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Recently, mathematical modeling and simulation of diseases and
their treatments have enabled the prediction of clinical outcomes
and the design of optimal therapies on a personalized (i.e.,
patient-specific) basis. This new trend in medical research has
been termed “predictive medicine.” Prostate cancer (PCa) is a ma-
jor health problem and an ideal candidate to explore tissue-scale,
personalized modeling of cancer growth for two main reasons:
First, it is a small organ, and, second, tumor growth can be esti-
mated by measuring serum prostate-specific antigen (PSA, a PCa
biomarker in blood), which may enable in vivo validation. In this
paper, we present a simple continuous model that reproduces the
growth patterns of PCa. We use the phase-field method to account
for the transformation of healthy cells to cancer cells and use
diffusion−reaction equations to compute nutrient consumption
and PSA production. To accurately and efficiently compute tumor
growth, our simulations leverage isogeometric analysis (IGA). Our
model is shown to reproduce a known shape instability from a
spheroidal pattern to fingered growth. Results of our computa-
tions indicate that such shift is a tumor response to escape starva-
tion, hypoxia, and, eventually, necrosis. Thus, branching enables
the tumor to minimize the distance from inner cells to external
nutrients, contributing to cancer survival and further develop-
ment. We have also used our model to perform tissue-scale, per-
sonalized simulation of a PCa patient, based on prostatic anatomy
extracted from computed tomography images. This simulation
shows tumor progression similar to that seen in clinical practice.
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According to the World Health Organization, prostate cancer
(PCa) is the second most common cancer among men

worldwide (1). The data are revealing: In 2012, there was an
estimate of 1,095,000 new cases and 308,000 deaths worldwide
associated with this cancer, and it will be responsible for about
180,890 new cases and 26,120 deaths in the United States in
2016 (2).
In most cases, PCa is an adenocarcinoma, a form of cancer that

originates and develops in epithelial tissues with glandular orga-
nization, for example, the prostatic tissue in charge of producing
certain substances in semen. Adenocarcinomas arise as a result of
genetic alterations in cell nuclei, such as mutations and epigenetic
changes. Additionally, the influence of several environmental
factors, such as diet, may promote further modifications of the
genome. Tumoral cells exhibit an aberrant and competitive be-
havior, characterized by overproliferation and an invasive de-
meanor. Consequently, they may endanger the structure and the
normal operation of the tissue they belong to, eventually jeop-
ardizing the survival of the whole organism. The same tumor may
present different groups of cancerous cells, with different metab-
olism, local environment, and aggressiveness. Malignant cells may
evolve during their life cycle, and thus belong to a new group. The
structure, behavior, and evolution of a tumor depend on the

specific genetic alterations that may have originated it and sup-
ported its evolution (3).
The development of a prostate adenocarcinoma requires a

gradual accumulation of mutations in a number of different
genes, which varies from patient to patient but is usually at least
seven (4). As a result of these alterations of the genome over
years, an initial moderate disorder of cell behavior evolves
gradually toward an advanced cancer. As the tumor develops, it
becomes more malignant and cell differentiation decreases.

Current Medical Practice
Medical practice for PCa has been developed upon the above-
mentioned genetic and biological bases as well as on the accu-
mulated experience of physicians treating this disease (4). The
current medical protocols (Fig. S1A) include all these sources of
knowledge on PCa in the form of statistics for the probability of
cancer stage and treatment success. In brief, PCa is easier to cure
in its early stages, before it becomes excessively aggressive and
spreads out of the prostate, but, unfortunately, this disease
hardly ever produces any symptom until the tumor is either very
large or has invaded other tissues. Presently, the best way to
combat PCa is a combination of prevention and regular
screening for early detection. Regular screening for PCa usually
consists of a prostate-specific antigen (PSA) test and a digital
rectal examination (DRE), which are usually performed peri-
odically in men over age 50. The PSA test is a blood test for
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measuring the serum level of this prostate activity biomarker,
which rises during PCa. The DRE is a physical test in which the
doctor palpates the rectal wall near the prostate searching for
unusual firm masses, as healthy prostates are normally compli-
ant. If either the DRE or the PSA test is positive, the patient will
be asked to undergo a biopsy, an invasive procedure performed
with a needle guided by transrectal ultrasound (TRUS), to ob-
tain an average of 8 to 12 tissue cores. If cancerous cells are
found in the biopsy, the structure and organization of the aber-
rant cells will be analyzed by a pathologist to determine the
aggressiveness of the tumor, which is measured by a heuristic
histopathological indicator known as the Gleason score (4). With
the results of the DRE, the biopsy, and some possible medical
images, such as magnetic resonances or computed tomographies
(CTs), PCa guidelines (5–7) are used to establish a clinical stage,
that is, an estimation of how far cancer has progressed. Taking
the clinical stage, PSA level, and Gleason score together, protocols
are used to define the risk group for a patient and associate a series
of alternative treatments. The selection of the treatment, such as
surgery (radical prostatectomy), cryoablation, thermal ablation, ra-
diation therapy, hormonal therapy, chemotherapy, or a combination
of them, takes into account age, life expectancy, other aspects of the
clinical history, and the personal preferences of individual patients.
The chosen treatment may be of a curative or palliative nature, the
former being the standard for localized PCa and the latter the
common practice for advanced PCa. In some cases, if the tumor is in
its very early stages, or if the risk is judged to be very low, a curative
treatment may be delayed while the patient is monitored until the
appropriate moment for treatment (active surveillance). Patients
who are not eligible for local curative treatment, or those with a
short life expectancy, may benefit from a deferred palliative treat-
ment, aimed at tackling specific symptoms of the disease, while they
continue on regular screening (watchful waiting).

