1. INTRODUCTION

Droplet motion driven by tensotaxis’

Jesus Bueno,*“ Yuri Bazilevs,” Ruben Juanes,® and Hector Gomez ¢

It is well documented that cells can migrate in response to gradients in stiffness (durotaxis) and
gradients in strain (tensotaxis) in the underlying substrate. Understanding the potential physical
mechanisms at play during this motion has motivated recent efforts to unravel the role of surface
tension in the interaction between droplets and soft solids. Here, we present a multiphysics phase-
field model of fluid—solid interaction, which allows us to isolate the effects of strain gradients—
something difficult to achieve in experiments. Our high-fidelity numerical simulations in two and
three dimensions elucidate the physics of tensotaxis, and show how localized forces in a soft
substrate can be used to move and merge droplets deposited on it.

1 Introduction

Understanding wetting—the affinity of a solid to a fluid—is essen-
tial in many natural and engineered processes spanning a wide
range of length and time scales, including microfabrication 12,
microfluidics 3>, and porous media flow applications like oil re-
covery®7 and geologic carbon sequestration®. While wetting and
spreading of fluids on rigid substrates has been studied exten-
sively e.g.,%10, the interaction of a partially-wetting fluid with a
deformable solid substrate has started to receive attention more
recently11-17, In particular, detailed measurements using confo-
cal microscopy have revealed the universal character of the de-
formation of soft substrates near the contact line!3, and theory
and experimental observation have elucidated important aspects
of the interaction between droplets and soft substrates. For ex-
ample, it was recently shown that liquid drops on deformable
substrates attract or repel by the so-called inverted Cheerios ef-
fect1®, and that droplets move spontaneously on substrates with
stiffness variations!?. The latter phenomenon is reminiscent of
durotaxis—cell motion along stiffness gradients2%21. However,
while cells tend to move toward stiffer substrates, droplets have
been reported to migrate toward softer regions. This observation
has rekindled the debate about the role of mechanics in cell duro-
taxis.

It has also been observed that cells undergo tensotaxis, that is,
motion along strain gradients. Tensotaxis has been consistently
observed for fibroblasts which migrate toward areas of higher
compressive strains2?. While several mechanistic models have
been proposed %23, the understanding of tensotaxis is still very
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limited. Controlled experimental studies of tensotaxis are par-
ticularly challenging because prestraining the substrate is often
accompanied by an increase in the substrate stiffness as a result
of nonlinear material response 24, thus producing a combination
of tensotaxis and durotaxis. A theoretical model that allows iso-
lating the effects of tensotaxis would contribute to a better under-
standing of the process.

Here, we show that liquid droplets on soft substrates un-
dergo tensotaxis. Droplets move toward areas of higher com-
pressive strains, the same behavior observed in cell migration.
Our methodology is based on a theoretical model that describes
the coupled interaction of a solid and a fluid with liquid and
gaseous phases. We solve the governing equations by means of
high-fidelity numerical simulations, and show that tensotaxis en-
ables the motion and merging of droplets. The migration pat-
terns depend on the solid deformation globally, thus pointing to
the usefulness of a computational approach to help elucidate the
physics of tensotaxis.

