1. INTRODUCTION

Quantitative analysis of the proliferative-to-invasive
transition of hypoxic glioma cells’

Hector Gomez*¢

Hypoxia is a hallmark of gliomas that is often associated with poor prognosis and resistance to
therapies. Insufficient oxygen supply reduces the proliferation rate of tumor cells, which con-
tributes to a slower progression of the lesion, but also increases the invasiveness of the tumor,
making it more aggressive. To understand how these two counteracting mechanisms combine
and modify the tumor’s global growth, this paper proposes a quantitative approach based on a
biomathematical model. The model predicts that the net effect of the proliferative-to-invasive tran-
sition leads to a lower survival even for slight increments of the invasive capacity of hypoxic tumor
cells. The model also shows that tumor cells use the phenotype change to normalize the levels of
oxygen in the tissue. The model results can be directly compared to in vivo data obtained using
anatomic and molecular imaging modalities.

1 Introduction

Primary brain tumors are a major health problem and constitute
the leading cause of cancer-related deaths in people below age
19. Approximately 80% of malignant primary brain tumors are
gliomas. Glioma is a generic term used to describe cancerous tu-
mors that originate in glial cells. Gliomas are classified into differ-
ent grades according to their malignancy. Grades I and II are re-
ferred to as low grades, whereas grades III and IV are high grades.
Glioblastoma multiforme (GBM) is a high-grade glioma charac-
terized by diffuse invasion and high-rate proliferation. In spite
of receiving extensive treatment in the form of surgical resection,
radiation and chemotherapy, GBM patients have a poor prognosis
and usually succumb to cancer in 6-12 months. New methods for
the diagnosis and treatment of GBM are sorely needed.

In the last few years, patient-specific mathematical modeling
has established itself as a promising tool for personalized diag-
nosis and treatment of GBM. It may be argued that GBM is an
ideal candidate for patient-specific mathematical modeling for
two reasons: First, GBM is noted for behaving differently across
patients, which suggests that the treatment and management of
the disease should be personalized. Second, GBM patients are
usually diagnosed and monitored with anatomic (e.g., magnetic
resonance) and molecular (e.g., positron emission tomography)
imaging modalities, which provides a plethora of data that can be
integrated into mathematical models!. Mathematical modeling
of GBM has led to significant advances in brain tumor research.
For example, mathematical models permitted understanding the
relation between image-estimated growth kinetics and progno-
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sis?, quantifying the role of angiogenesis2, or explaining edema

formation. This paper proposes a computational model to evalu-
ate quantitatively the proliferative-to-invasive transition than hy-
poxia induces in gliomas.

Hypoxia has been often observed in GBM?®. Insufficient oxygen
supply has been associated with lower median survival and re-
sistance to therapies in brain tumors®8, but the reasons for this
remain unclear. There is strong evidence indicating that hypoxia
increases migration and invasion in glioblastoma?. In particular,
GBM cells subjected to hypoxic conditions express high levels of
mesenchymal transcription factors. The overexpression of these
transcription factors is associated with poor prognosis10. Patients
with a mesenchymal phenotype have been observed to have sig-
nificant levels of necrosis!! and host tumors with a greater inva-
sive potential 1112, Studies with cell cultures are consistent with
these observations. In particular, the exposure of U87, SNB75 and
U251 cells to hypoxia produced a cellular morphology markedly
different to that of cells cultured in normoxic conditions. The
cells under hypoxic conditions had a more elongated shape and
were more loosely arranged than cells cultured in normoxic con-
ditions®. This evidence has been often used to explain why hy-
poxia is associated with poor prognosis. However, it is also well
known that glioblastoma cells display reduced proliferation under
hypoxic conditions 3, which could also lead to a slower tumor
progression. The fact that we have two counteracting mecha-
nisms suggests that a quantitative approach could be useful.

This paper extends the classical proliferation-invasion mathe-
matical model to account for the proliferative-to-migratory phe-
notype change in the presence of hypoxia. This is accomplished
by introducing an equation that governs the oxygen dynamics and
making the proliferation rate and the migration capacity of the tu-
mor cells depend on oxygen concentration. The theory allows to
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study the impact of this phenotype change in the global tumor
growth kinetics. The model predicts that for realistic values of
the proliferation rate under hypoxic conditions, even mild incre-
ments of the invasive potential of the tumor cells lead to poorer
prognosis and lower survival.

The model results can be directly compared to in vivo infor-
mation obtained from medical images. In particular, the tumor
cell density can be estimated from T2-weighted magnetic reso-
nance images (MRIs) and the oxygen concentration from the !8F-
FMISO-PET imaging modality. The methodology could be used in
conjunction with other computational approaches that focus on
the impact of hypoxia on the tumor’s resistance to therapy 1412,

2 Materials and methods

Our methodology is based on a biomathematical model that ac-
counts for tumor and oxygen dynamics. This section presents the
model equations, an estimate of the model parameters and our
computational method.