Predictive Medicine and Mathematical Oncology
Despite the number of experimental and clinical investigations, a
comprehensive theoretical model into which the abundance of
data can be organized and understood is lacking. The emphasis
of these investigations, as well as the standard clinical practice in
oncology, is based on statistical patterns, which are not suffi-
ciently accurate for individualized diagnosis, estimation of
prognosis, treatment, and follow-up.
Predictive medicine (8–10) is an interdisciplinary approach

whose aims are the determination of personalized (i.e., patient-
specific) disease progression and optimal treatment. Methods of
predictive medicine are based on mathematical modeling and
computer simulation of both the disease and treatments. This
new approach complements the statistical and experiential basis
of diagnosis and treatment planning, which constitute current
medical practice (Fig. S1). In the particular case of cancer re-
search, mathematical oncology (11–13) is a new and promising
field devoted to the development of models to simulate tumor
growth and cancer treatment.
Although significant progress has been made in recent de-

cades, accurately modeling the growth of cancerous tumors re-
mains an outstanding challenge (13–15). Early tumor growth
models were aimed at reproducing general features of cancer,
such as, for example, abnormal proliferation or evasion of pro-
grammed cell death. With the advancement of the field, new
models that encode features of specific types of cancer were
proposed. Arguably, the most widely studied cancer within the
context of biological physics is glioblastoma multiforme, a ma-
lignant type of brain cancer (16–18).
PCa has received relatively little attention from the mathe-

matical oncology community (19–21). We argue that PCa may be
an ideal candidate to explore tissue-scale, personalized modeling
of cancer growth for several reasons: First, the prostate is a small
organ, typically the size of a walnut; second, the growth of the

tumor in a given patient may be estimated using the serum PSA
concentration; and third, some PCa patients do not receive any
treatment, but have their PSA monitored, which potentially may
open the door to in vivo model validation. Moreover, PCa is a
major health problem, and is a paradigmatic example in which a
predictive model could make a difference in clinical practice
because there are currently many patients being overtreated and
undertreated (22). Another reason why we believe it is timely
to introduce a predictive model for PCa is the emergence of
medical imaging as a diagnostic tool. Medical imaging is not
widely used in PCa diagnosis due to insufficient confidence in
current imaging modalities. However, multiparametric MRI is
emerging as a promising tool that might be used for PCa di-
agnosis (23, 24). In Fig. S1B, we illustrate how imaging in-
formation can be integrated with our predictive model.

Personalized (i.e., Patient-Specific) Modeling and Simulation
of PCa
We propose a phenomenological model for PCa that qualita-
tively reproduces in vitro experiments and the actual growth
patterns of PCa during the early to midlate stages of the disease,
when PCa is usually diagnosed and treated. The computer sim-
ulations carried out with this model suggest that prostate tumors
may escape starvation and necrosis by developing a tubular
shape or branching. Although the potential of PSA as a PCa
biomarker remains unclear, PCa diagnosis and monitoring in
clinical practice relies heavily on PSA time evolution. Thus, we
also propose an equation that models the PSA dynamics within
the prostatic tissue. Under certain assumptions, the integration
of this equation leads to another one governing the dynamics of
serum PSA, whose solution can be directly interpreted by a
urologist. In addition, our PSA model may shed light on the role
of PSA as a biomarker for PCa, which is currently one of the
most contentious debates in the urology community. Our mod-
eling and simulation technology also addresses new challenges
posed by the tissue-scale problem. Traditional smaller-scale
modeling usually ignores the geometry of the host tissue. How-
ever, experimental evidence shows that tissue geometry deter-
mines sites of branching morphogenesis and plays a key role in
tissue growth (25) and, consequently, in cancer development.
Accounting for tissue geometry might be especially relevant in
PCa because prostate anatomy varies significantly from one
person to another, and PCa almost invariably develops in the
peripheral zone of the prostate, close to the prostatic capsule.
Thus, we propose the use of personalized anatomy in PCa
modeling. We use techniques of computational geometry to ex-
tract the precise anatomy of the prostate from medical images, as
well as the initial location and shape of the tumor for a patient.
Then, we perform fully 3D computer simulations that predict the
growth of the tumor, including a personalized simulation of PCa
evolution based on prostatic anatomy obtained from CT images.

