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Abstract

A distinguishing feature of amoeboid motion is that the migrating cell undergoes large deforma-

tions, caused by the emergence and retraction of actin-rich protrusions, called pseudopods. Here,

we propose a cell motility model that represents pseudopod dynamics, as well as its interaction

with membrane signaling molecules. The model accounts for internal and external forces, such

as protrusion, contraction, adhesion, surface tension, or those arising from cell-obstacle contacts.

By coupling the membrane and cytosol interactions we are able to reproduce a realistic picture of

amoeboid motion. The model results are in quantitative agreement with experiments and show how

cells may take advantage of the geometry of their microenvironment to migrate more efficiently.
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I. INTRODUCTION

A fascinating feature of eukaryotic cells is their ability to move. Cellular motility controls

crucial biological processes, for example, cellular nourishment, wound healing, tissue growth,

pathogen removal, or metastatic disease [1, 2]. Cell migration through biological tissues is

an exceedingly complex process, which is usually understood as a continuous cycle of five

interdependent steps, namely, (1) protrusion and elongation of the leading edge driven by

actin polymerization; (2) cell-matrix interaction and formation of focal contacts via trans-

membrane adhesion proteins; (3) extracellular matrix degradation by cell surface proteases;

(4) actomyosin contraction generated by active myosin II bound to actin filaments; and (5)

detachment of the trailing edge and slow glide forward [3].

This paper deals with pseudopodial amoeboid motion of a single cell, a mode of migra-

tion where locomotion is achieved by rapidly protruding and retracting extensions generally

called pseudopods. This kind of motion is often studied using simplified systems such as the

planar movement of Dictyostelium discoideum. Dictyostelium is an elongated and extraor-

dinarily deformable cell that translocates via rapidly alternating cycles of morphological

expansion and contraction [see Fig. 1(a)]. These cells produce dynamic actin-rich protru-

sions at their leading edge, the aforementioned pseudopods, which locally drive the edge of

the cell outwards. Our philosophy follows the so-called pseudopod-centered view, in which

external signals are not necessary for pseudopod formation [4]. The motion of Dictyostelium

is the result of an ordered sequence of expansion and retraction steps. Each expansion step

corresponds to the formation of a new pseudopod, which may occur by splitting an existing

protrusion or by generating one de novo [5] [see Fig. 1(a)]. The way in which the growth

of new pseudopods is orchestrated leads to the so-called persistent motion. Persistence is

the cell’s tendency to keep moving in the same direction for a period of time [6]. Classical

experiments [6, 7] show that persistent cells are able to colonize farther environments than

cells that move in uncorrelated directions (random motion without persistence). This could

have implications in many biological processes.

Computational modeling of cell motility has advanced significantly over the last few years

[8, 9]. There has been abundant work modeling the membrane mechanics and its signaling

activity [10–13]. There are also models that describe in detail the cytosol dynamics [14–

16], though most of them have focused on mesenchymal motility, in which cells extend
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FIG. 1. (Color online) Conceptual and computational model for amoeboid motion. (a) Expansion

and retraction of pseudopods. The dashed rectangles show experimental images taken from [4].

(b) Computational model for amoeboid motion. (c) Derivative of the function F with respect to

F-actin concentration, depending on the activator concentration. The inset shows the function

F for a=1. (d) Probability distributions for growth time, interval, and location of pseudopods,

derived from [5].

a stationary lamellipodium at the leading edge. However, coupled models including the

cytosolic machinery and membrane dynamics have received little attention, even though

they are critical to understand cell migration [17]. Here, we show that modeling the coupled

interaction of the membrane signaling activity and the cytosol dynamics allows to understand

the mechanisms that control pseudopod formation and, thus, amoeboid motion. Our theory

predicts realistic myosin and actin distributions within the cell and reproduces experimental

laws of spreading. The coupled model allows to study how external forces exerted on the

membrane (e.g., those caused by rigid obstacles) modify the cytosol dynamics. Our model
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also explains how cells may exploit particular geometric features of their environment to

find more efficient migration strategies.