2.1 Biomathematical model

Our biomathematical model is based on the proliferation-invasion
framework proposed by Murray and Alvord 1© and further studied
by Swanson and coworkers3%17; see also!822, The model as-
sumes that the rate of change of tumor cell density is given by the
net migration of tumor cells plus the proliferation of cancerous
cells, namely

dc
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Here, c is the tumor cell density, o is the oxygen concentration,
D is the diffusion coefficient of tumor cells that accounts for mi-
gration and p is the proliferation rate. The term p(c)c (1 —¢) in
Eq. (1) represents the so-called logistic growth, which assumes
that tumor cells proliferate until they reach the cell density k.
The constant k is known as carrying capacity and represents the
maximum number of tumor cells that can fit in 1 mm? of tissue.
The novelty of our model is that we allow D and p to depend
on the oxygen concentration ¢. This allows us to account for
the proliferative-to-migratory phenotype change promoted by hy-
poxia. We assume that p and D depend linearly on the oxygen
concentration. In particular, we take

P(0) = par [ 2 +a (1- =) @)

D(x.0) = Dyin(x) | = +B (1- 5 )] 3)

where pyqc, & and B are constant parameters. Ppgy and Diyin(X)
are, respectively, the proliferation rate and diffusion coefficient of
tumor cells under normoxic conditions. D,,;, depends on the spa-
tial coordinate x because tumor cells invade white matter faster
than grey matter. The constant ¢V represents the oxygen con-
centration in blood vessels, which can be measured in vivo in a
patient-specific manner.

To close the model we need another equation governing oxy-
gen dynamics. This is usually modeled using reaction-diffusion
equations. The reaction terms account for the oxygen consumed
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Fig. 1 We use the Brainweb phantom to obtain the geometry and the tis-
sue distribution in the brain. The phantom provides a three-dimensional
geometry of the brain (A) and a partition of the brain into several tissue
types. Panels B, C and D show, respectively, the cerebrospinal fluid,
white matter and black matter in a two-dimensional slice of the brain.

by cells and the amount that enters the tissue from blood ves-
sels23-25 We use the equation
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where D, is the diffusion constant of oxygen, A,, and k,, are the
oxygen uptake parameters, P, is the vascular permeability that
modulates the release of oxygen across vessel walls and S, is the
vascular density, which is assumed to be constant. The first term
of the right-hand side accounts for the isotropic diffusion of oxy-
gen, the second for the oxygen uptaken by tumor cells, assuming
Michaelis-Menten kinetics, and the third one considers that oxy-
gen is released from blood vessels at a linear rate.

2.2 Anatomic model

The growth of tumor cells depends strongly on the anatomy of the
brain, which defines the computational domain where the model
equations are satisfied. The Brainweb phantom2® was used to
define the brain’s anatomy. The phantom provides a voxel-wise
map that describes the three-dimensional geometry of the brain;
see Fig. 1A. It also provides a partition of the brain into white
matter, grey matter and cerebrospinal fluid; see Figs. 1B-D where
we show the different tissue types for a slice of the brain. This
subdivision of the tissue is useful because D,,;, is smaller in grey
matter than in white matter. We incorporated this observation in
the model by taking

D,,, x € white matter,
Din (%) = { ! (5)

D,, x € grey matter.

A usual assumption is that 5 < D,,/D, < 50; see, e.g., the work of
Swanson et al.%7.



Table 1 Model parameters

Parameter Value Source
D,, 12.84 mm” year~! Ref.#
D, 2.57 mm? year™! Ref.4

Dmax 13.82 year™! Ref.?
k 2x10° cells mm 3 Ref. %
Doy 56575 mm? year~ ! Ref. 2>
Aox 4.03x10~* mol year ! mm~2  Ref.28
kox 5x10~!2 mol mm—3 Ref.28
P, 11.31x10° mm year™! Ref.2>
Sy 10 mm™! Ref. 25
foad 2x10719 mol mm—3 Ref.2>

2.3 Parameter estimation
All the model parameters can be obtained directly from the lit-
erature (see Table 1), except o and B in Egs. (2) and (3). The
impact of oxygen concentration into the proliferative and invasive
capacity of GBM is usually disregarded in mathematical models,
which makes it difficult to find estimates of o and f in the liter-
ature. This paper proposes a procedure to estimate o from data
of GBM spheroids 3. These data provide the time evolution of
the cell density for different values of oxygen concentration. The
experimental data is taken from !3 and represented in Fig. 2 with
squares and circles. The plot shows tumor cell density for nor-
moxic (8% O,; squares) and hypoxic (1% O,; circles) conditions.
The model can be applied to this situation by assuming o to
be constant, as in the experiment, and manipulating Eq. (1). We
note that 0 < ¢(x,#) < C(r), where C(¢) is an upper bound for the
tumor cell density that satisfies the ordinary differential equation

dc
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The solution to Eq. (6) with the initial condition C(0) = Cy is