Mathematical Model
Most continuous mathematical models of tumor growth developed
to date consider several tumor species and the host tissue as
different interacting phases that compete to obtain nutrients,
proliferate, and occupy more space so as to thrive in the tumoral
environment (26–30). Different malignant cell types are associ-
ated with different traits, such as whether the cells are alive or
not (viable, necrotic), the oxygen concentration in their local
environment (normoxic, hypoxic), and whether they exhibit a
certain phenotype or acquired behavior due to genetic alter-
ations (e.g., proliferative, invasive, resistance to a certain treat-
ment). The dynamics of each cellular species is usually modeled
with a diffusion−reaction equation. In some cases, convection is
also accounted for, as well as other types of migration, for ex-
ample, chemotaxis, that is, cell movement driven by gradients of
dissolved substances in the cell environment, or haptotaxis, that
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is, cell movement driven by gradients of substances attached to
the extracellular matrix. The dynamics of the nutrients, as well as
any other substance with a major role in cancer progression, is
included by means of additional diffusion−reaction equations.

Derivation of the Model. In the model presented herein, we use
the phase-field method to account for the healthy-to-tumoral
transition and the coupled dynamics of both the host tissue and
the cancerous cells, resulting in the diffusion−reaction model in
Eq. 1. The phase-field method was initially used in materials
science (31, 32) to model phase transition and equilibrium be-
tween phases, eliminating the need to track interfaces with ad-
ditional equations. It has been successfully used in other fields of
science and engineering (33–36), including biomedical engi-
neering and mathematical oncology (37). The key idea is to
define an order parameter ϕ, which is a measure of cellular
microstructure. This order parameter varies between 0 and 1.
Lower values represent healthy tissue, and higher values repre-
sent an aberrant cell organization, typical of PCa. The level set
ϕ= 0.5 implicitly defines the interface.
The growth of PCa is driven by a host of hormones, growth fac-

tors, and vital nutrients, but, for the sake of simplicity, we will assume
that tumor growth depends on a nutrient σ, mainly composed of
glucose. The model could also incorporate other substances, but
their regulatory effect on PCa growth can be interpreted equivalently
in terms of glucose. We will assume that convection has a negligible
contribution to the transport of glucose, a fact that is consistent with
experimental observations (38). This assumption leads to the diffu-
sion−reaction model in Eq. 2. The complete model reads as

∂ϕ
∂t

= λΔϕ−
1
τ

dFðϕÞ
dϕ

+ χσ −Aϕ [1]

∂σ
∂t

= eΔσ + s− δϕ− γσ. [2]

In Eq. 1, FðϕÞ is a double-well potential, a typical function within
the phase-field method, that makes possible the stable coexis-
tence of healthy and cancerous cells in the prostate, and takes on
the explicit form

FðϕÞ= 16ϕ2ð1−ϕÞ2. [3]

The last two terms in Eq. 1 account for nutrient-driven growth
and apoptosis (i.e., programmed cell death), respectively. We
assume that the growth rate depends linearly on the local nutri-
ent concentration (39) with the growth rate coefficient χ. We
further assume that apoptosis follows a linear relation with the
population of tumoral cells, A being its rate, as this is the natural
response in the prostatic tissue. In Eq. 2, s is the nutrient supply.
On the right-hand side of the equation, the third term represents
the consumption of nutrient by the tumoral cells, and the fourth
term accounts for the natural decay of nutrient.
The values for the model parameters can be obtained from

numerous studies (39–44) on nutrient transport within tissues
and tumor growth. We will always take τ= 0.01 y, δ= 2.75 g·L−1·d−1

and γ = 1,000 y−1. However, we consider several values for the growth
rate χ and the apoptosis rate A, ranging from χ = 400 L·g−1·y−1 to
χ = 700 L·g−1·y−1 and from A= 100 y−1 to A = 700 y−1, to
recreate the different morphologies of PCa growth during its first
stages. To make the problem computationally tractable, we take
λ≈ h2=T, where h is the characteristic length scale of the
computational mesh and T is the characteristic time scale, which
we have considered to be 1 y (see ref. 36 for rationale). In
accordance with other models of tumor growth, we will take e≈
10 λ to e≈ 100 λ, which manifests the experimental observation
that tumor dynamics is slower than nutrient dynamics.

We will introduce the nutrient supply in two different fashions
to simulate the experimental results regarding the tumor mor-
phology change. Beginning with a homogeneous supply with
a value s1 = 2.75 g·L−1·d−1, we will perform a series of simulations
that already show the shape instability that makes an initially
rounded tiny mass of aberrant cells grow with a fingered
pattern invading the surrounding tissue. Afterward, we will set
the previous value to be the base s0 upon which we will add a
mild heterogeneity c, which takes values between −0.2 g·L−1·d−1