II. THE MODEL

We use a phase-field φ(x, t) to track the cell’s location. The cytosolic machinery is

described by three fields, namely, ρf (x, t), ρg(x, t), and ρm(x, t), that represent the den-

sity of actin filaments (F-actin), globular actin subunits (G-actin), and molecular motors

myosin II, respectively. We simplify the membrane signaling dynamics by using a single

membrane-located activator a(x, t) that triggers the growth of new pseudopods. In our

model, pseudopods push the membrane outwards and are localized regions of F-actin in the

form of protrusive structures. Myosin, in contrast, produces contractile forces in the cell

rear [see Fig. 1(b)]. The actin filament network is treated as a viscous fluid [15], whose

velocity u(x, t) is governed by a Stokes-type equation [18]. Full details of our model and

the parameter values used in the simulations may be found in Appendix A.

Cell motion. The cell’s position is given by the phase field φ, which transitions smoothly

from 0 (outside the cell) to 1 (inside the cell). The cell’s membrane is defined by the level set

φ = 1/2 and moves driven by the velocity of the actin network u. The evolution equation

for φ is
∂φ

∂t
+ u · ∇φ = R, (1)

where R = Γ (ε∇2φ−G′(φ)/ε+ cε|∇φ|) [19]. Here, ε > 0 is a small constant and R ∼ ε

maintains a hyperbolic tangent profile between φ = 0 and φ = 1. The constant Γ > 0 sets

the strength of the R, while c = −∇ · (∇φ/|∇φ|) denotes the curvature of the membrane,

and G(φ) = 18φ2(1−φ)2 is a double-well potential with minima at φ = 0 and φ = 1 [14, 15].

Eq. (1) may be also thought of as a stabilized level set equation.

Myosin dynamics. We assume that myosin is transported by the actin network velocity

and diffuses throughout the cell. Since the cell’s position changes with time, the classical

approach would be to solve an equation on a moving domain. By using the phase-field

method, we can solve (on a fixed domain) the equivalent equation

∂(φρm)

∂t
+∇ · (φρmu) = ∇ · [Dm(ρf )φ∇ρm] . (2)

The key idea is to introduce the cell’s position marker φ in the time derivative, as well as in
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the convection and diffusion operators [20]. In Eq. (2), the function Dm(ρf ) = Dmax/(1 +

K2ρ2
f ), where Dmax and K are constants, produces an effective advection that transports

myosin away from protruding F-actin regions, thereby concentrating myosin to the cell’s

rear and provoking contraction of the back end of the cell.

Activator dynamics. The growth of pseudopods is controlled by membrane signaling

molecules that trigger actin nucleation, for example, PIP3 [21]. In our model, this is rep-

resented by the concentration of a generic substance that we call activator. We make use

again of the phase-field method to localize the activator dynamics to the membrane without

resorting to surface partial differential equations. We propose the equation

∂(δma)

∂t
+∇ · (δmau) =∇ · (Daδm∇a)

−raδma+ baδmSa, (3)

where δm = exp[−ϕ(φ− 0.5)2] is a smooth marker of the membrane and the parameter ϕ

defines its thickness. In Eq. (3), Da is the diffusion constant, ra is the rate of natural decay,

and Sa = (amax−a)
∑

i δx,iδt,i is a source term that drives a to amax at certain time intervals

and spatial points of the membrane, at a rate controlled by the parameter ba. The peaks

of activator concentration produced by Sa will trigger the growth of new pseudopods. Each

peak is associated to an integer index i, such that the function δt,i localizes the growth of

new peaks to a certain periods of time, and its spatial location is given by the function δx,i,

which is non-zero in a small area of the membrane. To establish the spatial location of a new

peak [si+1 in Fig. 1(d)], we resort to the probability distribution plotted in Fig. 1(d), which

depends on the position of the two previous peaks (si−1 and si). According to Fig. 1(d),

the probability function will be PPE ·PR/L on the side of the membrane where si−1 is placed,

and PPE · Phop on the other side (this bias is a consequence of persistent motion). Once a

peak emerges, the next one will arise after the end of the interval time, and each peak will

be active during the growth time. Since the interval and the growth time are two different

random variables, whose distributions are given in Fig. 1(d), there may be none, one, or

more than one active peaks at the same time. All probability functions shown in Fig. 1(d)

have been derived from experimental data [5]. More details about δt,i and δx,i can be found

in Appendix A.

