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Abstract

This paper focuses on the employment of analysis-suitable T-spline surfaces of arbitrary
degree for solving fully nonlinear thin shells. Our aim is to bring closer a seamless and
flexible integration of design and analysis for shell applications. The local refinement capa-
bility of T-splines together with the Kirchhoff-Love shell discretization, which does not use
rotational degrees of freedom, leads to a highly efficient and accurate formulation. Trimmed
NURBS surfaces, which are ubiquitous in CAD programs, cannot be directly applied in
analysis, however, T-splines can reparameterize these surfaces leading to analysis-suitable
untrimmed T-spline representations. We consider various classical nonlinear benchmark
problems where the cylindrical and spherical geometries are exactly represented and point
loads are accurately captured through local A-refinement. Finally, we construct various
trimmed NURBS surfaces with Rhino, an industrial and general-purpose CAD program,
convert them to T-spline surfaces, and directly use them in analysis.

Keywords:
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1. Introduction

It is largely widespread in engineering to first generate a geometric model with a CAD
program and then construct an analysis-suitable mesh to perform finite element analysis.
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The process that goes from the CAD file to the analysis-suitable mesh can be highly
time consuming. Moreover, in most cases, the geometry is slightly modified along the
process, which may compromise the accuracy of the solution given by the finite element
program. For complex designs, this process may need a lot of manual interactions and take
much longer than the simulations that are going to be performed over the mesh afterwards
[1]. Isogeometric analysis (IGA) was introduced with the goal of simplifying the above-
mentioned process [2, 3]. IGA’s main idea is to replace the conventional basis functions
used in finite elements (e.g., Lagrange polynomials) with the blending functions employed
in CAD, such as, for example, Non-Uniform Rational B-Splines (NURBS) and T-splines.
Up to now, CAD programs model objects using surface parameterizations instead of volume
representations. This is a significant obstacle for the integration of CAD and analysis, since
most finite element computations need volume parameterizations. Therefore, to achieve full
integration, a methodology that produces an analysis-suitable volume parameterization
from a surface representation in a compatible and automatic way is needed. Although
this is an open problem as far as we are aware, initial work on this direction has already
been done [4, Bl 6 [7, [§]. Nevertheless, the study of shell mechanics is one of the few
applications where surface parameterizations are used in analysis and this greatly simplifies
the communication between CAD and analysis when the IGA paradigm is invoked.

One of the main differences between conventional finite-element basis functions and
CAD blending functions is the global higher-order continuity of the latter. Within the anal-
ysis realm, the global smoothness of the basis functions has given rise to the proliferation
of analysis applications based on NURBS or analysis-suitable T-splines (ASTS) including
fields where CAD programs play no role. Some of the important benefits of the higher-order
continuity of splines are: fourth-order and sixth-order partial differential equations can be
solved in primal form [9, 10 1], 12} 13| 14, 15 16| [17], the strong form of partial differ-
ential equations can be collocated in a straightforward manner [I8], 19, 20, 2] 22] 23, 24],
enhanced robustness in solid mechanics and immersed fluid-structure interaction can be
achieved compared to standard finite elements |25, 26], and others [1].

The analysis of Kirchhoff-Love shells, whose motion is governed by a fourth-order PDE
posed on a surface, can be greatly simplified by using at least two of the aforementioned
IGA’s advantages, namely, the possibility of seamless integration between CAD and analy-
sis as well as the global smoothness of the basis functions, which avoids the use of rotational
degrees of freedom. These advantages have motivated the development of NURBS-based
Kirchhoff-Love shell elements [27, 28, 29] [30, BI] and these formulations have been suc-
cessfully applied to fluid-structure interaction [32], B3, B34, [35]. The Kirchhoff-Love shell
theory, also referred to as “thin shell theory”, assumes that transverse shear deformations
are negligible. This theory is appropriate for shells that satisfy the geometrical constraint
R/t >~ 20, where R is the radius of curvature of the shell and ¢ is its thickness [36]. Most
shell structures of engineering interest satisfy this condition. However, Kirchhoff-Love shells
are not currently widespread in commercial finite element programs due to the complex-
ity of constructing globally C!-continuous spaces in traditional finite elements, which in
addition, requires derivative degrees of freedom. Both NURBS and ASTS overcome this



issue and we believe that Kirchhoff-Love shells are now in a position to compete against
the Reissner-Mindlin shell theory, also known as “thick shell theory”. The main reason
why Reissner-Mindlin shells are currently the workhorse of commercial finite element pro-
grams is that their analysis requires only C°-conforming finite element spaces. However,
they have significant downsides when compared with Kirchhoff-Love shells. For example,
Reissner-Mindlin shell formulations require rotational degrees of freedom even at the con-
tinuum level, which after discretization increases both the total size of the system and the
bandwidth of the tangent matrix by a factor of two. Reissner-Mindlin formulations also
require methodologies that vanquish or alleviate sufficiently diverse “locking” phenomena.

In this work, we develop ASTS-based nonlinear Kirchhoff-Love shell formulations. The
lack of local refinement capabilities of NURBS compromises the flexibility and efficiency
of the computational methods developed with them. In contrast, ASTS support local h-
refinement while maintaining all the important mathematical properties of NURBS [37,
38, [39]. Moreover, the local p-refinement of ASTS has recently been proposed [40]. Local
refinement is needed, for example, in order to efficiently and accurately handle trimmed
surfaces, which are largely widespread in CAD programs. Trimmed surfaces cannot be
applied automatically to analysis. There are two main alternatives, namely, using an
immersed method in analysis [41] or using an algorithm in order to reparameterize the
surface [42]. We adopt the latter alternative in this article. In both cases, some type of
local refinement is needed in order to capture the geometry of the trimming curve accurately.
Another common situation where local h-refinement makes a difference is so as to capture
accurately point loads.

The paper is outlined as follows: in Section 2 we give a brief review of ASTS of arbitrary
degree and summarize the reparametrization algorithm for trimmed surfaces that we use.
In Section 3 we describe the details of the fully nonlinear Kirchhoff-Love formulations that
we utilize. In Section 4 we compare local against global refinement, study the performance
of ASTS of different degrees, solve several nonlinear benchmark problems, and consider
various examples that involve trimmed surfaces. We draw conclusions and outline future
research directions in Section 5.

2. Analysis-suitable T-spline surfaces of arbitrary degree

A decade ago, T-splines were introduced in the CAD community as a generalization of
NURBS [43]. T-splines were developed so as to overcome the main drawbacks of NURBS
in design such as, for example, the high amount of superfluous control points needed to
represent complex geometries [44] and the difficulty to create watertight surfaces in general
cases [45]. In most instances, the number of degrees of freedom needed in order to capture
the geometry of a certain surface is much lower than the amount of degrees of freedom
needed to perform shell analysis over the surface. Therefore, when we receive a surface
coming from a CAD program, the first step is typically to perform h-refinement. This
refinement process can now be done locally thanks to ASTS, which increases the flexibility
and efficiency of NURBS-based isogeometric analysis. The mathematical study of T-splines
has been an active field in the previous years. As a consequence of this study, the subset



(a) T-mesh in index space (b) Knot interval configuration

Figure 1: (Color online) (a) T-mesh in index space with four T-junctions marked with blue squares. (b)
Valid knot interval configuration for p = 2 and p = 3 associated with the T-mesh represented in Fig. a).
The pentagons, squares and triangles correspond to knot intervals of 1, 1/2, and 0, respectively. The knot
intervals assigned to opposite sides of a given T-mesh face must sum to the same value as it is highlighted
with the brown face.

of ASTS was defined, first for cubics [46, 47, 48] and then for arbitrary-degree splines
[37, 38, 139]. ASTS are simply a subset (to be defined later) of T-splines that satisfies the
following important mathematical properties:

(1) Linear independence of the blending functions

(2) Polynomial partition of unity of the blending functions
(3) Local h-refinement is available

(4) Optimal convergence rates in analysis under h-refinement
(5) Each blending function is pointwise non-negativity

(6) Affine covariance

(7) Convex hull property

(8) Dual compatibility [3§]

Another important feature of ASTS is that they are forward and backward compatible with
NURBS. This is a significant advantage of ASTS over other candidates that allow local
refinement (e.g., subdivision surfaces [49] 50} [51]), but are not compatible with NURBS.