and 0.2 g·L−1·d−1. In this case, the nutrient supply will be
s2 = s0 + c. Making use of an experimental image from ref. 45,
we add the previous value c according to the vascular network
depicted in the image, so that the nutrient supply will be
maximum, s= 2.95 g·L−1·d−1, near the blood vessels and
minimum, s= 2.55 g·L−1·d−1, at a point sufficiently far from
them (Fig. S2). Both s1 and s2 attempt to represent in vitro
conditions, but the latter aims at reproducing a more realistic
scenario. However, for the tissue-scale, personalized simulations,
we have considered a more appropriate constant value of
s3 = 2.70 g·L−1·d−1.
We introduce an additional equation that models PSA dy-

namics within the prostate tissue based on a measure for PSA:
the tissue PSA p, or serum PSA concentration leaked to the
bloodstream per unit volume of prostatic tissue. Hence, tissue
PSA will allow us to study the spatial distribution of the sources
of serum PSA concentration within the gland. Both healthy and
cancerous cells secrete PSA, but the latter generally produce
PSA at a much higher rate than healthy cells (4). We will denote
cancerous and healthy rates of PSA production per unit volume
of prostatic tissue by αc and αh, respectively. Similarly to other
substances within the prostate, such as the nutrient, we also as-
sume that the concentration of PSA p diffuses over the prostatic
tissue and decays naturally with a rate γp, following

∂p
∂t

= ηΔp+ αhð1−ϕÞ+ αcϕ− γpp. [4]

Considering that p represents the concentration of serum PSA
that leaks to the bloodstream per unit volume, we can define
serum PSA Ps as the integral of the tissue PSA p over the pros-
tatic tissue Ω, that is,

Ps =
Z
Ω
p dΩ. [5]

If we integrate Eq. 4 over the tissue region that we are simulating
and assume free-flux boundary conditions, we obtain the follow-
ing ordinary differential equation:

dPs

dt
= αhVh + αcVc − γpPs, [6]

where Vh and Vc denote, respectively, the volumes of healthy and
cancerous tissue. This equation has been already proposed in ref.
46 as a model for serum PSA dynamics. A similar, yet simplified,
version also appears in ref. 47. Refs. 48 and 49 provide data of
prostate gland volumes and age-related PSA scores, respectively
for a cohort of healthy men. We used these data to estimate αh
and, by means of Eq. 6, chose the values αh = 6.25 ng·mL−1·cm−3·y−1

and γp = 100 y−1, respectively, which correlated well, as can be seen
in Fig. S3. Indeed, this value of γp corresponds to a PSA half-life of
2.5 d, which is consistent with the values reported in refs. 4, 50, and
51. As PSA is produced in higher levels in cancerous cells, we de-
cided to take αc = 15αh, yet this proportion can be modified to
represent different real cases for each patient, also introducing dif-
ferent levels of PCa malignancy. Finally, as both cancerous cells and
a higher production of PSA are linked features in PCa, we will
assume that η= λ.
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Numerical Analysis and Simulations. The nonlinearity of the set of
equations that comprise the model and the complex geometry of
both the prostate and the initial tumor in the personalized (i.e.,
patient-specific) simulations demand very efficient methods of res-
olution in terms of memory and time of computation. To perform
the numerical simulations, we introduce algorithms based on the
concept of isogeometric analysis (IGA) (52, 53), an emergent and
cutting-edge technology that can be seen as a generalization of finite
element analysis. In IGA, the standard piecewise polynomials used
in the finite element method are replaced with richer functions used
in computer graphics and computational geometry, such as, for
example, B-splines (52, 53), nonuniform rational B-splines (NURBS)
(52–54), and T-splines (55). To speed up the calculations and create
a technology that facilitates obtaining solutions in a clinically rele-
vant time, we also advocate herein dynamic mesh adaptivity tech-
niques based on the concept of hierarchical refinement and
coarsening (56, 57), which enables the adaptation of the compu-
tational mesh dynamically throughout the simulation such that the
approximation functions are richer close to the tumor surface,
leading to dramatic savings of memory and computation time.
To extract geometric models of the prostate and the initial

tumor, several methods have been proposed to construct solid
anatomic NURBS models (58–60). Because the geometry of a
prostate is topologically equivalent to that of torus, we use a
parametric mapping method to deform a torus NURBS model to
match with the personalized prostate surface obtained from CT
data, as depicted in Fig. 1. Finally, we can hierarchically refine
the computational mesh that represents the anatomy of the
prostate to perform precise personalized simulations.
CT imaging is not sufficiently accurate to detect localized PCa,

so we resorted to the prior reported TRUS data to get the lo-
cation and estimated shape of the tumor. Hence, to introduce
the initial tumor in the model, we approximated its geometry as
an ellipsoid. In particular, we L2-projected (57) a 3D hyperbolic
tangent field onto the spline space that defines the anatomy of
the patient’s prostate to approximate the initial tumor with the
phase field, hence obtaining an ellipsoidal cancerous mass in
terms of the order parameter ϕ.