Actin dynamics. Actin undergoes phase transformations by alternating between a glob-

ular (G-actin) and a filamentous (F-actin) state. In addition, F-actin may be in the form
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of a protrusive or a passive structure. Protrusive structures are identified with pseudopods

and their growth is triggered by the activator. We make use of the phase-field theory [22]

to propose a new model of actin dynamics based on the free energy functional

F [ρf , ρg]=

∫
Ω

φ

[
ε2
f

2
|∇ρf |2+

ε2
g

2
|∇ρg|2+F (ρf , ρg, a)

]
dΩ

+
α

2
(N0 −N [ρf , ρg])

2 , (4)

where N [ρf , ρg] =
∫

Ω
φ(ρf + ρg)dΩ represents the amount of actin within the cell and N0

is the value of N at the initial time. Thus, the last term in Eq. (4) is a penalty term

that keeps N constant in time, where α determines its strength. The parameters εf and

εg represent diffusive length scales of ρf and ρg, respectively. The function F controls the

phase transitions in terms of the activator concentration, and can be expressed as

F (ρf , ρg, a) = 10(ρf − 1.5)2(ρf − 0.5)2 + 7.5(ρg − 1.0)2 +

I(a)(ρf − 1.5)2[ρf + β(a)I(a)], (5)

where I(a) = a2−2 exp(−4a) and β(a) = 0.5[1−(a−1.8)2/1.82]. F is a convex function of ρg

with a unique minimum at ρg = 1, which represents the stable density of G-actin. However,

F may be a convex or non-convex function of ρf depending on the value of a. When a is

small, F is a double well potential [see Fig. 1(c), inset]. The wells correspond to two stable

densities of F-actin, one associated to protrusive structures (higher density, ρf = 1.5) and

another to passive networks (lower density, ρf ≈ 0.5). Within the range of small values of a,

the well representing protrusive structures is energetically favored for larger values of a [e.g.,

case a = 1.0 in Fig. 1(c)]. The opposite happens for smaller values of a [see Fig. 1(c), case

a = 0]. If a is sufficiently large [e.g., case a = 1.5 in Fig. 1(c)], F becomes a convex function

with only one local minimum associated to protrusive structures. Using the free energy

functional in Eq. (4), we can utilize the framework of classical non-conserved dynamics to

derive the evolution equations

∂(φρf )

∂t
+∇ · (φρfu) = −Γf

δF
δρf

(6)

∂(φρg)

∂t
+∇ · (φρgu) = −Γg

δF
δρg

(7)

where Γf and Γg are constants, and δF/δρf and δF/δρg are the variational derivatives of

the energy with respect to F-actin and G-actin concentration, respectively, which may be
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written as

δF
δρf

= −ε2
f∇ · (φ∇ρf ) + φ

∂F

∂ρf
+ αφ

(
N −N0

)
, (8)

δF
δρg

= −ε2
g∇ · (φ∇ρg) + φ

∂F

∂ρg
+ αφ

(
N −N0

)
. (9)

Actin flow. The actin filament network is treated as a viscous flow governed by a Stokes-

type equation augmented with forces specific to amoeboid motion. We propose the equation

∇ · (σ + σmyo + σprot) + Fadh + Fmem + Fwall = 0, (10)

where σ = φ[µ(∇u + ∇uT ) + λ∇ · uI] is the classical stress tensor of a Newtonian fluid

localized to the cell’s interior. Here, µ and λ are the viscosity coefficients, and I is the identity

tensor. The isotropic contractile stress generated by myosin is given by σmyo = φρmηm(ρm)I,

where ηm(ρm) is a function producing greater stress where myosin concentration is higher.

The stress caused by F-actin protrusions is normal to the membrane and takes the form

σprot = −φρfηf (ρf )δf∇φ ⊗ ∇φ. The quantity δf is simply a marker of the location of

rigid obstacles that annihilates σprot in the vicinity of barriers, and ηf (ρf ) controls the

protrusive stress such that it can only arise at areas with high density of F-actin. The

adhesion force Fadh = −ςu represents a continuous drag force proportional to filament

velocity, with ς being the friction coefficient. Fmem accounts for the forces exerted by the

cell’s membrane. We neglect bending forces [23] and consider only the force induced by

surface tension. This force is proportional to the membrane’s curvature and is oriented in

the direction orthogonal to the membrane. Using the phase-field theory, surface tension

forces can be expressed as Fmem = −γ(ε∇2φ − G′(φ)/ε)∇φ, where γ is the surface tension

coefficient. Finally, Fwall represents the contact forces exerted on the cell by a rigid obstacle.