In this Section, we describe ASTS surfaces of arbitrary degree. We anticipate that
ASTS of even and odd degree are constructed in a somewhat different manner. Here, we
assume that the reader is familiarized with NURBS [52] and with the concept of Bézier
extraction [53, [54]. All through the paper, we consider the same degree in the whole surface
for sake of brevity and denote it by p.



Figure 2: (Color online) Extended T-mesh associated to the T-mesh represented in Fig. a) for p = 2.
Face extensions are represented by light blue dashed lines and edge extensions are marked with solid red
lines. Note that the red arrows hide the T-mesh edges located underneath them in the plot.

2.1. The T-mesh

For surfaces, the T-mesh in index space is a polygonal tiling of a two-dimensional region
which defines the topology of an ASTS. For the sake of brevity, we will use the term T-
mesh instead of T-mesh in index space when no confusion arises. The polygons, the corners
of the polygons, and the line segments joining (exactly) two corners of the polygons in a
T-mesh are called faces, vertices, and edges, respectively. Fig. (a) shows an example of
T-mesh in index space.

A key difference between a T-mesh in index space and its NURBS counterpart is the
existence of T-junctions [see the blue squares in Fig. [I(a)]. T-junctions play an analogous
role to that of hanging nodes in conventional finite elements. The parametric information
of an ASTS is given by the knot interval configuration, which is defined by assigning a non-
negative real number to each T-mesh edge. We require the knot interval configuration to
verify two conditions: (1) the knot intervals assigned to opposite sides of a given T-mesh face
must sum to the same value [see brown face in Fig. [I[(b)]; (2) the knot interval configuration
has int(p/2) outer rings of zero-length knot intervals, where int(-) represents the integer
part of a real number. Assuming p = 2 or p = 3, a valid knot interval configuration for the
T-mesh of Fig. [Ia) is shown in Fig. [I[(b).

Let us now proceed to define the concepts of T-junction extension and extended T-
mesh, which are helpful so as to set forth the topological condition that a T-mesh in index
space needs to satisfy in order to be within the subset of ASTS. A T-junction extension is
composed of a face extension and an edge extension. A face extension is a closed directed
line segment obtained by marching from the T-junction in the direction of the missing
edge until int((p + 1)/2) orthogonal edges are encountered. An edge extension is a closed
directed line segment obtained by marching from the T-junction in the opposite direction of



the face extension until int(p/2) orthogonal edges are encountered. The extended T-mesh
is obtained when T-junction extensions are plotted on top of the T-mesh. Fig. [2| shows the
extended T-mesh for p = 2 corresponding to the T-mesh of Fig. [Ifa).

A T-mesh in index space leads to an ASTS space when no vertical T-junction extension
intersects with an horizontal face extension. Since face and edge extensions are closed line
segments, vertical and horizontal T-junction extensions can intersect either on the interior
of both extensions or at the endpoint of one or both extensions. As we will see later, an
ASTS space is completely defined once we give a degree p, a valid T-mesh in index space,
and a valid knot interval configuration.

2.92. The ASTS basis

Let us start by defining an anchor, which is a point associated to each ASTS function.
With the aforementioned definition of T-mesh in index space, an anchor in index space is
located at every vertex if p is odd or at every face center if p is even. The anchor associated
to the A-th global ASTS basis function will be denoted by s4. Fig. 3] shows two examples
of anchors for both even- and odd-degree ASTS corresponding to the T-mesh of Fig. (a).

The ASTS basis functions are constructed from knot interval sequences inferred from
their anchors. These knot interval sequences are called local knot interval vectors and we

denote them by AE;, where A is the global index of a basis function and i is one of the two
directions of the index space (i = 1 represents the horizontal direction and i = 2 the vertical

one). The vector Aé; has always length p 4+ 1 and can be written in component notation

as AE, = {A@u, Agf;m, s A@’pﬂ}. In order to fill the two local knot interval vectors
associated with a particular ASTS basis function, let us place horizontal and vertical line
segments centered in the anchor that traverse exactly p + 2 orthogonal edges (see Fig. ,
where these segments are represented as thick semitransparent lines). Note that “centered
in the anchor” means that the segment crosses the same number of orthogonal edges on
the left- and right-hand sides of the anchor. These two line segments define the rectangular
support of the ASTS basis function associated to that anchor (see the shaded areas in Fig.
3)). Then, the horizontal local knot interval vector is filled by the knot intervals associated
with the p + 1 edges spanned by the horizontal line segment going from the left to the
right. Analogously, the vertical local knot interval vector is filled by the knot intervals
associated with the p+1 edges spanned by the vertical line segment going from the bottom
to the top. When an anchor is sufficiently close to the T-mesh boundary so that we cannot
define a large enough line segment in a certain direction, zero-length edges should be added
accordingly (see the anchors s, in Fig. , where zero-length intervals were added in the
horizontal direction).

For each function, we will define a local basis coordinate system with origin in the
bottom-left corner of its support (see the arrows in Fig. |3). The local coordinate system
of function A will be denoted by € 4= (f 4, € A) In this reference system, we use the local
knot interval vectors to define a local basis function domain, Q 4 CR? as

Q4 =04 x O, (1)
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Figure 3: (Color online) Anchors, local knot interval vectors, and basis coordinate systems associated
to the T-mesh and knot interval configuration represented in Fig. for p = 2 and p = 3. (a) The
local knot interval vectors associated with the A-th and B-th global ASTS basis functions for p = 2 are
=4 =1{0,0,1/2}, AHA ={0,1/2,1/2}, AHB ={1,1,1}, AHB = {1,1,1}. (b) The local knot interval
vectors associated with the A-th and B-th global ASTS basis functions for p = 3 are Aék ={0,0,1/2,1/2},
22 ={0,1/2,1/2,1/2}, AEL = {1/2,1,1,1}, AT} = {1,1/2,1/2,1}.

~. ~ —~i 2
where QY = ZPH A{’A]] C R. Then, local knot vectors, B4 = {EZA} , where
, i=1
EZA = {52’1,511472, ...,527“2}, can be derived from AE, by selecting an arbitrary origin

O = {0, 0%} € R? and setting @,j =0+t A@x,k- Now, we can define the basis
function associated to the anchor s4, namely, Ny : Q4 — RT U {0}. This is accomplished
by forming the tensor product of the proper univariate B-spline basis functions as

Na(€4|Eq) = HN”’ €\=, (2)

where Ni{p : @4 — RTU{0} is an univariate B-spline basis function of degree p. The func-
tion N;” may be defined using a recurrence relation, starting with the piecewise constant
(p = 0) basis function

005\ B g 1 if g, <& <&
NAO(§A|§A,17§A,2) = { Ea : &4 <& (3)

0 otherwise,



For p > 0, the basis function is defined using the Cox-de Boor recursion formula:

; = = = gA £A1 1
NP (@181 Err s Bupia) = 2= N (Gl Erpd)

éA,p—i-l §A 1

EA”’”—@‘NW 1(§A|§A 27"'7@371%2)' )

€j4,p+2 A 2

Note that the ASTS basis function has been defined over its own local basis function
domain.