Results
Growth Patterns of Localized PCa. The morphology of PCa may
vary from spheroidal tumors to tubular or fingered structures
that invade the prostatic epithelium forming branches, as dem-
onstrated by clinical practice and in vitro experimental studies
involving cultures of prostate epithelial cells (61). Large-scale 2D
and 3D simulations of Eqs. 1 and 2 show that the model can
predict both growth types, as depicted in Fig. 2, and hence
qualitatively reproduces the associated clinical and experimental
results for both morphologies in refs. 61 and 62.
It has been suggested that this change in tumor morphology is

promoted by a series of chemical signals, also motivated by
specific mutations or epigenetic changes. However, a conclusive
explanation of the mechanisms of this shift in cancer growth
remains largely unknown. We have been able to activate the
shape instability using two mechanisms previously suggested in
the literature: first, increasing the parameters χ and A in Eq. 1,
which represents a more aggressive cancer with larger apoptosis
(40, 41), and, second, reducing the value of the nutrient supply s,
which may be understood as a situation in which the tumor is
surrounded by a harsh microenvironment (13, 62).
Spheroidal or ellipsoidal growth takes place in the very first

stages of PCa, when it is not excessively malignant. We conjec-
ture that, at these early stages, the tumor will feature low values
for the growth rate χ and the apoptosis rate A. In particular,
taking the aforementioned default values for all of the parame-
ters in the model, χ = 400 L·g−1·y−1 and A= 300 y−1, leads to a
spheroidal pattern of growth, as can be seen in Fig. 2 B and C.
Conversely, the fingered morphology corresponds to a more

advanced cancer in comparison with the spheroidal pattern, still
within the scope of localized PCa. This tubular growth can be
reproduced by our model with higher values of these two pa-
rameters, which must also be balanced; that is, they must take
similar values. To perform the simulations depicted in Fig. 2 E
and F, we have taken χ = 600 L·g−1·y−1 and A = 600 y−1, which
appear to yield a characteristic fingered morphology.
Interestingly, with this latter selection of parameters, we ini-

tially observe spheroidal growth. Should the tumor continue to
develop with this morphology, the nutrient concentration in its
central region would drop to values promoting hypoxia, starva-
tion, and necrosis (Fig. S4). However, once the tumor reaches a
volume that would lead to this inner harmful environment, the
shift toward the fingered morphology takes place. With this
growth pattern, the nutrient concentration within the tumor is
not critical any longer (Fig. S4). In particular, Fig. S5 shows this
evolution in a simple experimental scenario. Whether we con-
sider the homogeneous or the heterogeneous definition for the
nutrient supply, as long as s1 = s0, the shape instability will occur
at a similar time. However, the spatial distribution will be dif-
ferent, as the homogeneous nutrient supply produces symmet-
rical patterns of fingered growth and the introduction of a mild
heterogeneity promotes growth along the gradients of σ.
If we reduce the value of the nutrient supply, that is, s1 for the

homogeneous version, and s0 for the heterogeneous one, then
fingered growth may take place for a selection of χ and A that

Fig. 1. Extraction of the geometry of the prostate and the initial tumor
from CT data. The process to perform tissue-scale, patient-specific simula-
tions begins by extracting in vivo data of the patient from medical images,
such as his prostate anatomy, the tumor location and its shape. (A) Axial CT
image of the patient’s abdomen at the height of the middle prostatic gland.
(B) We generate a NURBS model of a torus, which is topologically identical to
a prostate. (C) Using computer graphics techniques, we map the torus to the
actual geometry of the patient’s prostate (posterior view). (D) Finally, we use
hierarchical refinement to generate the computational mesh (anterior view).
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would produce spheroidal growth otherwise. Furthermore, in the
range of values for χ and A typical of fingered growth, reducing s
accelerates the onset of the shape instability. We also observe
that a drop in the values of s leads to slower tumor growth,
whereas increasing the nutrient supply makes the tumor grow at
a faster rate. In the case of the fingered morphology, the higher
the value of s, the thicker the branches of the tumor (Fig. S6), as
the resulting higher concentrations of the nutrient within the
tissue support larger tumoral structures.

Personalized Simulation. The Austin Radiological Association
provided us with anonymized axial and coronal CT images of a
small cohort of patients with PCa, with and without contrast
(institutional review board approval and informed consent were
not required for this study). CT is a not a suitable technique for
the detection of localized PCa, due to its reduced contrast be-
tween healthy and cancerous tissue within this gland; however, it
is implemented in PCa protocols primarily to scan for metastasis
or as a resource to initially analyze the prostate anatomy and the
pelvic region with more detail than ultrasound.