Cokexp (p (o)1)
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C(t)

where k is taken from Table 1. Taking C and C(r) from the ex-
perimental data in Fig. 2, we can estimate p for different values
of ¢ using the relation

1 (C)(Co—K)
)= (G 1) ©

which follows directly from (7). By using Eq. (8) for the two
values of oxygen concentration in Fig. 2, we estimate o =~ 0.6.
We have been unable to estimate the parameter 3 using data
from the literature. We have selected a set of values for § and
performed most of our simulations using all those values. This
allows to understand the dependence of the solution on f.

2.4 Computational method

Computing a numerical solution of Egs. (1)-(4) on the brain ge-
ometry poses significant challenges for conventional numerical
methodologies due to the nonlinearity of the equations, the com-
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Fig. 2 Time evolution of the tumor cell density in GBM spheroids. Exper-
imental data in normoxic (8% O,; squares) and hypoxic (1% O,; circles)
conditions taken from 13. The solid lines represent plots of Eq. (7) keep-
ing k fixed and computing p from Eq. (8).

plicated geometry of the brain and the disparity of time scales
of Eq. (1) and Eq. (4). The latter is a consequence of tumor
dynamics being much slower than oxygen dynamics.

To avoid the complex process of generating a mesh that de-
fines the brain geometry we resort to the so-called diffuse domain
method??. This permits to embed the geometry of the brain on
a larger cube that acts as computational domain. Then, we re-
strict the equations to the brain’s geometry using a smooth field
that can be obtained from a medical image or the Brainweb phan-
tom2°, Space discretization is performed using a pseudospectral
collocation method3?. The time integration scheme is a third-
order accurate Runge-Kutta method.

For simplicity, the numerical simulations presented in this pa-
per are performed on a two-dimensional slice of the brain. The
extension to three dimensions is straightforward, although com-
putationally intensive.

3 Results

3.1 The model reproduces key features of GBM
Fig. 3 shows the time evolution of the tumor cell density (top
row) and oxygen concentration (bottom row) using @ = 0.6 and
B = 10. The plot shows how the tumor grows invasively pro-
ducing hypoxia in the tissue. The hypoxic region grows radially
leading to a traveling-wave pattern similar to that observed in
18R FMISO-PET images31:32, It was verified that this prediction
of the model is robust with respect to the tumor location and size.
For comparison purposes, Fig. 4 shows an identical computa-
tion but taking @ = 8 = 1. In this case, the tumor growth equation
becomes the classical Fisher-Kolmogorov model in which prolif-
eration and invasion are insensitive to oxygen concentration; see
Eqns. (2) and (3). The plot shows that in the absence of the
phenotype change, the tumor is less invasive and easier to de-
tect on magnetic resonances due to the higher cellular density.
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Fig. 3 Time evolution of tumor (top row) and oxygen concentration (bot-
tom row) for & = 0.6 and 8 = 10. The rest of the parameters are taken
from Table 1. The plot shows how the tumor expands with time and the
hypoxic region grows accordingly.
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Fig. 4 Time evolution of tumor (top row) and oxygen concentration (bot-
tom row) for & = B = 1. In this case the tumor equation corresponds to
the classical Fisher-Kolmogorov model, where p and D are independent
from oxygen concentration. The rest of the parameters are taken from
Table 1.

This can be better appreciated in Fig. 5A, which shows the time
evolution of the maximum cellular density in the brain normal-
ized with respect to the carrying capacity (max(c)/k; red line) for
the classical Fisher-Kolmogorov model (o = 8 = 1; dashed line)
and the proposed model (a = 0.6, 8 = 10; solid line). The blue
lines in Fig. 5A display the time evolution of min(c)/c", where
min(c) denotes the minimum oxygen concentration in the brain.
The dashed line represents the Fisher-Kolmogorov model and the
solid line the case a = 0.6, B = 10. Interestingly, the data sug-
gest the the tumor uses the proliferative-to-invasive transition to
escape hypoxia. As a consequence of the phenotype switch, the
minimum value of ¢ is increased by approximately a factor of 2.
An additional illustration of this phenomenon is presented in Fig.
5B, which shows that the area of the brain under acute hypoxia
(o < 6"/10) is significantly larger when the phenotype change is
not considered (a = = 1).
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Fig. 5 A: Time evolution of the normalized maximum cell density (red
lines) for the Fisher-Kolmogorov model (dashed line) and the proposed
model (solid line). The blue lines show analogous data for the normal-
ized minimum oxygen concentration. B: Time evolution of the area under
acute hypoxia (o < ¢"/10) for the Fisher-Kolmogorov model (dashed line)
and the proposed model (solid line).
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Fig. 6 A: Time evolution of the tumor’s T2-radius for o« = 0.6. We use
B =1 (blue circles), B = 10 (red squares) and 8 = 100 (green stars). We
also show linear approximations of the data (solid lines) to confirm that
the T2-radius grows linearly. B: Survival time versus the invasive ca-
pacity increment. The red square represents a reference solution for the
classical Fisher-Kolmogorov model (o = 8 = 1), while the blue circles cor-
respond to a = 0.6 and several values of the invasive capacity increment.
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3.2 Despite the phenotype change the tumor grows with
constant imageable velocity