2 Model of droplet tensotaxis

The static configuration that droplets adopt on rigid, flat sub-
strates is governed by the Young-Dupré equation, s + 7y cosq =
Ysv, where « is the static contact angle, and Yy, vsy and s, de-
note the interfacial tension at the liquid—vapor, solid-vapor and
solid-liquid interfaces, respectively2® [Fig. 1(A)]. When the sub-
strate is soft, elastocapillary forces create a dimple below the
droplet and a ridge at the contact line. This produces a rota-
tion of the liquid—vapor interface 13, which after deformation is
oriented at an apparent contact angle ¢ < a with respect to the
horizontal [Fig. 1(B)]. Elastocapillary forces are relevant when
the elastocapillary length I,. = vy /E® (E° is the Young modulus
of the solid) is comparable to the droplet radius. For values of /..
much smaller than the droplet radius, the deformation of the solid
is negligible. Most theoretical efforts to understand the interac-
tion of droplets and deformable substrates are based on thin film
descriptions of the fluid problem and linear elastic solids!%18,
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Fig. 1 Droplet motion driven by tensotaxis. (A) Liquid droplet (blue) de-
posited on a rigid substrate (gray). The surface tensions at the contact
line yv, ysv and ys, are represented with arrows. (B) Liquid droplet on a
soft substrate. The solid is deformed under the combined action of the
surface tensions and the internal Laplace pressure Ap. The plot shows
that the static contact angle o and the apparent contact angle ¢ are dif-
ferent when the solid is deformable. (C) Tensotaxis can be triggered by
inserting a microneedle in the substrate and moving it toward the droplet
or away from the droplet. The deformation produced by the droplet has
been computed using the model presented in Section 2.1. The compu-
tational domain Q = [0,1.0] x [0,0.5] is discretized with a uniform mesh
of 512 x 256 ¥'-quadratic elements. We have adopted the parameters
v=0.451=1/1024,7=1/512, E =0.1, and 8 = 0.39. Neither gravity nor
other external forces were considered in this simulation, i.e, | £*| = 0.0.

The approaches are variational and allow computing a minimum-
energy configuration. Here, we study the interaction between
droplets and a soft solid by developing a three-dimensional model
that couples the nonlinear dynamics of a solid with a fluid com-
posed of a liquid and a gaseous phase. We obtain numerical so-
lutions to the proposed equations with a computational method
based on isogeometric analysis26. Using this computational ap-
proach, we show that droplet tensotaxis emerges in a system that
mimics the one employed in cell locomotion experiments2®. A
microneedle is inserted into the substrate and exerts a force ei-
ther toward the droplet or away from the droplet [Fig. 1(C)]. The
droplet moves in the direction of the force applied by the needle.

2.1 Methods

We develop a fluid-structure interaction model that couples a
Saint Venant—Kirchhoff solid with a complex fluid. Our choice
of a Saint Venant—Kirchhoff model for the solid allows us to con-
sider geometric nonlinearities with a linear material response. As
a consequence, the strains introduced in the substrate to trigger
tensotaxis do not alter the stiffness of the solid, avoiding a situa-
tion with simultaneous tensotaxis and durotaxis. The fluid is gov-
erned by the Navier-Stokes—Korteweg (NSK) equations, a phase-
field theory that allows for the stable coexistence of a liquid and
a gaseous phase.

Solid mechanics equations

The solid dynamics is described by the Lagrangian form of the
momentum balance equation
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where V x is the gradient with respect to the material coordinates
X and | x indicates that the time derivative is taken by holding
X fixed; w is the solid displacement and pjj is the mass density
in the initial configuration; f* represents body forces per unit
mass, and P is the first Piola—Kirchhoff stress tensor. The Saint
Venant-Kirchhoff model is described by the stored elastic energy

density27-28
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Here, tr(-) denotes the trace operator whereas A* and u* are
the first and second Lamé parameters, which can be written as
a function of the Young modulus E° and the Poisson ratio v:
AS=VE*/((1+v)(1—2v)) and p* = E*/(2(1+v)). The Green—
Lagrange strain tensor is defined by E = (C' —I)/2, where I de-
notes the identity tensor and C = FT F' is the Cauchy-Green de-
formation tensor. Here, F' denotes the deformation gradient, i.e.,
F = I 4 Vxu. The second Piola—Kirchhoff stress tensor can be
computed from W as S = dW /d E while the first Piola-Kirchhoff
stress tensor is obtained by P = F'S. The Cauchy stress ten-
sor in the solid is given by ¢° = J ' FSFT = J-!PFT where
J =det(F).