We have chosen one of these patients to predict the evolution
of his prostatic tumor with our model and assess the perfor-
mance of the simulation on the basis of the current knowledge of
PCa evolution. This patient showed a small cancerous lesion of
0.03 cm3, previously detected by ultrasound, in the posterior part
of the peripheral zone at the middle region of the prostatic
gland. The volume of the prostate gland is considered constant
along the simulation and has a value of 71.67 cm3.
Fig. 3 represents the prediction of the growth of a prostatic

adenocarcinoma according to our model at tissue scale and on a

Fig. 2. Different growth morphologies adopted by initially spheroidal
prostatic tumors. Large-scale 2D and 3D simulations of our model reproduce
the spheroidal and fingered tumor growth patterns as seen in clinical
practice and experiments (λ= 5 ·10−11 cm2·s−1, e= 2 · 10−9 cm2·s−1). We have
used the heterogeneous nutrient supply s2 in these simulations to produce
more realistic patterns of growth. (A) In vitro 3D Matrigel culture of PC-3
cells growing with a spherical or rounded pattern (taken from ref. 61).
Large-scale (B) 2D and (C) 3D simulations of our model reproducing sphe-
roidal growth (χ = 400 L·g−1·y−1, A= 300 y−1). (D) In vitro 3D Matrigel culture
of RWPE-1 cells showing a fingered morphology (taken from ref. 61). Large-
scale (E) 2D and (F) 3D simulations of our model reproducing fingered
growth (χ =600 L·g−1·y−1, A= 600 y−1).

Fig. 3. Tissue-scale, patient-specific simulation of PCa growth. These images
show the predicted evolution of a prostatic tumor on the actual anatomy of
the prostate of an individual patient (λ= 0.24 mm2·d−1, e=7.5 mm2·d−1). The
axial section depicted is at z = 25.5 mm, with the origin of the coordinate z
set at the prostate base. A, anterior; P, posterior; L, patient’s left; R, patient’s
right. The position of this section has been shaded in dark blue in the anterior
and posterior views for t = 0. The initial tumor as identified in the patient’s CT
images is shown in A. B–F show the predicted growth according to our model
during 1 y, with each panel corresponding to an instant at t = 0.2 y (B), t = 0.4 y
(C), t = 0.6 y (D), t = 0.8 y (E), and t = 1.0 y (F).
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personalized basis; that is, we ran our model on the actual ge-
ometry of the prostate of the patient under consideration, after
extracting it and the initial tumoral volume from the CT output
files. This simulation represents tumor growth during 1 y, and, at
the end, the tumor volume is 2.66 cm3. Additionally, we have
produced Movies S1−S3 showing this predicted tumor growth
from an anterior view, a posterior view, and on an axial section at
the middle gland, respectively.
Initially, the tumor grows following an ellipsoidal pattern, but

it soon starts to develop preferential directions of growth, de-
fining finger-like structures. As the tumor expands within the
prostate, its geometry evolves toward a structure consisting of
thickened layers of cancerous tissue with fingered protrusions
along the main directions of growth. The axial section at the
midgland shows an evolution from the spheroidal pattern of
growth to the fingered morphology similar to that observed in
large-scale 2D and 3D simulations. The tumoral area in these
sections qualitatively matches some delineations of PCa made on
actual histopathologic specimens (63) in terms of size and shape.
As the delineations of ref. 63, Fig. 3 D−F shows axial sections
with disjoint cancerous regions. In the absence of the 3D rep-
resentation of both the prostate and the tumor, this situation
might be classified as a multifocal tumor rather than a single
tumor with fingered shape.

Tissue and Serum PSA. In our simulations, tissue PSA evolution is
obtained from Eq. 4, and serum PSA evolution is then obtained
from Eq. 6. The field of tissue PSA typically shows higher values
in the central areas of the tumor and lower values as we move
away from the lesion, as depicted in Fig. 4. Additionally, Movie
S4 shows how the p field evolves in time on an axial section of the
prostate at the midgland. The difference in the values of p in
healthy and cancerous tissue is due to the fact that the initial
tumor starts producing PSA at a higher rate from the first mo-
ment, and, as the tumor grows, higher tissue PSA values are
found in the areas occupied by cancerous cells and following the
preferential directions of growth. In general, tissue PSA values
do not differ greatly between healthy and tumoral tissue in our
2D and 3D experimental simulations. However, in the tissue-
scale, personalized simulations, the values of p in the tumor,
around 0.70 ng·mL−1·cm−3, were an average of 3 times higher
than in the healthy regions, around 0.24 ng·mL−1·cm−3, as seen
in Fig. 4 and Movie S4.
Taking lower values for αc, but greater than αh, the field of

tissue PSA becomes more homogeneous, meaning that the peak
values are lower too, due to the reduced difference between the
rates of production of PSA in healthy and cancerous cells. The
evolution of serum PSA is linked to the velocity of tumor growth.
The faster the tumor grows, the faster serum PSA increases,
because there are more tumoral cells, producing PSA at a higher
rate. Taking lower values for αc also induces lower PSA scores in
blood, and the PSA velocity is also slowed down.
We obtain the serum PSA by integrating the values of p over

the entire prostate anatomy. We lacked the biochemical data for
the patients on our cohort, so we had to estimate the baseline
serum PSA according to the tumor stage and the dynamics im-
posed by our model. Beginning with the minimum value of
4.0 ng·mL−1, beyond which a physician would recommend a
TRUS-guided biopsy, we observed a steep jump toward a higher
value in the first time steps, and then serum PSA followed ex-
ponential dynamics, as observed in clinical practice (4, 46, 47, 64).
Therefore, to produce more realistic simulations, we restarted
our model once this readjustment of serum PSA was completed,
correcting the initial condition for p so that it corresponded to
the value of serum PSA reached just after the rising branch.
Hence, serum PSA readjustment was eliminated, and it followed
exponential dynamics from the beginning of the simulations.
In particular, we have estimated an initial serum PSA level of

17.3 ng·mL−1, and, at the end of the simulation, PSA reaches
18.9 ng·mL−1. Fig. 4 shows the predicted serum PSA history for
our patient, taking into account all these considerations together
with the time history for tumor volume. Indeed, we have ob-
served a parallelism between both dynamics, as has been pre-
viously reported in literature (4, 46, 47).