We express this force as Fwall = Frep + Ffr, where Frep and Ffr are, respectively, repulsion

and friction forces [24, 25]. Repulsion forces are orthogonal to the solid obstacle, while

friction forces are tangential. Repulsive forces may be expressed as Frep = ∇ · σrep, where

σrep = φηrepδ
rep
wall∇φ⊗∇φ. The parameter ηrep controls the strength of repulsive forces, the

smooth function δrepwall localizes these forces to the vicinity of the wall, and the term ∇φ⊗∇φ

naturally makes them vanish away from the membrane. Friction forces may be modeled as

Ffr = −ςfrδfrt, where t is the unit tangent vector to the wall pointing in the direction of

the cell’s velocity. Ffr is non-zero only when a pseudopod is pushing the wall [26], which is

accomplished with the localizer δfr (see Appendix A). ςfr is a function of the cell velocity
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given by ςfr(ucell) = ςMfr [1 − exp(−Kuucell)] [27, 28], where ςMfr and Ku are constants, and

ucell is the velocity of the center of mass of the cell. More details of our model may be found

in Appendix A.

Our model presents several differences and advantages in comparison with other models.

The first one is the description of the actin dynamics through the functional F . Here, the

actin behavior is similar to the wave-pinning model [15, 29], but including a dependence on

the activator. Since we introduce this dependence in the energy functional, the relationship

between actin and the activator in the evolution equations follows directly from our varia-

tional derivation. Most amoeboid motility models have focused on the membrane dynamics

[10, 11] and have simulated the cell as an evolving surface [12, 13] resorting to surface PDEs,

a moving mesh, and even employing more than one mesh [30]. Most of them do not account

for cytosolic components explicitly. However, our model considers both membrane and cy-

tosolic compounds by using a single fixed mesh, thanks to the phase-field framework. Other

feature of our model is the cell-obstacle interaction that we simply introduce through the

force Fwall. Previous approaches to do this include the introduction of a repulsive potential

[31], but this complicates the coupling with other components of the model. Other authors

have imposed a vanishing velocity condition on the nodes where the cell is in contact with

the obstacle [32], but this introduces a discrete component in the model and our goal was to

derive a continuous model. Finally, the coupling between the cytosol and the membrane al-

lows to represent different behaviors of the intracellular compounds that can not be captured

by uncoupled models. As we will show in following sections, when the cell is subjected to

compressive forces (e.g., those exerted by the walls of a narrow channel) the F-actin network

extends over the entire cytosol rather than over localized areas. The coupling is essential to

capture this process.

From a computational point of view, we have to solve Eqs. (1)–(3),(6),(7), and (10) on a

single fixed mesh. We consider a two-dimensional system and use Isogeometric Analysis [33],

a spline-based finite element method that features higher-order accuracy and robustness in

nonlinear problems. We use quadratic square elements of size 0.2 µm and a time step of 0.05

s. Further refinement did not produce noticeable changes in the solutions.
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FIG. 2. (Color online) Free movement snapshots. F-actin and activator distributions at t = 844,

847, 852, and 857 s (myosin and velocity distributions are represented inside boxes). Insets 2 and 4

show experimental images taken from [4]; see insets 1 and 2 in Fig. 1(a) for completeness. (a) t =

844 s. The velocity distribution is zoomed in. (b) t = 847 s. (c) t = 852 s. The activator distribution

is zoomed in. (d) t = 857 s. Description of pseudopod size and angle between pseudopods.