2.3. The ASTS geometric map

The elemental T-mesh is obtained from the T-mesh in index space as follows: First, we
plot the face extensions over the T-mesh. Second, we remove the polygons for which the
knot interval sum is zero on at least one side. Fig. [4fa) shows, as shaded areas delimited by
black lines, the polygons that compose the elemental T-mesh associated with the T-mesh
and the knot interval configuration of Fig. (a) for p = 2. The polygons of the elemental
T-mesh are important objects for analysis since they delimit areas in which all ASTS basis
functions are C*. Therefore, these polygons will be called elements. When the elements
of the elemental T-mesh are pushed forward to physical space, they will be called Bézier
elements and the collection of Bézier elements will be referred to as the Bézier mesh [see
Fig. (b)] The Bézier elements are suitable regions to perform numerical integration in
an isogeometric analysis program.

For a certain element e, Bézier extraction enables to represent the n® ASTS basis
functions that have support on that element as a linear combination of the canonical
tensor product Bernstein polynomial basis defined on a fixed parent element denoted by
[0 = [-1,+1]% This can be expressed mathematically as

N°(§)=C°B(§) ¢cl, ()

where N¢ = {N¢}"", collects the ASTS basis functions with support on the element e,
the index a is a local-to-element ASTS basis function counter so that the global basis
function number is A = IEN(a, e). The array IEN represents the usual map from local to

global unknowns [55]. B = {B? }(p D% collects the two-dimensional Bernstein polynomials
of degree p in the domain OJ (see [56] for a precise description) and C° is a linear operator
called the element Bézier extraction operator. The computation of the rectangular matrix
C° is based on knot insertion and [54] describes in detail how to efficiently compute this
operator for ASTS.

In certain situations, it is useful to employ rational basis functions, typically to re-
produce exactly a particular geometry. Given a set of global weights {w}%_, and their
local-to-element counterparts, namely, {w¢}, we can rationalize the ASTS basis functions

in N¢ as
_ wgNg (§)
> wilNg (€)
8

R (€) = (6)




(a) Elemental T-mesh (b) Bézier mesh

Figure 4: (Color online) (a) Elemental T-mesh for p = 2 associated with the T-mesh and the knot interval
configuration of Fig. (b) Bézier mesh for p = 2 associated with the T-mesh and the knot interval
configuration of Fig. [}

where R is the a-th rational ASTS basis function over the element e. This concludes the
process of constructing the ASTS basis functions in parameter space.

In order to perform computations on non-trivial surfaces, we need to map the parent
element to physical space using a geometric map x¢ : [J — Q¢ which goes from the parent
element to the Bézier element Q°. A set of geometry control points {P4}%_; is needed
in order to define this map. A given geometry control point P4 will have local indices
associated such that P4 = P¢, as it was the case with the basis functions and the weights.
Thus, the geometric map local to element e can be defined as

a“ (€)=Y PiR;(§) £e0. (7)

Using the ASTS geometric map given by Eq. @, we can get the ASTS basis functions in
physical space. Eq. is also used to map the elemental T-mesh to physical space, that
is, to obtain the Bézier mesh.

Invoking the isoparametric concept, we will represent our displacement field as follows

u' (§) =) ULR,(¢§) ¢eO, (8)

where u® is the displacement vector on the element e and U, are the control variables of
the displacement field that contribute on the element e.

In terms of implementation, Bézier extraction is highly appealing since it enables to use
ASTS in a finite element program by simply modifying the shape function subroutine.



2.4. Local h-refinement

Local h-refinement of ASTS boils down to adding vertices and edges on the T-mesh in
index space and modifying the knot intervals of the edges which are split in such a way
that we maintain both a valid T-mesh topology and a valid knot interval configuration. As
long as the initial and the final T-meshes in index space and knot interval configurations
are within the subset of ASTS, the initial and the final ASTS are nested [48], 39]. As in
the case of the global hA-refinement of NURBS, there are algorithms in order to compute
the new physical positions of the control points after local h-refinement so that the surface
is not changed either geometrically or parametrically. These algorithms are based on knot
insertion and are described in detail in [47].

2.5. Converting a trimmed NURBS surface into an untrimmed T-spline surface

In order to reconstruct a trimmed NURBS surface by means of ASTS, we employ the
method introduced in [42] for the necessary reparameterization. The reparameterization
algorithm has three main steps. The first step consists in performing local h-refinement
on the initial NURBS surface close to the trimming curve, which is straightforward due
to the compatibility between NURBS and ASTS. The second step consists in deleting the
elements that are completely beyond the trimming curve. Fig. (a) shows an example of
resulting T-mesh in parametric space after these two steps for a squared NURBS surface,
which is trimmed by a circular arc (not shown) in the bottom-left corner. After these two
steps, the T-mesh in parametric space is not a square and this needs to be fixed. Therefore,
the zigzag of Fig. [pfa) is removed by modifying the values of the knot intervals properly
as it is shown in Fig. (b) The third step consists in using the modified polygons in
order to capture the geometry of the trimming curve accurately. For additional details,
the reader is remitted to [42], where the final untrimmed ASTS meshes were also validated
solving various classical benchmark problems of 2D linear elasticity. The final Bézier mesh
associated with Fig. [5| will be later on used to perform computations and may be found in

Fig. [14|Db).

3. Shell formulation

3.1. Kinematics

In this section, we will use basic concepts of differential geometry. The reader not
familiarized with these concepts is referred to, e.g., [67] for an introduction. The shell
geometry can be represented by its middle surface and the thickness ¢t. The geometry of
the middle surface is expressed with respect to the coordinates £*. Here, o takes the values
{1,2} and this will be the case for any Greek index utilized in this section. Latin indices,
however, take values {1,2,3}. If r is the position vector of a point on the middle surface,
we can compute the tangent and normal base vectors as follows:

a| X as

= — 9
aa T,CH a3 Ha,l X a2|’7 ( )

10



(a) (b)

Figure 5: (Color online) Reparameterization of a trimmed NURBS surface with ASTS. (a) T-mesh in
parametric space after abandoning elements beyond a circular trimming curve (not shown). (b) T-mesh
in parametric space after knot interval modification, where the control points associated to the vertices
falling on the red parametric line are used to reconstruct the trimming curve on the ASTS surface.

where (+) o = 0(+)/0&* denotes the partial derivative with respect to a surface coordinate
€%, ||-|| denotes the length of a vector and x the classical cross product. In what follows, we
will also use the Einstein summation convention of repeated indices. With the base vectors
([9), the first and second fundamental forms can be computed, representing the metric and
curvature properties of the surface:

Apg = Qg - g, 10
B B
bag = Qqyp - Qas. (11)

Due to the Kirchhoff hypothesis of normal cross sections, any point « in the shell off the
midsurface can be described by the position vector of the midsurface » and the normal
vector as:

z—r+&a, (12)

where & € [—t/2,¢/2] is the thickness coordinate. From (12)), we can compute covariant
base vectors and metric coefficients off the midsurface as g; = «; and g;; = g, - g, respec-
tively. We obtain g,3 = g3 = 0 according to the Kirchhoff constraint, and ¢33 = as3 = 1.
Thus, only in-plane components g,s need to be computed. Neglecting terms that appear

quadratic in € and using and we obtain
Gap = Qap — 2£3ba5 . (13)

Contravariant base vectors g° are defined by g° - g; = 5;, where 5; is the Kronecker delta.
The contravariant metric coefficients can be obtained using the condition g*g;; = 5; All

11



of the above equations are valid for both the deformed and undeformed configurations.
In the following, quantities that are associated to the undeformed configuration will be
indicated by a symbol (-). For example, & is a point in the undeformed shell. Taking this
into account, we can define the displacement vector as u = r — .

