of mass.

4.3. Amoeboid cellular motility

This section shows numerical examples of amoeboid motion. We will focus on a particular type of cell, namely,
Dictyostelium discoideum. This cell type has been widely studied by the experimental community and is starting
to trigger interest in computational physics and computational mechanics. The examples presented in this section
include an additional layer of complexity with respect to those presented so far in the paper. The reason is that
now we consider the membrane-bound species, whose dynamics is controlled by Eq. (33). Therefore, we solve the
governing equations as described in Section 3 with the only assumption that bending forces are negligible – this
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Figure 17: Mesenchymal cellular migration. Bipedal motion of keratocytes in a microchannel. (a) F-actin distribution. (b) Myosin distribution.

Figure 18: Mesenchymal cellular migration. Bipedal motion of keratocytes in a microchannel. (a) Time evolution of the cell’s area. (b) Time
evolution of the position of the cell’s center of mass (x and y-coordinates). (c) Trajectory of the cell. The cross marks in the plots correspond to the
snapshots in Fig. 17.
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Table 2: Dictyostelium motion parameters
Symbol Description Value

Γφ Parameter enforcing a hyperbolic tangent profile 0.52 µm s−1

ε Phase-field interfacial length scale 2 µm
Dmax Myosin diffusion scale 4.16 µm2s−1

K Decay rate of mysosin diffusion 1.55 µm2

ε f Diffusive length scale of F-actin 0.707 µm
εg Diffusive length scale of G-actin 3.16 µm
α Penalty parameter for actin conservation 0.06 µm−2

Γ f F-actin mobility 0.52 s−1

Γg G-actin mobility 0.52 s−1

Da Diffusion coefficient of activator 0.195 µm2s−1

ra Decay rate of activator 0.325 s−1

ba Production rate of activator 7.8 s−1

ϕ Scaling of membrane marker width 25
amax Saturation of activator 1.5 µm−2

rp Radius of activator source 1 µm
∆Ti Growth time of pseudopods See Fig. 4(a)
∆τi Time interval between pseudopods See Fig. 4(b)
µ Dynamic viscosity coefficient 1500 pN s µm−1

λ Bulk viscosity coefficient -500 pN s µm−1

η̄m Strength of contractile forces 22.1 pN µm
A Range of contractile forces 0.4117
η̄ f Strength of protrusive forces 1.22 · 104 pN µm3

B Range of protrusive forces 0.07659
ς Substrate friction coefficient 0.7 pN s µm−3

γ Surface tension coefficient 78 pN
ηrep Strength of repulsive forces 4550 pN µm

assumption has been verified numerically in Section 4.2.1 for mesenchymal motion. We suppose it also holds true for
amoeboid motion.

We present two simulations in 2D and one in 3D. The first 2D simulation shows free amoeboid motion while
the second one takes place in an environment with rigid obstacles. For the 2D simulations, we always used the
computational domain Ω = [−L, L] with L = 20 µm. We meshed this domain using 200 C1-continuous quadratic
elements in each direction. The 3D simulation studies amoeboid migration in a fibrous medium.

4.3.1. Dictyostelium free movement
We analyze how Dictyostelium moves spontaneously without any chemoattractants as observed in experiments

[61]. To simplify the analysis, we start studying motion on a planar substrate without obstacles. We assume periodic
boundary conditions in all directions. The parameter values used in the 2D simulations of amoeboid motion are shown
in Table 2. In this example, the initial conditions can be written as

φ(x, 0) = 0.5 − 0.5 tanh[1.5(dc(x) − rc)], (59.1)
ρm(x, 0) = φ(x, 0), (59.2)
ρ f (x, 0) = 0.5 φ(x, 0), (59.3)
ρg(x, 0) = 1.1 φ(x, 0), (59.4)
a(x, 0) = 0, (59.5)
u(x, 0) = 0, (59.6)
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Figure 19: Amoeboid cellular motion. Dictyostelium free movement. Time evolution of the F-actin and activator distributions. The arrows indicate
the extension or retraction of pseudopods.