III. FREE MOVEMENT RESULTS

We initially focus on the free movement of Dictyostelium on a planar surface. We per-

formed 10 independent simulations, each corresponding to the motion of one cell for 15

minutes. The initial condition defines a circular cell of radius 8 µm with no activator on the

membrane, uniform ρf , ρg, and ρm densities, zero velocity, and a random location for the

first pseudopod. We first focus on small-scale features of the model, such as the cytosol or

activator dynamics within the cell. Figure 2 shows the cell shape at four different times:

844, 847, 852, and 857 s (solid and dashed black lines in the main panels indicate the cell’s

membrane position at previous times). We represent the F-actin distribution within the cell

and the activator concentration on the membrane, as well as the velocity and myosin distri-

bution inside boxes. At t = 844 s, a new activator peak has just appeared and triggers the

formation of a new pseudopod (let us call it si), which will grow until t= 857 s. At that time,

the pseudopod is no longer extending, but beginning its retraction. At t = 847 s, near the
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initial pseudopod, there is a crescent activator peak that will cause the formation of a new

pseudopod (si+1) by splitting the current one few seconds later [see Figs. 2(c)-(d)]. We can

observe that myosin is concentrated at the rear of the cell, producing the retraction of the

membrane [see Fig. 2(a), zoom 1], and the F-actin velocity is able to reproduce retrograde

flow in regions of growing lamellipodia. Finally, we compare experimental images taken from

[4] to our results [see Fig. 1 (insets 1 and 2) and Fig. 2 (insets 2 and 4)], and we conclude

that qualitative features such as cell shape, F-actin distribution, or the general dynamic

behavior exhibit great similarities. The videos in [34] show a highly-dynamic motion with

striking resemblance to experiments of amoeboid movement.

Figures 3(a)-(b) illustrate how our model reproduces larger-scale features and emerging

behavior, such as persistent motion. Figure 3(a) shows the predicted tracks of 10 cells

compared with experimental results (see the inset). The cells tracks seem to maintain their

direction for certain periods of time, suggesting persistent motion. For a more detailed

quantitative comparison, we make use of the mean squared displacement (MSD) [6, 7], a

widely used measure of the spatial extent of random motion. More specifically, MSD(t) =

(
∑nc

i=1 |xi(t) − xi(0)|2)/nc, where nc is the number of cells and xi(t) is the position of the

cell’s centroid at time t. As shown in Fig. 3(b), the time evolution of the MSD exhibits

a quasi-quadratic behavior for early times and a linear growth for late times, as expected

for persistent motion. The plot shows quantitative agreement with the experiment [5].

Following the quantitative analysis, the pseudopod size and the angle between consecutive

pseudopods have been measured according to description in Fig. 2(d), and have been plotted

in Fig. 3(c), left. The results are quite similar to experimental data [5, 35] (note that we

have not distinguished between splitting or de novo pseudopods) and to other Dictyostelium

motility models results [13, 30]. This resemblance could seem redundant, since we have

introduced the pseudopod formation probability in the model, but it should be noticed that

only the initial location of the activator patch is given. Though the correlation between the

activator and pseudopod locations is high (as observed in [13]), the pseudopod growth is led

by the actin dynamics. Therefore, the shape, size, and angle between pseudopods naturally

arise in our model. We have also plotted the angle between three consecutive pseudopods

in Fig. 3(c), middle top. Here, the top-left and the bottom-right quadrants are denser than

the two others, a typical feature of persistent motion [5, 35] (the most frequent sequence is

a turn left after a turn right, and vice versa). We have finally analyzed the cell’s instant
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FIG. 3. (Color online) Free movement results analysis. (a) Comparison of cells tracks with ex-

periment [5]. Some snapshots of the cell shape corresponding to the red track are zoomed in.

(b) Comparison of the computational Mean Squared Displacement with experiment [5]. (c) His-

tograms of: pseudopod size, angle between two correlative pseudopods, and instant velocity. ∆θi

angle plotted against ∆θi+1 angle. Temporal evolution of instant velocity. (d) Activator, F-actin,

G-actin and myosin distributions along the cell membrane corresponding to the snapshots shown

in Fig. 2 (from left to right and top to bottom, t = 844, 847, 852, and 857 s).

velocity. The average (over time and cell population) takes the value V̄ = 10.53 µm/min in

the simulations and 10.4 µm/min in the experiment [5]. A histogram and a 5 minute-long

graph with the temporal evolution of the instant velocity can be found in Fig. 3(c), right.