Let us now introduce the in-plane Jacobian determinant of the mapping from the un-
deformed to the deformed configuration

Jo = \/19asl/|9asl ; (14)

where |gas| denotes the determinant of the matrix formed by the metric coefficients gqs.
In the following, we introduce some important tensors. Unless we indicate otherwise, we
will write all tensors in the curvilinear basis of the undeformed geometry. Accordingly, the
left Cauchy-Green deformation tensor C = Cj; §' ® ¢’ can be represented as:

gii g1z O
Cij = 921 g2 O ) (15>
0 0 Cs3

where the in-plane components C,s3 are obtained as the covariant metric coefficients in
the deformed configuration g,s and Ch,3 = C3, = 0 according to zero transverse shear
deformation, while the thickness deformation C33, which cannot be neglected in the case of
large strains, needs to be determined through the constitutive equations as will be shown
below. Before doing that, let us note that the volumetric Jacobian determinant may be
expressed as J = J,1/Css.

Finally, the Green-Lagrange strain tensor E = E; ' ® ¢’ is obtained by

1 ,
E;; = §(Cij — Gij) - (16)

3.2. Compressible materials

Assuming a hyperelastic material, the second Piola-Kirchhoff stress tensor § = S¥ g, ®
g, is obtained from a strain-energy density function ¢ as

y 0
Si — 28(? , (17)
ij
and the tangent material tensor C = C¥kg, @ 9,0 g, ®g as
y 8%
Cukl =g~ | 18
0C;;0C (18)

As mentioned above, the thickness stretch C33 cannot be determined directly from the
kinematic equations. However, we can use the plane stress condition, S** = 0, which must
be satisfied, in order to compute C33. Starting with an initial value C33 = 1, we simply

12



determine S¥ and C¥* according to and (18), and then compute an incremental
correction of Cssz as

, 50
ACy) = <C3333 : (19)
ol = o Acll (20)

where [ indicates the iteration step. Note that Eqns. (| — are simply the result of
applying Newton’s method to the equation S = 0. With the updated C, we compute the
updates of S(C) and C(C), and the procedure is repeated until the plane stress condition
is satisfied within a defined tolerance. Once the plane stress condition is enforced, it can
be used to determine the transverse normal strain Fss as:

(C33a,8

Esg = _WEW , (21)
which is then eliminated from the equations by a static condensation of the material tensor:
. Ca633c3376
afyd _ rapys _
C =C o (22)

with Co#9 denoting the statically condensed material tensor. The procedure shown above
can be applied to arbitrary 3D compressible materials being described by a strain energy
function .

3.3. Incompressible materials
In the case of incompressible materials, we get the following augmented strain energy

w:wel_p(J_l) ) (2?))
where 1) is the elastic strain energy function, (J — 1) is the term that is constrained to
be zero, enforcing incompressibility, and p is a Lagrange multiplier, which can be identified
as the hydrostatic pressure [58]. As shown in detail in [3I], we can use the plane stress
condition, S3% = 0, in order to analytically determine and eliminate the Lagrange multiplier
p. Eventually, we obtain the following equations for the stress tensor and the statically
condensed material tensor:

8¢el awel _
B =9 -2 2g08 24
5 8Cs 0Cs3"° Jo (24)
8 wel 8 wel _ 82,¢6l _ a2wel _
aBfyd __ — 4 4 4 _af '75 —4 2 "/5 —4 2 aﬂ
C 9C.,00,, T acelo Y 9CydCry DCdCy e 9
+2 8261 2(29*% 9" + g°7¢” + g*°¢") . (25)

With Egs. (24) and (25)) the incompressibility and plane stress constraints are satisfied, and
no iterative procedure as in is necessary. We note that the approach shown in —
applies to compressible materials, while — holds for the case of incompressibility,
and we highlight that both approaches allow for a direct use of arbitrary (hyperelastic) 3D
constitutive models for shell analysis.

13



3.4. Variational formulation

As usual for shells, the Green-Lagrange strains E,s are obtained by a combination of
membrane stains €,4 and curvature changes kqg:

Eaﬁ = 5&6 + €3lia5 s (26)
1 .

EaB = §(aaﬁ - aa,@) 5 (27>

Rap = gaﬁ - ba,@ 5 (28>

while stresses are integrated through the thickness and represented by normal forces n®?
and bending moments m®?:

t/2

nf = / SBded | (29)
—t/2
t)2

me? — / 5938 (30)
—t/2

with their linearizations obtained by:

t/2 t/2
dn? = ( / caﬁvﬁdé") deqs + ( / coPr £3d£3> iy (31)
—t/2 —t/2

t/2 . t/2 .
dm®? — ( / caﬂwsi”dﬁ) de,s + ( / Caﬂw(&?’)?dé) iz (32)
—t/2 —t/2

In statics, the variational formulation is derived from the equilibrium of internal and
external virtual work, 6W = W — §IWWe* = ( with the internal and external virtual
work defined as:

SWnt = / (n:de+m: k) dA, (33)
A
sest — /A FooudA . (34)

where : represents the classical double contraction, f denotes the external load, du is
a virtual displacement, de and dk are the corresponding virtual membrane strain and
curvature change, respectively, A denotes the midsurface and dA = \/|ad,s|dEMdE? the
differential area, both in the reference configuration.

We discretize and linearize Egs. - using an ASTS discretization for both the
shell’s geometry and the displacement field. The displacement field is assumed to be ex-
pressed as a combination of control variables, each with three coordinates corresponding
to the spatial dimensions. All the components of the control variables are collected on a
bigger vector U by changing first the index of the spatial dimension and then, the basis
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function number. Doing so, we obtain the following expressions for the contributions of
element e to the vector of internal nodal forces F™ and the stiffness matrix K

j Oe oK
int __ . .
F, —/A(n.aUT—i—m.aUr)dA, (35)
on Oe 0% om Ok 2k
K, = L9 . : | )
- L/(am ou, " aueu, Tau, o, 7™ mﬁmg)d ., (36)

where 7 and s are global degree-of-freedom numbers given by r = 3(IEN(a, e) — 1) + 4 and
s = 3(IEN(b,e) — 1) 4+ j with ¢,j = 1,2, 3 referring to the global x,y, and z components.
The detailed expression of each term appearing in the above two equations can be found
in [31]. With (B5)-(B6), we solve for the linearized equation system

KAU=-R. (37)

with R = F™ — F** being the residual, where the vector of external loads F¢** is com-
puted in a standard way by integrating over the product of external loads and ASTS basis
functions. The vector AU is used for the nonlinear updates of the displacement field until
convergence is achieved.

4. Numerical examples

In this Section, we present several numerical examples that illustrate the main advan-
tages that ASTS of arbitrary degree bring to shell applications. First of all, we show the
enhanced efficiency and flexibility that the local h-refinement capabilities of ASTS give to
the formulation in comparison with the global h-refinement of NURBS. Second of all, we
compare the accuracy per degree-of-freedom for different orders p. We observe that the
accuracy increases with the order and higher order ASTS elements are stable under large
deformations, in contrast to the instabilities that are known to appear with higher order
Lagrange elements in these situations. Then, we solve two widespread nonlinear bench-
mark problems, which involve cylindrical and spherical geometries, represented exactly by
ASTS. Finally, we consider two examples that illustrate how trimmed NURBS surfaces can
be handled in shell analysis.