Fluid mechanics equations

We use the isothermal Navier-Stokes—Korteweg (NSK) equations
to describe the fluid dynamics. The NSK equations account
for mass and momentum conservation. They describe single-
component two-phase flow and naturally allow for phase trans-
formations, which can happen spontaneously due to pressure
and/or temperature variations. The multiphase nature of the
flow is treated using the phase-field method. Phase-field mod-
els, also known as diffuse-interface models, represent an alterna-
tive to sharp-interface models, in which interfaces are replaced
by thin transition regions. The underlying idea is to define an or-
der parameter, or phase-field, that varies smoothly over the entire
computational domain and acts as a marker for the location of the
different phases2®. In the NSK theory, the fluid density itself is the
phase-field that identifies the liquid and vapor phases. Phase-field
models have been successfully used in many fields e.g.,30-35,
cluding the description of partial wetting36-37. The phase-field
modeling permits, in our case, a unified and efficient computa-
tional treatment of the coupled multiphysics problem.

in-

In the Eulerian description, the isothermal NSK equations are
given by

ap B
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where p is the density, v is the velocity vector, o/ is the fluid



stress tensor and ® denotes the outer vector product. The Cauchy
stress tensor for the fluid is defined as o/ = 7 — pI +¢, where T
is the viscous stress tensor, p denotes the pressure, and ¢ is the
so-called Korteweg tensor. As we consider Newtonian fluids, the
viscous stress tensor is given by

7':[1(V'u—i—VT'v)—I—i»V-’UI7 4

where i and A are the viscosity coefficients, which are assumed
to be related through the Stokes hypothesis, that is, A = —2i/3.
The Korteweg tensor 3839 is defined by

1
CZX(pAp+§|Vp|2)I—le®Vp, (5)

where |-| denotes the Euclidean norm of a vector, and A > 0 is the
capillarity coefficient. The Korteweg tensor results in the capillary
forces that are withstood by the liquid—vapor interfaces.

We use the Helmholtz free-energy of a van der Waals fluid 4041
to allow for stable coexistence of liquid and gas phases. Using
the Helmholtz free-energy and standard thermodynamics*!, we
obtain the van der Waals equation, which gives the pressure p in
terms of density and temperature 6, i.e.,

p—Rb (f’”_"p) —ap?. ©

Here, a and b are positive constants and R is the specific gas con-
stant.

Since the NSK system includes a third-order spatial derivative
of the fluid density in the linear momentum balance equation, the
classical solid-wall boundary conditions are insufficient to render
a well-posed boundary value problem. Therefore, we additionally
impose the boundary condition Vp -n/ = |Vp|cosa, where n/ de-
notes the unit outward normal to the fluid boundary, and « is the
contact angle between the liquid—vapor interface and the solid
surface, measured in the liquid phase (see Fig. 1). This bound-
ary condition prescribes the contact angle « at the fluid—structure
interface, while the apparent contact angle ¢ is determined as
part of the solution to the coupled equations as a result of the
substrate deformation.

Coupled problem

The differential equations governing the solid and fluid motions
must be satisfied simultaneously. These equations are coupled
at the fluid-solid interface through compatibility conditions. We
impose kinematic compatibility (v = du/dr) and traction balance
(c/n/ —o*n/ =0).