Discussion
Predictive medicine and mathematical oncology offer a cutting-
edge approach to medical practice. These new trends may be the
key to organizing and broadening our understanding of some
critical diseases nowadays, such as PCa, by providing robust,
comprehensive theoretical models integrating all of the major
known and forthcoming results from research in biological, bio-
physical, medical, and biomedical sciences as well as engineering
and computational mechanics. In particular, the simple model
presented herein is able to reproduce the typical features of
prostatic adenocarcinoma growth during the first to midlate stages
of this disease as seen in experimental results and clinical practice.
We believe this might be the first step toward the derivation of a
complete model that, in the context of Fig. S1B, could be imple-
mented in clinical software for physicians to aid in the diagnosis of
the disease, the prediction of its evolution, assessment of alter-
native treatments, and management of follow-up.

Fig. 4. Tissue PSA distribution across the prostate gland at t = 0.5 y, tumor
volume evolution, and serum PSA history. Tissue PSA takes higher values on
the tumoral tissue because it is produced by cancerous cells at a higher rate.
(A) Anterior view of the prostate and tumor at t = 0.5 y with the location of
the axial sections depicted in this figure as black contours on the tumor.
(B) Predicted serum PSA and tumor volume time histories. (C−F) Evenly
spaced axial sections of the prostate representing the distribution of tissue PSA
p at time t = 0.5 y and height (C) z = 18.3 mm, (D) z = 21.6 mm, (E) z = 24.9 mm,
and (F) z = 28.2 mm, with the origin of the coordinate z set at the prostate
base. The white line is the contour of the tumor.
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Tissue-Scale, Personalized Simulations. We have carried out per-
sonalized simulations (Fig. 3) over the actual anatomy of a pa-
tient, introducing the tumor morphology at the time of diagnosis
by extracting both geometries from CT output data. We observed
that, if we changed the position of the tumor within the prostate
but conserved its original shape, the tumoral pattern of growth
was different. These results suggest that cancer growth mor-
phology is dependent on the particular geometry of the tumor as
well as on the specific anatomy of the prostate. Consequently,
this observation supports the major importance of considering
personalized anatomies for both the prostate and the tumor in
order to accurately predict tumor growth. Introducing the par-
ticular anatomy of a patient in the model is crucial for predicting
the potential risks that PCa growth may entail, such as prostatic
capsule penetration, invasion of nearby tissues, or tumoral ex-
pansion to the different parts of the prostate, hence triggering
symptoms such as impotence or irregularities in urination and
ejaculation (4). The possibility of predicting when these risks or
symptoms will appear would be a major advance in watchful
waiting and active surveillance. Hence, the optimization of these
two clinical options to manage the disease, including the mod-
eling and simulation of PCa, would decrease the overtreatment
of patients, in many instances leaving them relieved or cured
after the delivery of the corresponding treatment, with minimum
side effects and a good quality of life. The inclusion of the in-
dividual’s prostate and tumor geometries is essential to ade-
quately follow up the progression of the disease in terms of
tumor volume and location and PSA production, both before
and after the delivery of a certain treatment. Predicting the ac-
tual tumor shape and volume within the anatomy of the prostate
of a given patient would enable optimization of surgery and ra-
diation therapy planning and delivery, obtaining high precision
and efficiency rates.
The simulation presented in Fig. 3 shows an important and

typical feature of PCa, namely, why some biopsies are falsely
negative or apparently yield a lower tumoral stage. As the tumor
grows, it develops finger-like structures after the morphology
shift that, in a 3D, personalized scenario, evolve not only as
branches but also as thickened layers of cancerous cells. Like-
wise, there are other layers and regions of healthy tissue sur-
rounding and in between these cancerous layers, which are
required to provide an adequate distribution of the nutrient.
When a biopsy is performed following the current standards, a
number of tissue samples are obtained in prescribed positions
trying to map the whole prostatic gland. However, the tumor
might be out of the reach of the needle used in the biopsy,
resulting in a false negative, or it may target one of these tumoral
thickened layers orthogonally, what may produce a low per-
centage of tumor in the tissue sample, leading to further biopsies
or/and an erroneous stage of PCa that may compromise the
patient quality of life and survival. One might conclude that the
pathology analysis of a prostatic tumor biopsy would always
provide a lower bound to the severity of the cancer, creating a
dangerous predictive scenario.
Ideally, the combination of multiparametric MRI and com-

putational modeling and simulation of PCa may eliminate the
biopsy of the prostate during PCa diagnosis and staging, as
proposed in Fig. S1, hence dropping an invasive procedure with
questionable outcomes and under continuous debate in the
medical community. In fact, the combination of T2-weighted
MRI, diffusion-weighted MRI, dynamic contrast-enhanced
MRI, and, optionally, magnetic resonance spectroscopic imaging
has already been able to detect and stage PCa with high sensi-
tivity and specificity (23, 24), comparable to those of current
standard biopsies. As a result, multiparametric MRI is now in-
creasingly regarded as a future alternative to biopsy or, at least, a
technique to be fused to TRUS-guided biopsy to optimize this
procedure (65).