The analysis code used to perform all these simulations has been developed on top of
the scientific library PETSc [59) [60]. Regarding the nonlinear and linear solvers used in
the following examples, we have employed the Newton-Raphson algorithm with line search
capabilities and direct solvers based on LU factorization, respectively.

4.1. Pinched cylindrical shell with rigid diaphragms

This is a common benchmark problem defined by a pinched cylinder under two inward
opposite forces. The lateral boundaries of the cylinder have rigid diaphragms. The di-
aphragms preclude movements in their own plane and produce stress-free solutions in the
orthogonal direction. This problem has been solved previously in [61], 62, [63]. Due to the
three planes of symmetry, only one octant of the cylinder is modeled for analysis purposes
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Figure 6: (Color online) Five-level quadratic Bézier mesh for the pinched cylinder along with the boundary
conditions and the point load applied.
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Figure 7: (Color online) Comparison of locally h-refined ASTS meshes against globally h-refined NURBS
meshes for p = 2, 3, 4, and 5 for a point load of P = 100. For all orders, the local refinement capability
of ASTS allows to get the same level of accuracy with a lot fewer degrees of freedom, which significantly
improves the efficiency of our shell formulation based on ASTS.

16



14000

13000 Point A

12000 F{Point A, Sansour

11000 || Point A, TUBA «we

10000 | Point B —— |

0000 || Point B, Sansour ===~ f
o 8000 | Point B, TUBA e : ]
F 7000 J
S 6000 ] /

5000 /

4000 y lf,’j

3000 : v

2000 e e

1000

0 j el

-50-40-30-20-10 0 10 20 30 40 50 60 70 80 90

Radial displacement

Figure 8: (Color online) Load-deflection curves at points A and B of the pinched cylindrical shell with a
point load of value P = 10,000. We note that 11,767, 8,136, and 6,543 are the total number of degrees of
freedom used in [61], [62], and our simulation, respectively.

(see Fig. @ The geometry of the problem is defined by the parameters R = 100, L = 200
and t = 1, where R and L are, respectively, the radius and the length of the cylinder. Re-
garding the hyperelastic material, we considered the following compressible Neo-Hookean
strain energy function [64]

1 1
= (J72r(C) - 3) + K (P =1-2m)) (38)
where tr(-) denotes the trace of a tensor, while p and K are the shear and bulk moduli,
respectively. We obtain p and K from the Young’s modulus E = 3.0 x 10* and the Poisson
ratio v = 0.3. Applying Egs. and to the above energy function, we obtain the
following 3D stress and material tensors

9 o (- L0109 2 (7 -y 0, o

ik = é p T3 (12(C) (207 CM 4 3CHCI 4 3CTCI) — 6 (57CH + CU ) )

I I (40)
+ K (ﬂ CHICH — (2 1) (OO + C”CJ"‘)) .
where the coefficients C are defined by the expression C~! = C%g, ® §;. We note that

the procedure indicated in Eqns. — needs to be applied to —.
We start our analysis by fixing the value of the point load to P = 100 and studying the

performance of locally h-refined ASTS and globally A-refined NURBS for p = 2, 3, 4, and
5. For each order, the ASTS and NURBS meshes start with the same uniform Bézier mesh,
then local and global h-refinement is performed, respectively. For the locally refined ASTS
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meshes, we recursively add one more level of refinement around the point load by splitting
half of the Bézier elements on the currently finest level in each parametric direction. Fig.
[6] displays the five-level ASTS mesh for p = 2 along with the boundary conditions and the
point load applied.

Fig. [7] shows the absolute value of the radial displacement under the point load versus
the square root of the total number of control points for the different meshes considered.
The solution seems to converge to a displacement of ~ 0.66 for all p. Nevertheless, the aim
of this plot is to compare local refinement against global refinement. It is clear that the
local refinement capability of ASTS meshes significantly enhances the accuracy per degree-
of-freedom in comparison with their NURBS counterparts for all the orders considered. For
example, if we refine the initial quintic mesh four times using both ASTS and NURBS,
we end up obtaining essentially the same value for the displacement. However, the ASTS
mesh has 469 control points and the NURBS mesh has 17,689 control points, that is, the
ASTS mesh has 97.35% fewer control points than its NURBS counterpart. This shows the
advantage of ASTS against NURBS when it comes to solve shell problems with point loads.

As a second test for this benchmark problem, we now increase the value of the point
load to P = 10,000 in order to compare our load-deflection curves with previous results
from the literature. The point load is applied in 50 equal load steps. We use a quintic ASTS
mesh with five levels of refinement in this case. The mesh has 6,543 degrees of freedom
and 1,846 elements. The total number of degrees of freedom used in our simulation is
significantly lower than in references [61, 62] where 11,767 and 8,136 degrees of freedom are
used, respectively. Fig. [§]shows the radial displacement of the points A and B (see Fig. [6)
at the end of each load step. As it can be seen in Fig. [§, our curves match with the results
given in [61) 62]. Note that, TUBA’s solution (reference [62]) and our solution, which are
based on Kirchhoff-Love shells, are slightly more flexible than Sansour’s solution (reference
[61]). Although we do not have conclusive data, the reason could be a residual locking in
the Reissner-Mindlin formulation used in [61]. Finally, contour plots of the displacement
magnitude for the final load are shown in Fig. [9 over the deformed cylinder together with
the Bézier mesh utilized.

4.2. Pinched hemispherical shell

This example focuses on the classical pinched hemisphere under two inward and two
outward opposite forces of magnitude P. We consider a hemisphere with no hole close to
the pole. The bottom circumferential edge of the hemisphere is free. Due to the two planes
of symmetry, only a quarter of the geometry is considered for the numerical simulation.
This problem has been solved previously in [65]. We use the same material model as in the
previous example [see Eq. ] The parameters that define this problem are

R=10, t=0.04, E=6.825x10", v=0.3, P =400, (41)

where R is the radius of the hemisphere. The point loads are applied in 50 equal load
steps. We use a quartic ASTS mesh with 4,032 degrees of freedom and 1,168 elements.
The local refinement capability of T-splines is used in order to avoid very small elements
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Figure 9: (Color online) Deformed cylinder for P = 10,000 along with the Bézier mesh from two different
points of view. (a) Contour plot of the displacement magnitude from a front view. (b) Contour plot of
displacement magnitude from a top view.
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Figure 10: (Color online) Bézier mesh for the pinched hemisphere along with the boundary conditions and
the point loads applied. Analysis-suitable T-splines of fourth order are used in this case.

close to the pole and to increase the resolution close to the point loads, leading to a final
mesh with five levels of refinement as it can be seen in Fig. Note that the Bézier
elements located at the sphere’s pole have one of their edges in parametric space mapped
into a point in physical space. However, the presence of this degenerated point does not
have a visible impact in the solution field since all quadrature points are located on the
interior of the Bézier elements. We monitor the radial displacement under the two point
loads through the load steps and plot them in Fig. together with the data obtained
by Arciniega and Reddy (reference [65]). As in Section 4.1, our solution is slightly more
flexible, which may be due to the existence of a residual locking in the Reissner-Mindlin
formulation used in [65]. In Fig. we plot the z and y components of the displacement
(see the axes orientation in the plot) over the deformed hemisphere under the total load.
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Figure 11: (Color online) Load-deflection curves at points A and B of the pinched hemispherical shell.
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Figure 12: (Color online) Deformed hemisphere for P = 400 along with the Bézier mesh from two different
points of view. (a) Contour plot of the displacement in z direction from a side view. (b) Contour plot of
displacement in y direction from a bottom view.