Computational method

Our computational approach is similar to those presented in 4243,
We solve the coupled system composed by Eq. (1) and Eq. (3)
subject to the kinematic compatibility and traction balance con-
straints. Equation (1) is solved in the reference (undeformed)
configuration of the solid domain. Equation (3) is solved in the
spatial domain occupied by the fluid, which changes over time.
This requires the use of geometrically flexible algorithms, such
as the finite element method. Here, we use isogeometric analy-
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Fig. 2 Mechanism of tensotaxis. Left panels refer to the case in which
the applied force pulls the droplet. Right panels refer to case in which
the applied force pushes the droplet. (A) and (B) Initial configuration of a
droplet on a deformable substrate. We apply a force per unit mass that
points away from the droplet (A) and toward the droplet (B) in the marked
rectangular region. (C) and (D) The droplet moves in the direction of
the applied force. The dashed black line represents the position of the
droplet at the initial time. (E) and (F) Streamlines of the fluid velocity col-
ored with the velocity magnitude. The droplet is represented by a black,
solid line. (G) Vertical displacements at the fluid—solid interface at three
different dimensionless times, r = 235, r =471 and t = 1884. (H) Vertical
displacements at the fluid—solid interface at time r = 1962, + = 3924 and
t =7848. (I) and (J) Time evolution of the apparent contact angles at
the left (blue dashed line) and right (red dashed line) contact lines of the
droplet. Trend lines are ploted using a blue and red solid lines, respec-
tively. The difference in apparent contact angles between the two contact
lines is responsible for the motion of the droplet. The computational do-
main is the rectangle 2 = [0,1.0] x [0,0.5], which is discretized with a
uniform mesh of 128 x 64 ¢!-quadratic elements. On the left, right and
lower boundaries of the computational domain, we impose zero velocity
in normal direction. On the upper boundary, zero velocity is imposed in
both directions. The static contact angle is o = 75°. We have used the
parameters v = 0.45, fi = 1/256, 7= 1/64, E = 0.7554, and 6=0.39. The

magnitude of the force applied on the substrate is ‘ff =0.16215.
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sis, which is a spline-based finite-element-like method that com-
bines geometric flexibility with smooth basis functions26-44. The
use of smooth basis functions allows for a direct discretization of
higher-order partial differential equations such as the NSK equa-
tion. To enable the use of classical finite-difference-type methods
for time integration, we recast the NSK equations in an arbitrary
Lagrangian Eulerian (ALE) formulation:

% +(v—2)-Vp+pV-v =0, (7a)
ot |5
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Here, v is the fluid domain velocity and & is a coordinate
in a reference domain that is used for computational pur-
poses. Equations (1) and (7) can then be written in varia-
tional form and discretized in space using isogeometric analy-
sis. We use the generalized—a method®® as a time integration
scheme.
Newton—Raphson iteration procedure, which leads to a two-stage
predictor-multicorrector algorithm. The resulting linear system
is solved using a preconditioned GMRES method.

The nonlinear system of equations is solved using a

We express the problem in non-dimensional form by rescaling
length, time, mass and temperature by Lo, Lo/v/ab, bL} and 6,,
respectively, where Ly = 1 is a length scale of the computational
domain and 6, = 8ab/(27R) is the so-called critical temperature.
Using this non-dimensionalization, the problem is characterized
by the following dimensionless numbers,

Y= 7 (dimensionless surface tension), (8)
0
. 7} . . . .
= (dimensionless viscosity), 9
K L()b\/ ab ty
~ 0 . .
0= o (dimensionless temperature), (10)
C
v (Poisson ratio), an
~ ES
E = —— (dimensionless Young modulus), (12)
pyab
~ fs
= (dimensionless body force). (13)
ab/Lo

In all our computations, the values adopted for the dimensionless
surface tension and viscosity were chosen according to the up-
scaling method proposed in“®, which relates these parameters to
the computational mesh.

3 Results

We begin by performing numerical simulations of droplet motion
that mimic the experiments conducted for cells [Fig. 1(C)]. In our
computations, the effect of the needle is modeled as a horizontal
force per unit mass applied on a localized area [Figs. 2(A)—-(B)].
Our simulations show that the droplet moves in the direction of
the force [Figs. 2(C)-(D)]. The coupling between solid and fluid

velocity A Velocity B

0.00025 N
0.00001 1000 2000 3000 2000 Time

v =045

0.0002 -0.00002

-0.00005 |

0.00015

-0.00008 |

0.0001
-0.00011 -

0.00005 0.00014 4
o > - ; - -0.00017 -
0 1000 2000 3000 4000 Time
Velocity C Velocity D
0.00025
0.00001 4 0,38 0.42 047 Xc
v =045
0.0002 — -0.00002
/ N
/e
x