Modeling and Simulation of PSA Kinetics. We have also included an
equation to model the behavior of PSA by introducing a mea-
sure, tissue PSA or the serum PSA concentration leaked to the
bloodstream per unit volume of prostate tissue (Eq. 4). Once
integrated over the computational domain that represents the
anatomy of the prostate, serum PSA dynamics may be followed
as shown in Eq. 6. The tissue PSA allows us to analyze where
PSA is being leaked to the bloodstream and the amount of this
PCa biomarker discharged by each type of tissue, as depicted in
Fig. 4. Furthermore, the results presented in Fig. 4 also show that
our model is able to compute a realistic evolution for serum
PSA, similar to those seen in the literature (47). Tissue PSA links
serum PSA to tumor burden in our model, hence establishing
a theoretical basis for the link between both dynamics. A
corroboration of this connection arose when we estimated the
baseline serum PSA for our simulation. For a given selection of
parameters in Eqs. 1 and 4, and the initial tumoral volume, the
initial serum PSA was intrinsically determined. Therefore, if we
began the simulation with a different serum PSA value, a steep
branch would appear until it was readjusted. Additionally, it can
be seen in Fig. 4 that the evolution of the tumoral volume and
that of serum PSA follow similar dynamics. This behavior is
typically seen in low- and intermediate-risk tumors (4, 47).
Nonetheless, the connection between tumor growth and serum
PSA dynamics is an ongoing major debate in the urologic com-
munity. Regular screening of PCa relies on PSA tests, but, even
though most prostatic adenocarcinomas grow showing a paral-
lelism between the tumor volume and PSA levels in blood, it is
known that there exists a certain degree of divergence between
the dynamics of these two variables; this may even reach the limit
of patients with low PSA and high tumoral masses in their
prostates, or vice versa. Advanced and metastatic PCa may also
exhibit almost no connection between serum PSA and tumor
burden. However, PSA screening has greatly improved the early
detection and treatment of PCa, leading to higher rates of in-
cidence and an improved efficiency in its management world-
wide. Therefore, our opinion is that this biomarker should be
implemented in a mathematical model of PCa, as it permits di-
rect connection with existing clinical data.

Future Work. There is still much room for improvement in PCa
modeling and simulation. First of all, several cancerous species
could be considered, for instance, normoxic, hypoxic, and ne-
crotic, so as to better reproduce the shape instability. The model
could also account for other substances that are known to have a
role in PCa, such as oxygen or testosterone. Haptotaxis could
play a role in more aggressive PCa, and the invasiveness of PCa
could be better reproduced if the diffusive term in Eq. 1 is de-
fined in a more sophisticated fashion. Another aspect of interest
is the study of mechanical stress on tumor growth, which has
been studied experimentally (66, 67) and computationally (68).
This could be particularly important in PCa, because the prostate
is subjected to significant mechanical confinement. PSA mod-
eling in the medical community may be worth revisiting to find
further connections between tumor shape and volume and PSA
production, hence improving the definition of the rates αh and αc,
or suggesting a refinement of Eq. 4. The selection of the pa-
rameters in Eq. 4 could also be personalized by using data of a
particular patient. Men over age 50 have their PSA monitored
routinely. Methods of inversion, Bayesian statistics, or machine
learning could be used to determine the parameters from these
data. We would also want to explore the modeling and simula-
tion of the effects of radiation therapy in PCa with our model,
following previous studies carried out for low-grade gliomas (69)
and glioblastoma multiforme (70). To perform full predictive
tissue-scale, personalized simulations of PCa growth and assess
their performance, it is mandatory to have some basic data on
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each patient over a large period, namely, high-quality medical
images, biochemical data, and clinical reports.

Conclusion
The work presented herein is just an initial example of the po-
tential that the computational modeling and simulation of cancer
may entail. Introducing a comprehensive theoretical model and
the technology for its simulation in medical practice for PCa
would provide a personalized (i.e., patient-specific) diagnosis
and treatment. It might also provide a basis for noninvasive di-
agnosis, avoiding biopsies, and a more precise diagnosis, thus
eliminating unwarranted invasive treatments. Mathematical

oncology could also rationalize and organize our current and
future knowledge of PCa, guiding the future interdisciplinary re-
search efforts in the fields of biology, medical science, biophysics,
and biomedical and computational engineering, so as to enrich and
further validate the model for its use in actual clinical practice.
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