4.8. Handling trimmed NURBS surfaces in analysis

In this Section, we illustrate our proposal to handle trimmed NURBS surfaces in shell
analysis. We start with an academic example that may be modeled without trimming
curves. We use this example to show the feasibility of our method. Then, we will move
to a problem of practical interest. The geometry of the academic problem is defined by a
square with a circular hole in its center. The shell is simply supported on both the circular
edge and its four corners, and has six point loads applied (see Fig. for details). The
value of the point loads is given by P = 100. The geometry of the problem is defined by
R =3, L =20,and t = 0.1, where R is the radius of circle and L is the side of the square.
Due to the existing symmetry, we only model a quarter of the domain. As anticipated, this
geometry may be modeled without using trimming curves. We proceed this way to generate
an initial mesh that we call ASTS mesh without reparameterization [see Fig. [14|(a)]. This
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Figure 14: (Color online) Bézier meshes employed in the computations. (a) ASTS mesh without reparame-
terization. In this case, the geometry was generated without using trimming curves. (b) Untrimmed ASTS
mesh. The geometry was generated by trimming a NURBS surface.
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Figure 15: (Color online) Analysis result for the square with a circular hole. (a) Load-displacement curves
for the two mesh generation techniques. The results show the feasibility of the proposed algorithm to
handle trimmed NURBS surfaces in analysis. (b) Final deformed geometry along with the displacement
magnitude.

mesh is composed by 3,928 elements and 12,384 degrees of freedom. Then, we generate
another mesh by representing the geometry exactly by a trimmed NURBS surface using the
commercial software Rhino. Subsequently, we use the algorithm described in Section 2.5
in order to obtain an untrimmed ASTS mesh which has 2,781 elements and 8,409 degrees
of freedom. The untrimmed mesh is shown in Fig. [14](b).

Here, we investigate an incompressible Neo-Hookean material characterized by the
strain energy defined in Eq. with

ba = 5 (1x(C) = 3), (42)

where p is the shear modulus. Applying Egs. and to the energy function ,
we obtain the following 3D stress and material tensors

8% = (5 — J,%4°%). (43)

C = puJ, % (20797 + 9797 + 9797 . (44)

For our computations, we use the material parameter u = 2 x 10°. Fig. (a) shows the
load-deflection curve for both meshes. As expected, the curves are indistinguishable at the
scale of the plot, which shows that the use of the algorithm described in Section 2.5 as a
way to handle trimmed NURBS surfaces does not influence the accuracy of the solution.
Fig. b) shows the final configuration of the shell under the total applied load.

Once the feasibility of our method to handle trimmed NURBS has been shown, we
move to a case of practical significance. We start by constructing a NURBS patch with
the software Rhino, which defines half of a cylinder with parameters R = 10, L = 30,
and ¢ = 0.05. Then, we cut it with two arbitrary B-splines curves. The final geometry
is shown in Fig. a). Subsequently, we output all the information related with the
NURBS patch, the two trimming curves and the trimming operation in a IGES file (this
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Figure 16: (Color online) From the trimmed NURBS surface to the untrimmed ASTS surface. (a) Initial
trimmed NURBS surface. (b) Bézier mesh representation of the final untrimmed ASTS surface.
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Figure 17: (Color online) Analysis result for the cylinder cut by two trimming curves. (a) Load-
displacement curve at the location where the point load is applied. The data shows how the structure
stiffens as it deforms. (b) Deformed geometry along with the displacement magnitude.

file is provided as Supplemental Material for reproducibility purposes). Then, we apply
the algorithm described in Section 2.5 so as to obtain an untrimmed ASTS surface. The
resulting surface, which has 2,906 Bézier elements and 7,686 control points, is represented
in Fig. [L6|(b). Finally, we consider that the shell is simply supported at the two (circular)
edges that have not been cut by trimming curves and apply a vertical point load P = 10°
(pointing downwards) at the center of the surface. Regarding the constitutive theory, we
use the Neo-Hookean material presented in Eq. with parameters £ = 5 x 107 and
v = 0.3. Fig. [17(a) shows the vertical displacement under the load for each of the 100 load
steps and Fig. (b) displays the deformed Bézier mesh of the shell.

5. Conclusions and future work

We believe that ASTS are a key ingredient toward a seamless integration of CAD and
analysis for shell-mechanics applications. The local refinement capabilities of ASTS provide
flexibility in order to have increased spatial resolution where it is needed, e.g., close to point
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loads. Moreover, we use the local refinement capabilities of ASTS to deal with trimmed
surfaces coming from the CAD programs. It is also important to take into account that,
in contrast to NURBS, ASTS are a novel technology and, therefore, they have not been
implemented or are currently under implementation in some of the major CAD programs.
Finally, ASTS constitute one of the most promising ways to represent surfaces with arbi-
trary topology in a compact format. Currently, watertight models, that is, C°-continuous
models are always achievable through the use of extraordinary points. This property solved
one of the most important issues in CAD industry, namely, the gap/overlap problem when it
comes to model complex geometries with a combination of NURBS patches. Nevertheless,
global C°-continuous spaces are not enough for some analysis applications as Kirchhoff-
Love shells. It is possible to impose G!-continuity of both the geometry and the solution
parametrization using the isoparametric concept at the spoke edges of an extraordinary
point [56], which leads to C! continuity in physical space of the solution field [66]. How-
ever, the current methods for handling extraordinary points do not necessarily guarantee
optimal convergence rates under h-refinement [67, [68]. In our opinion, developing new
methods for handling extraordinary points which lead to both C!-continuity in physical
space and optimal convergence rates is the main last step toward a real ASTS-based seam-
less integration of CAD and analysis for Kirchhoff-Love applications and we hope to address
it in the near future.

Acknowledgements

HG and HC were partially supported by the European Research Council through the
FP7 Ideas Starting Grant (project # 307201). HG was also partially supported by Con-
selleria de Cultura, Educacion e Ordenacion Universiaria, Ministerio de Economia y Com-
petitividad (project # DPI2013-44406-R), cofinanced with FEDER funds. YZ and LL
were partially supported by the PECASE Award N00014-14-10234. AR and JK were par-
tially supported by the European Research Council through the FP7 Ideas Starting Grant
(project # 259229). This support is gratefully acknowledged. Also, we would like to thank
Dr. Reddy, Dr. Tiago, and Dr. Ivannikov for facilitating us the data that we have re-
produced in this article in order to make comparisons, as well as Dr. Sangalli for some
fruitful discussions about C!-continuity and extraordinary points. Finally, we acknowledge
the open source scientific library PETSc and their developers.

References

[1] J. A. Cottrell, T. J. R. Hughes, Y. Bazilevs, Isogeometric Analysis Toward Integration
of CAD and FEA, Wiley, 2009.

[2] T.J.R.Hughes, J. A. Cottrell, Y. Bazilevs, Isogeometric analysis CAD, finite elements,
NURBS, exact geometry and mesh refinement, Computacional Methods in Applied
Mechanics and Engineering 194 (2005) 4135-4195.

24



3]

[10]

[11]

[12]

Y. Bazilevs, V. Calo, J. Cottrell, J. Evans, T. Hughes, S. Lipton, M. Scott, T. Seder-
berg, [sogeometric analysis using T-splines, Computer Methods in Applied Mechanics
and Engineering 199 (2010) 229-263.