-0.00008
0.0001

-0.00011

0.00005
-0.00014

o T T T -0.00017
0.5 0.55 0.6 0.65 Xc

Fig. 3 Pulling and pushing the droplet. Left panels refer to the case in
which the applied force pulls the droplet. Right panels refer to case in
which the applied force pushes the droplet. (A) and (B) Droplet velocity
with respect to time for different Poisson’s ratios v. When pulling, the
droplet initially accelerates and then decelerates as it passes through the
localized applied force, and is eventually trapped (A). When pushing, the
magnitude of the velocity is monotonically decreasing as the influence of
the applied force decreases as the droplet moves away from the force
(B). (C) and (D) Droplet velocity with respect to the position of the droplet
center X.. In all cases the velocity is reduced as the Poisson ratio drops,
and for v = 0 the applied force induces no droplet motion.

elicits flow of the gas phase surrounding the droplet [Figs. 2(E)-
(F)]. The applied load produces vertical displacements in the
solid, as it would be expected in a material with a nonzero Poisson
ratio [Figs. 2(G)—(H)]. These vertical displacements are opposite
in sign at each side of the load. The droplet’s excess pressure pro-
duces a depression of the substrate, while the localized force at
the contact line pulls up the solid. Away from the droplet the sub-
strate acquires a flat shape, but the vertical displacement is differ-
ent at both sides of the droplet and is controlled by the external
force applied to the substrate: positive where the load induces
compressive stresses, and negative on the side where the load in-
duces tensile stresses. The difference in vertical displacements
at either side of the droplet produces a rotation of the droplet
that drives motion. This can be understood with a force balance
in the deformed contact line, which is rotated due to the solid
compliance 3. The solid deformation produces different appar-
ent contact angles at the two contact lines, leading to an unbal-
anced horizontal force similar to that present when the wettability
of the substrate is different at either contact line [Figs. 2(D-(J)].
The tensotaxis mechanism is independent of gravity, which is neg-
ligible at this scale.

Further insight into the mechanics of tensotaxis is gained by
plotting the droplet velocity with respect to time and space
(Fig. 3). It is apparent from these simulations that the behavior
is remarkably different depending on the direction of the applied
force. Pulling induces increasing velocities of the droplet as the
contact line approaches the region of the applied force, but ulti-
mately trap the droplet in the loaded area [Figs. 3(A) and (QO)].



In contrast, pushing repels the droplet monotonically, albeit with
a time-decreasing velocity [Figs. 3(B) and (D)]. In all cases, the
droplet velocity is smaller as the Poisson ratio decreases—indeed,
the droplet remains immobile if the Poisson ratio is zero. All
these observations are consistent with the proposed mechanism
of droplet tensotaxis.

To more faithfully represent the physical reality we also carried
out 3D simulations of tensotaxis. The 3D analogue of the needle
experiment in Fig. 1(C) is shown in Fig. 4. A horizontal force
applied at the center of the substrate drives droplet motion in the
direction of the force [Fig. 4(B)]. A cross section of the system
through the (diagonal) axis of symmetry shows that the substrate
deformation is consistent with the picture that emerges from the
2D simulations [Fig. 4(C)].

The investigation of tensotaxis behavior in the presence of mul-
tiple droplets is revealing. The presence of multiple droplets in-
creases the complexity of the problem, as we must consider their
mechanical interactions through the deformable substrate, as well
as through the fluid domain. We simulate this interaction in a
system with two droplets of different size, each “pushed” toward
the other by the action of a localized force [Fig. 5(A)]. As the
droplets approach each other, they eventually coalesce [Fig. 5(B)]
and quickly readjust into a single droplet, trapped by the two ap-
plied forces of opposite sign [Fig. 5(C)]. These predictions illus-
trate the ability of the phase-field methodology to simulate com-
plex scenarios of tensotaxis in 3D, in which the coupling between
surface tension forces and substrate deformation lead to droplet
motion, coalescence and trapping.