In spite of the significant heterogeneity of gliomas, the radius of
the image-detectable part of the tumor has been shown to grow
linearly. This was accomplished by Mandonnet et al. 33 who col-
lected serial images of untreated patients with grade II gliomas.
The classical Fisher-Kolmogorov model in which p and D are con-
stants produces linear growth of the tumor radius with asymptotic
velocity 2./Dp. This result does not necessarily hold true for the
proposed model because D and p vary in space and time as a
function of the oxygen concentration. To check the hypothesis of
linear growth, we created a virtual tumor using an exponential
initial condition for the field ¢c. We assumed that the region of the
tumor visible in a T2-weighted MRI is that in which ¢ > 4 x 10°
cellsymm?3. We started the simulation using a tumor with a T2-
radius of 1 cm. We let the simulation evolve until the T2-radius
was 4 cm, which is usually assumed to lead to the patient’s death.
Fig. 6A shows that, in spite of the phenotype change, the T2 ra-
dius grows linearly for all tested values of f. We used @ = 0.6 in
all cases.

3.3 The proliferative-to-invasive transition decreases sur-
vival

To study of the impact of the proliferation-to-migration trans-
formation on the survival time, a reference simulation was per-
formed taking o« = = 1, which corresponds to the classical
Fisher-Kolmogorov model. Then, we took the value o = 0.6,
which has been estimated from experiments, and repeated the
simulation for several values of 3. The results are plotted in terms
of the invasive capacity increment \/@ . The quantity \/OT isan
estimate of vy, /vior Where vy, (respectively, v,,,) is the invasive
velocity of the tumor in hypoxic (respectively, normoxic) condi-
tions. The estimate is based on the Fisher-Kolmogorov traveling
wave solution. The reference solution (oc = 8 = 1) has been plot-
ted with a red square in Fig. 6B. The blue circles represent the
survival time for oo = 0.6 and different values of the invasive ca-
pacity increment. The survival time has been measured by placing
in the brain a virtual tumor with a T2-radius of 1 cm and letting
the simulation evolve until the T2-radius became 4 cm.

The plot shows that when the proliferative-to-invasive pheno-
type switch is accounted for, the survival time decreases even for
very modest values of the invasive capacity increment.

4 Discussion

Hypoxia has been often observed in gliomas. Low oxygen concen-
tration triggers a proliferative-to-invasive transition in brain tu-
mor cells. This paper proposes a biomathematical model to quan-
titatively understand the impact of this transition on the global
growth kinetics of the lesion. The model extends previous theo-
retical efforts by accounting for the dependence of the prolifer-
ation rate and the diffusion coefficient of tumor cells on oxygen
concentration. Oxygen dynamics in the brain tissue is modeled
using standard reaction-diffusion equations.

The model predicts that the proliferative-to-invasive transition
leads to lower survival even for slight increments of the invasive

4. DISCUSSION

capacity of hypoxic tumor cells. The model also suggests that
the phenotype change contributes to restore normoxic conditions
and is used by tumor cells as a self-control mechanism. The pro-
posed biomathematical model can be used in combination with
other computational methods that aim at studying the influence
of hypoxia on the effectiveness of radiation therapy 4. The pro-
posed methodology could also be used to study how hypoxia acts
differently across glioma grades3*.

Although we illustrated the concept theoretically, the model has
significant potential to incorporate in vivo patient-specific data.
The cellular density can be estimated using T2-weighted MRIs or,
even better, diffusion weighted images. The proliferation rate and
the diffusion coefficient of tumor cells can also be estimated on
a patient-specific basis using serial images®. The oxygen concen-
tration can be estimated using '8F-FMISO-PET images. The pa-
rameters of the oxygen dynamics equation could also be inferred
from serial molecular images.

The major limitation of the model is that we have been unable
to estimate the parameter  using data from the literature. Al-
though the main conclusions of the paper are almost insensitive
to B, it would be very interesting to design an experiment to es-
timate 8. Another restriction of the study is that the simulations
have been performed on two-dimensional slices of the brain. Al-
though this is unlikely to have an impact on the main conclusions
of the paper, future research should be devoted to perform fully
three-dimensional patient-specific simulations.
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