Y. Zhang, W. Wang, T. J. Hughes, Solid T-spline construction from boundary rep-
resentations for genus-zero geometry, Computer Methods in Applied Mechanics and
Engineering 249-252 (2012) 185-197.

Y. Zhang, W. Wang, T. J. Hughes, Conformal solid T-spline construction from bound-
ary T-spline representations, Computational Mechanics 51 (2013) 1051-10509.

W. Wang, Y. Zhang, L. Liu, T. J. Hughes, Trivariate solid T-spline construction from
boundary triangulations with arbitrary genus topology, Computer-Aided Design 45 (2)
(2013) 351-360.

L. Liu, Y. Zhang, T. J. Hughes, M. A. Scott, T. W. Sederberg, Volumetric T-spline
construction using Boolean operations, Engineering with Computers 30 (2014) 425
439.

L. Liu, Y. Zhang, Y. Liu, W. Wang, Feature-preserving T-mesh construction using
skeleton-based polycubes, Computer-Aided Design 58 (2015) 162-172.

H. Gomez, V. M. Calo, Y. Bazilevs, T. J. R. Hughes, Isogeometric analysis of the Cahn-
Hilliard phase-field model, Computer Methods in Applied Mechanics and Engineering
197 (49-50) (2008) 4333-4352.

H. Gomez, X. Nogueira, An unconditionally energy-stable method for the phase field
crystal equation, Computer Methods in Applied Mechanics and Engineering 249 (2012)
52-61.

H. Gomez, T. J. Hughes, X. Nogueira, V. M. Calo, Isogeometric analysis of the isother-
mal Navier—Stokes—Korteweg equations, Computer Methods in Applied Mechanics and
Engineering 199 (2010) 1828-1840.

J. Bueno, C. Bona-Casas, Y. Bazilevs, H. Gomez, Interaction of complex fluids and
solids: theory, algorithms and application to phase-change-driven implosion, Compu-
tational Mechanics 55 (2015) 1105-1118.

H. Gomez, L. Cueto-Felgueroso, R. Juanes, Three-dimensional simulation of unstable

gravity-driven infiltration of water into a porous medium, Journal of Computational
Physics 238 (2013) 217-239.

G. Vilanova, I. Colominas, H. Gomez, Capillary networks in tumor angiogenesis: From
discrete endothelial cells to phase-field averaged descriptions via isogeometric analysis,
International Journal for Numerical Methods in Biomedical Engineering 29 (2013)
1015-1037.

25



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

G. Vilanova, I. Colominas, H. Gomez, Coupling of discrete random walks and con-
tinuous modeling for three-dimensional tumor-induced angiogenesis, Computational
Mechanics 53 (2013) 449-464.

R. Dhote, H. Gomez, R. Melnik, J. Zu, 3D coupled thermo-mechanical phase-field
modeling of shape memory alloy dynamics via isogeometric analysis, Computers &
Structures.

J. Liu, C. M. Landis, H. Gomez, T. J. Hughes, Liquid-vapor phase transition: Ther-
momechanical theory, entropy stable numerical formulation, and boiling simulations,
Computer Methods in Applied Mechanics and Engineering.

F. Auricchio, L. Beirao Da Veiga, T. Hughes, A. Reali, G. Sangalli, Isogeometric
collocation methods, Mathematical Models and Methods in Applied Sciences 20 (2010)
2075-2107.

H. Casquero, L. Lei, J. Zhang, A. Reali, H. Gomez, Isogeometric collocation using
analysis-suitable T-splines of arbitrary degree, submitted for publication.

D. Schillinger, J. Evans, A. Reali, M. Scott, T. J. R. Hughes, Isogeometric colloca-
tion: Cost comparison with Galerkin methods and extension to adaptive hierarchical

NURBS discretizations, Computer Methods in Applied Mechanics and Engineering
267 (2013) 170-232.

H. Gomez, A. Reali, G. Sangalli, Accurate, efficient, and (iso)geometrically flexible
collocation methods for phase-field models, Journal of Computational Physics 262
(2014) 153-171.

H. Casquero, L. Lei, C. Bona-Casas, Y. Zhang, H. Gomez, A hybrid variational-
collocation immersed method for fluid-structure interaction using unstructured T-

splines, International Journal for Numerical Methods in Engineering (2015). DOI:
10.1002/nme.5004.

A. Reali, H. Gomez, An isogeometric collocation approach for Bernoulli-Euler beams
and Kirchhoff plates, Computer Methods in Applied Mechanics and Engineering 284
(2015) 623-636.

J. Kiendl, F. Auricchio, T. Hughes, A. Reali, Single-variable formulations and iso-
geometric discretizations for shear deformable beams, Computer Methods in Applied
Mechanics and Engineering 284 (2015) 988 — 1004.

S. Lipton, J. Evans, Y. Bazilevs, T. Elguedj, T. J. R. Hughes, Robustness of isogeo-
metric structural discretizations under severe mesh distortion, Computer Methods in
Applied Mechanics and Engineering 199 (2010) 357-373.

26



[26]

[27]

28]

[34]

[35]

H. Casquero, C. Bona-Casas, H. Gomez, A NURBS-based immersed methodology for
fluid-structure interaction, Computer Methods in Applied Mechanics and Engineering
284 (2015) 943-970.

J. Kiendl, K.-U. Bletzinger, J. Linhard, R. Wuchner, Isogeometric shell analysis with
Kirchhoff-Love elements, Computer Methods in Applied Mechanics and Engineering
198 (2009) 3902-3914.

J. Kiendl, Y. Bazilevs, M.-C. Hsu, R. Wiichner, K.-U. Bletzinger, The bending strip
method for isogeometric analysis of Kirchhoff-Love shell structures comprised of mul-

tiple patches, Computer Methods in Applied Mechanics and Engineering 199 (2010)
2403-2416.

D. Benson, Y. Bazilevs, M.-C. Hsu, T. Hughes, A large deformation, rotation-free,
isogeometric shell, Computer Methods in Applied Mechanics and Engineering 200 (13)
(2011) 1367-1378.

D. Benson, S. Hartmann, Y. Bazilevs, M.-C. Hsu, T. Hughes, Blended isogeometric
shells, Computer Methods in Applied Mechanics and Engineering 255 (2013) 133 —
146.

J. Kiendl, M.-C. Hsu, M. C. Wu, A. Reali, Isogeometric Kirchhoff-Love shell formu-
lations for general hyperelastic materials, Computer Methods in Applied Mechanics
and Engineering 291 (2015) 280-303.

Y. Bazilevs, M.-C. Hsu, J. Kiendl, R. Wuchner, K.-U. Bletzinger, 3D simulation of
wind turbine rotors at full scale. part ii: Fluid-structure interaction modeling with
composite blades, International Journal for Numerical Methods in Fluids 65 (2011)
236-253.

D. Kamensky, M.-C. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal, Y. Bazilevs, M. S.
Sacks, T. J. Hughes, An immersogeometric variational framework for fluid-structure
interaction: Application to bioprosthetic heart valves, Computer Methods in Applied
Mechanics and Engineering 284 (2015) 1005-1053.

M.-C. Hsu, D. Kamensky, Y. Bazilevs, M. Sacks, T. Hughes, Fluid-structure interac-
tion analysis of bioprosthetic heart valves: Significance of arterial wall deformation,
Computational Mechanics 54 (2014) 1055-1071.