where dc(x) denotes the distance between x and the origin of coordinates and rc = 8.2 µm is the cell’s radius. The
initial conditions represent an unpolarized circular cell. We anticipate that amoeboid motion is very different from
the mesenchymal motion that we have simulated up to now. While keratocytes present a stationary lamellipodium
and a fairly constant cellular shape, Dictyostelium undergoes a highly dynamic motion with a very well orchestrated
process of growth and retraction of pseudopods. Fig. 19 shows several snapshots of the moving cell. In the cell’s
interior the color scale represents F-actin density. We have also plotted a strip at the cell’s membrane. The color of
the strip represents the activator concentration. As expected, a peak in the activator concentration (t = 490 s) produces
a region with high F-actin density in a nearby area of the cell’s interior (t = 498 s). High F-actin concentration is
associated to protrusive structures that push the membrane outwards giving rise to a pseudopod. Simultaneously, the
previous pseudopods retract (t = 498 s and t = 509 s). The process is periodically repeated with most new pseudopods
emerging at the front of the cell as described by the probability distributions displayed in Figs. 4(d)–(f). This is a
particular feature of amoeboid motility that produces persistent motion. However, occasionally, a new protrusive
structure grows far from the cell’s front giving rise to a so-called de novo pseudopod [62], which produces an abrupt
change of direction in the cell (t = 530 s and t = 539 s). Fig. 20 shows the myosin distribution and the membrane’s
velocity at the same time steps. The plots show how myosin is mostly concentrated at the rear of the cell [3], producing
the contraction of the tail as well as the retraction of the pseudopods that are no longer active.

4.3.2. Dictyostelium migration on a planar surface with obstacles
Dictyostelium cells are known to migrate effectively on a planar substrate with obstacles. This example shows

that the model can successfully reproduce this feature of amoeboid motion. The model parameters are again listed in
Table 2. The initial conditions and the boundary conditions are the same as in Section 4.3.1. The top left panel of
Fig. 21 shows the computational domain represented by a square plotted with dashed lines. For visualization purposes,
we have periodically extended the computational domain in both directions, so that the top left panel of Fig. 21 is
approximately four times larger than the actual computational domain. The obstacles have rectangular shape, random
locations, and have been plotted with brown color. The blue, red, and green squares in the top left panel represent
the areas that will be plotted in the rest of the top row, the middle row, and the bottom row, respectively. The color
scales in Fig. 21 represent the F-actin and activator concentrations. The first row of the figure shows how the central
obstacle exerts forces on the cell; see the term Frep in Eq. (10). These forces bend the cell’s membrane, avoiding
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Figure 20: Amoeboid cellular motion. Dictyostelium free movement. Time evolution of the membrane’s velocity and the myosin distribution. The
arrows indicate the retraction of pseudopods produced by myosin and surface tension.

the penetration of the obstacle. Frep plays the role of a very simple contact model based on the penalty method.
The ability of the cell to overcome the obstacle is enhanced by preventing pseudopods to form in the areas of the
membrane that are close to the rigid obstacle. This constraint has been built into the model (see Section 2.6) and is
based on experimental observations [63]. In the snapshots of the middle row the cell is relatively far from the obstacle
and is migrating essentially as in an obstacle-free substrate. The bottom row shows how the cell hits the obstacle on
the right hand side, and as it tries to reverse its direction, encounters the obstacle on the left hand side. Eventually, the
cell manages to move downwards and escape away of the obstacles. Fig. 22 shows the membrane’s velocity and the
myosin distribution at the same time steps. It may be observed that the membrane’s velocity is very small close to the
obstacles due to the absence of protrusive forces.

4.3.3. Amoeboid migration in a three-dimensional fibrous environment
Although many experimental studies of cellular migration are performed on planar substrates, most cells migrate

within the extracellular matrix – an intricate network made of fibrous proteins. The cell attaches to the fibers through
integrin-mediated junctions. In turn, the fibers deform and might also get degraded due to chemicals secreted by the
cell. The simulations presented in this section do not aim at reproducing this phenomenon, but rather, at proposing
a much simpler scenario that is computable with the model we developed. In our simulations, the deformable fibers
are replaced by rigid obstacles with fibrous geometry. The distance between fibers is probably larger than in the
extracellular matrix and fiber degradation is not considered. In spite of all these assumptions, we believe that these
simulations are the most realistic three-dimensional computations of cellular amoeboid motion that have been reported
on heretofore. To make the problem computable we also had to modify the values of some of the parameters. We
modified ϕ and ε f to increase, respectively, the effective membrane thickness and the F-actin length scale. This
allowed us to use coarser meshes. We have also changed the penalty constant α to adapt it to 3D computations (α is a
computational parameter that depends on the number of spatial dimensions). Finally, we reduced ηm and η f to adjust
the contractile and protrusive velocities to biological values in 3D moving cells. The parameter values used in the
3D simulation are listed in Table 3. The computational domain is Ω = [0, L]3 with L = 32 µm. We assume periodic
boundary conditions is all directions. We used 100 C1-quadratic elements in each direction. The initial conditions are
the same as in the previous examples of amoeboid motion, but the cell is centered at the point {16, 16, 16}T and has
radius rc = 7 µm. Fig. 23 shows snapshots of the moving cell with the membrane colored according to the activator
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Figure 21: Amoeboid cellular motion. Dictyostelium migration on a planar surface with obstacles. Time evolution of the F-actin and activator
concentrations.
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Figure 22: Amoeboid cellular motion. Dictyostelium migration on a planar surface with obstacles. Time evolution of the membrane’s velocity and
the myosin distribution.
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Table 3: Dictyostelium three-dimensional motion parameters
Symbol Description Value