4 Conclusions

Tensotaxis, or motion driven by strain gradients, has been repro-
ducibly observed for several cell types, but the mechanisms that
control the process remain unknown. Here, we have shown that
simple liquid droplets on soft substrates also undergo tensotaxis.
We have used a nonlinear coupled model of fluid-structure inter-
action to elucidate the physics of droplet tensotaxis. Our results
indicate that droplet tensotaxis is controlled by the global defor-
mation of the solid, making the migration pattern sensitive to
boundary conditions and additional external loads. Although the
droplet always moves in the direction of the force—as observed
in cell locomotion experiments—our results reveal the symmetry-
breaking depending on the nature of the applied force. Upon
the action of pulling forces, a droplet first accelerates but is then
trapped as it traverses the localized force. The action of pushing
forces, in contrast, leads to monotonic motion of the droplet with
decaying velocity. Our computational model also reveals the key
role of Poisson’s ratio in tensotaxis, and the ability of localized
forces to induce droplet coalescence. These observations from
computational modeling allow us to gain insight into the mecha-
nisms that govern tensotaxis, and may suggest new experimental
studies for cell migration.

Acknowledgments

HG was partially supported by the European Research Coun-
cil through the FP7 Ideas Starting Grant Program (Contract
#307201). HG and JB were partially supported by Xunta de Gali-

4. CONCLUSIONS

time

Q 0.2 0.4 0.6 0.8 1 12

Fig. 4 Three-dimensional droplet motion triggered by tensotaxis. (A) Ini-
tial configuration of the numerical experiment. A liquid droplet is de-
posited on a deformable substrate. A horizontal force is applied at the
center of the substrate. (B) The droplet moves in the direction of the
applied force. The black, dashed line on the surface of the substrate in-
dicates the initial position of the droplet. (C) Vertical displacement of the
solid-liquid interface at the diagonal plane [green color in panel (B)] at
different times, + = 63 (red), r = 125 (green), r = 188 (yellow), and 7 = 251
(blue). The computational domain Q = [0,0.8] x [0,0.8] x [0,0.4] is dis-
cretized with 80 x 80 x 40 ¥!'-quadratic elements. On the upper bound-
ary, we prescribe zero velocity in the horizontal and vertical directions.
On the lateral and lower boundaries, zero velocity is imposed in normal
direction. We have adopted v = 0.45, fi = 1/200, 7 = 1/50, E = 0.7554,
and 8 = 0.39. The load that triggers droplet motion is a body force per
unit mass of value ‘fY = 1.376. The static contact angle is o = 75°.
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Fig. 5 Droplet coalescence induced by tensotaxis. (A) Setup of the nu-
merical experiment. Two forces of the same magnitude are applied on
the substrate, pushing the droplets towards the center of the domain.
(B) When the droplets are sufficiently close, capillary forces promote co-
alescence of the two droplets. The black, dashed line on the surface of
the substrate represents the initial position of the droplets. (C) Vertical
displacement at the solid—fluid interface at different times, t = 66 (red),
t = 240 (green), t = 267 (yellow), and r = 314 (blue). The computational
domain is the box © = [0,0.8] x [0,0.8] x [0,0.4], which is comprised of
80 x 80 x 40 ¢! -quadratic elements. On the lateral and lower boundaries,
we impose zero velocity in normal direction. On the upper boundary, zero
velocity is prescribed in the horizontal and vertical directions. We have
adopted v = 0.45, Ji = 1/200, 7= 1/50, E = 0.7554, and 6 = 0.39. The
load that triggers droplet motion is a body force per unit mass of value

’f‘ =2.7519. The static contact angle is o = 75°.
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