M.-C. Hsu, D. Kamensky, F. Xu, J. Kiendl, C. Wang, M. Wu, J. Mineroff, A. Reali,
Y. Bazilevs, M. Sacks, Dynamic and fluid-structure interaction simulations of biopros-

thetic heart valves using parametric design with T-splines and Fung-type material
models, Computational Mechanics 55 (6) (2015) 1211-1225.

M. Bischoff, K.-U. Bletzinger, W. A. Wall, E. Ramm, Models and Finite Elements for
Thin-Walled Structures, John Wiley & Sons, Ltd, 2004.

27



37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

L. Beirao da Veiga, A. Buffa, G. Sangalli, R. Vazquez, Analysis suitable T-splines
of arbitrary degree: Definition, linear independence, and approximation properties,
Mathematical Models and Methods in Applied Sciences 23 (11) (2013) 1979-2003.

L. Beirao da Veiga, A. Buffa, D. Cho, G. Sangalli, Analysis-suitable t-splines are
dual-compatible, Computer methods in applied mechanics and engineering 249 (2012)
42-51.

A. Bressan, A. Buffa, G. Sangalli, Characterization of analysis-suitable T-splines,
Computer Aided Geometric Design 39 (2015) 17-49.

L. Lei, H. Casquero, H. Gomez, Y. Zhang, Hybrid-degree weighted T-splines and their
application in isogeometric analysis, submitted for publication.

M. Ruess, D. Schillinger, Y. Bazilevs, V. Varduhn, E. Rank, Weakly enforced essen-
tial boundary conditions for NURBS-embedded and trimmed NURBS geometries on
the basis of the finite cell method, International Journal for Numerical Methods in
Engineering 95 (10) (2013) 811-846.

L. Liu, Y. Zhang, X. Wei, Weighted T-spline and its application in reparameteriz-
ing trimmed NURBS surfaces, Computer Methods in Applied Mechanics and Engi-
neeringUnder review.

T. W. Sederberg, J. Zheng, A. Bakenov, A. Nasri, T-splines and T-NURCCs, ACM
Trans. Graph. 22 (2003) 477-484.

T. W. Sederberg, D. L. Cardon, G. T. Finnigan, N. S. North, J. Zheng, T. Lyche, T-
spline simplification and local refinement, in: ACM Transactions on Graphics (TOG),
Vol. 23, ACM, 2004, pp. 276-283.

T. W. Sederberg, G. T. Finnigan, X. Li, H. Lin, H. Ipson, Watertight trimmed nurbs,
in: ACM SIGGRAPH 2008 Papers, SIGGRAPH 08, ACM, New York, NY, USA,
2008, pp. 79:1-79:8.

X. Li, J. Zheng, T. W. Sederberg, T. J. Hughes, M. A. Scott, On linear independence
of T-spline blending functions, Computer Aided Geometric Design 29 (2012) 63-76.

M. Scott, X. Li, T. Sederberg, T. Hughes, Local refinement of analysis-suitable T-
splines, Computer Methods in Applied Mechanics and Engineering 213-216 (2012)
206-222.

X. Li, M. A. Scott, Analysis-suitable T-splines: characterization, refineability, and
approximation, Mathematical Models and Methods in Applied Sciences 24 (06) (2014)
1141-1164.

28



[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

F. Cirak, M. Ortiz, P. Schroder, Subdivision surfaces: a new paradigm for thin-shell
finite-element analysis, International Journal for Numerical Methods in Engineering
47 (12) (2000) 2039-2072.

F. Cirak, M. Ortiz, Fully Cl-conforming subdivision elements for finite deformation
thin-shell analysis, International Journal for Numerical Methods in Engineering 51 (7)
(2001) 813-833.

F. Cirak, M. J. Scott, E. K. Antonsson, M. Ortiz, P. Schroder, Integrated modeling,
finite-element analysis, and engineering design for thin-shell structures using subdivi-
sion, Computer-Aided Design 34 (2) (2002) 137-148.

D. F. Rogers, An introduction to NURBS: With historical perspective, Morgan Kauf-
mann, San Francisco, 2001.

M. J. Borden, M. A. Scott, J. A. Evans, T. J. R. Hughes, Isogeometric finite ele-
ment data structures based on Bézier extraction of NURBS, International Journal for
Numerical Methods in Engineering 87 (1-5) (2011) 15-47.

M. A. Scott, M. J. Borden, C. V. Verhoosel, T. W. Sederberg, T. J. R. Hughes,
Isogeometric finite element data structures based on Bézier extraction of T-splines,
International Journal for Numerical Methods in Engineering 88 (2011) 126-156.

T. J. Hughes, The finite element method: linear static and dynamic finite element
analysis, Courier Corporation, 2012.

M. Scott, R. Simpson, J. Evans, S. Lipton, S. Bordas, T. Hughes, T. Sederberg, Isoge-
ometric boundary element analysis using unstructured T-splines, Computer Methods
in Applied Mechanics and Engineering 254 (2013) 197-221.

Y. Basar, D. Weichert, Nonlinear continuum mechanics of solids: fundamental math-
ematical and physical concepts, Springer Science & Business Media, 2013.

G. A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering,
Wiley, Chichester, 2000.

S. Balay, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D.
Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, H. Zhang,
PETSc Web page, http://www.mcs.anl.gov/petsc (2014).

S. Balay, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D. Gropp,
D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, H. Zhang, PETSc
users manual, Tech. Rep. ANL-95/11 - Revision 3.4, Argonne National Laboratory
(2013).

29


http://www.mcs.anl.gov/petsc

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

C. Sansour, F. G. Kollmann, Families of 4-node and 9-node finite elements for a finite
deformation shell theory. An assesment of hybrid stress, hybrid strain and enhanced
strain elements, Computational Mechanics 24 (2000) 435-447.

V. Ivannikov, C. Tiago, P. Pimenta, Generalization of the TUBA plate finite elements
to the geometrically exact kirchhoff-love shell model, Computer Methods in Applied
Mechanics and Engineering 294 (2015) 210 — 244.

K. Sze, X. Liu, S. Lo, Popular benchmark problems for geometric nonlinear analysis
of shells, Finite Elements in Analysis and Design 40 (2004) 1551 — 1569.

J. Simo, C. Miehe, Associative coupled thermoplasticity at finite strains: Formulation,
numerical analysis and implementation, Computer Methods in Applied Mechanics and
Engineering 98 (1) (1992) 41 — 104.

R. Arciniega, J. Reddy, Tensor-based finite element formulation for geometrically non-
linear analysis of shell structures, Computer Methods in Applied Mechanics and En-
gineering 196 (2007) 1048 — 1073.

D. Groisser, J. Peters, Matched G*-constructions always yield C*-continuous isogeo-
metric elements, Computer Aided Geometric Design 34 (2015) 67 — 72.

T. Nguyen, K. Karciauskas, J. Peters, A comparative study of several classical, dis-
crete differential and isogeometric methods for solving Poisson’s equation on the disk,
Axioms 3 (2) (2014) 280.

A. Collin, G. Sangalli, T. Takacs, Approximation properties of multi-patch C* isoge-
ometric spaces, arXiv preprint arXiv:1509.07619.

30



	Introduction
	Analysis-suitable T-spline surfaces of arbitrary degree
	The T-mesh
	The ASTS basis
	The ASTS geometric map
	Local h-refinement
	Converting a trimmed NURBS surface into an untrimmed T-spline surface

	Shell formulation
	Kinematics
	Compressible materials
	Incompressible materials
	Variational formulation

	Numerical examples
	Pinched cylindrical shell with rigid diaphragms
	Pinched hemispherical shell
	Handling trimmed NURBS surfaces in analysis

	Conclusions and future work