Γφ Parameter enforcing a hyperbolic tangent profile 0.52 µm s−1

ε Phase-field interfacial length scale 2 µm
Dmax Myosin diffusion scale 4.16 µm2s−1

K Decay rate of mysosin diffusion 1.55 µm3

ε f Diffusive length scale of F-actin 1.0 µm
εg Diffusive length scale of G-actin 3.16 µm
α Penalty parameter for actin conservation 0.03 µm−3

Γ f F-actin mobility 0.52 s−1

Γg G-actin mobility 0.52 s−1

Da Diffusion coefficient of activator 0.195 µm2s−1

ra Decay rate of activator 0.325 s−1

ba Production rate of activator 7.8 s−1

ϕ Scaling of membrane marker width 15
amax Saturation of activator 1.5 µm−2

rp Radius of activator source 1 µm
∆Ti Growth time of pseudopods See Fig. 4(a)
∆τi Time interval between pseudopods See Fig. 4(b)
µ Dynamic viscosity coefficient 1500 pN s µm−2

λ Bulk viscosity coefficient -500 pN s µm−2

η̄m Strength of contractile forces 9.945 pN µm
A Range of contractile forces 0.4117
η̄ f Strength of protrusive forces 1.098 · 104 pN µm3

B Range of protrusive forces 0.07659
ς Substrate friction coefficient 0.7 pN s µm−4

γ Surface tension coefficient 78 pN µm−1

ηrep Strength of repulsive forces 4550 pN
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Figure 23: Amoeboid migration in a three-dimensional fibrous network. Activator distribution on the cell’s membrane at t = 62, 71, 83, and 90 s.
The top left panel shows a box that represents the actual computational domain, which has been periodically extended for visualization purposes.
The arrow in the bottom left panel indicates the emergence of a new pseudopod.

concentration. The fibers (brown color) have been assumed to be straight and have a random spatial distribution and
orientation. The images show how high concentrations of activator at the membrane give rise to the growth of new
pseudopods as in the 2D examples. It may also be observed how the cell deforms locally to adapt to the fibrous
environment (see, e.g., the zoom at the right-hand side of the top-left panel). We believe that such a strong cell
deformation might not be realistic and may be attributed to our assumption of undeformable fibers. Nevertheless, the
image illustrates the interaction between the cell and the obstacles. Fig. 24 shows the cell at the same times with a
different perspective. The membrane is represented by a semi-transparent pink surface that allows to see the cell’s
interior. The surfaces inside the cell are defined by the equation ρ f = 1 and represent pseudopods. This image
shows how the model allows to visualize the 3D structure of pseudopods. Fig. 25 shows the evolution of the myosin
distribution throughout the simulation. The highest concentrations are found in the back of the cell as in the 2D
examples.

5. Conclusions

We proposed a phase-field model of cell migration. The model accounts for a membrane-bound species that
interacts with the actin and myosin present in the cytosol. From a mechanical point of view, the cell’s membrane is
modeled as a vesicle and the cytosol as a viscous Newtonian fluid.
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Figure 24: Amoeboid migration in a three-dimensional fibrous network. The cell’s membrane is represented by a semi-transparent pink surface.
The internal surface, defined by ρ f = 1, represents the pseudopods. The top left panel shows a box that represents the actual computational domain,
which has been periodically extended for visualization purposes. The arrow in the bottom left panel indicates the emergence of a new pseudopod.
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Figure 25: Amoeboid migration in a three-dimensional fibrous network. The snapshots show the time evolution of myosin concentration on the
cell’s surface. The computational domain is orientes as in Fig. 23.
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The discretization of the model poses significant challenges to conventional numerical schemes, such as, e.g.,
solving equations on moving and deformable domains or approximating higher-order differential operators. The first
challenge is addressed utilizing the diffuse domain method, which allows to use a fixed mesh only. The second one is
handled through the use of globally continuous splines constructed using the concept of isogeometric analysis.

We applied the model to mesenchymal and amoeboid cellular motion. The simpler case of mesenchymal migration
produces stationary states of motion that are in good agreement with experiments. We performed simulations of
amoeboid motion on planar surfaces with and without obstacles. In all cases, the model predicted realistic dynamics.
We performed a 3D simulation within a fibrous network of obstacles. We believe this simulation may constitute an
initial step toward the computational study of cellular migration in the extracellular matrix.

Our model opens a number of new opportunities to study cell migration computationally. A simple way to extend
the theory would be to consider deformable obstacles. This would be of special interest for the 3D simulation in a
fibrous network because it would lead to be a more realistic representation of the extracellular matrix. The model can
also be extended to account for chemotactic or blebbing migration.
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