Both of them display great similarities to their respective plots in [35, 36], showing the

presence of fluctuations around the average velocity, on the time-scale of minutes. In the
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temporal plot, each peak corresponds to the extension of a pseudopod, causing also peaks in

the cell’s area and perimeter plots (not shown). Figure 3(d) shows the temporal evolution

of the main variables along the membrane, corresponding to the snapshots plotted in Fig. 2.

The aforementioned relationship between F-actin and activator can be observed, as well as

the decrease of myosin II in areas of pseudopod extension. Note the growth of the membrane

and the fluctuation of G-actin around values of 1.0, depending on the global state of the cell

and the location of high density patches of F-actin.

IV. CONFINED MOVEMENT RESULTS

Let us now focus on confined movement. We compare our model results with the exper-

iments in [36, 37], which study cell motility in microchannels [see Figs. 4(b), bottom and

4(d)]. The experiments analyze how the microchannel width modifies the ability of cells to

spread. In narrow channels, wall friction slows down the cell, whereas in wider channels

the cell is unable to contact both sides, reducing its forward protrusion [24] and acquiring

a more random phenotype. There seems to be an optimal channel width that maximizes

spreading.

To get representative results, we performed 8 simulations of 15 minutes for each channel

width (6, 8, 10, 12, 14, and 16 µm). Figures 4(a)–(c) show several snapshots of F-actin,

activator, velocity and myosin distributions for widths of 6, 10, and 16 µm (cell’s membrane

positions at previous times are displayed with black lines), which can be compared with

the experiments in Figs. 4(b), bottom and 4(d). In the case of narrow channels, the F-

actin network spreads all over the cell, pushing the walls and causing friction on a large

surface. For intermediate widths, the sides of the cell contact with a smaller area, which

combined with a wider front, results in faster polymerization [24], and thus, faster motion.

Comparing with F-actin distributions in experiments [Fig. 4(b), bottom] we can see how

the F-actin network is in contact with both walls of the channel and is widespread across

the cell, resulting in a characteristic rectangular shape [37]. However, our model is unable

to reproduce some detailed dynamics experimentally observed in [24, 37], e.g., the presence

of two kinds of F-actin networks. One of them, called free network, produces protrusions

at the leading edge in a highly dynamic fashion. The other one is a denser network that

polymerizes perpendicular to the channel wall, remains stationary with respect to the wall,
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FIG. 4. (Color online) Cell motility in microchannels. F-actin and activator distributions (top of

each panel), and myosin and velocity distributions (bottom of each panel) at different times. (a)

6 µm width channel at t = 245 and 255 s. (b) 10 µm width channel at t = 176, 184, and 192 s.

At the bottom: cell shape, F-actin, and myosin experimental images in a 10 µm width channel,

taken from [37]. (c) 16 µm width channel at t = 254, 258, and 262 s. (d) Experimental images for

different widths, taken from [36].

and is called adherent network. As shown in Fig. 4(b), our model represents just one type of

dense F-actin network: both the free and the adherent networks are associated to ρf = 1.5.

To distinguish the two networks, we should modify the functional F [see Eq. (4)] to include

another stable F-actin density that accounts for the adherent network. In addition, [24, 37]

suggest that confinement produces a mechanical interaction between the actin networks.

We have modeled the cell-wall contact through the membrane-located force Fwall, but we
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FIG. 5. (Color online) Results analysis of cell motility in microchannels. (a) Temporal evolution of

instant x-velocity (in the channel’s direction) for 6, 10, and 16 µm width channels. (b) Histograms

of instant x-velocity for 6 (top subpanel), 10 (mid subpanel), and 16 µm (bottom subpanel) width

channels. (c) Cell speed, persistence time, and parameter D, depending on channel width.

have not incorporated the feedback between confinement and actin dynamics, which could

lead to a stationary adherent network. Finally, [37] describes an alternating zigzag motion

at the cell front, while the back advances synchronously. This behavior is predicted by

our model, mainly caused by the pseudopod extension probability [see Fig. 1(d)], which is

annihilated in regions where the membrane is touching the wall. This constraint is also set

in the activator-inhibitor system of [37], whose activator outcome displays similarities with

the dynamics of our activator. A mild alternating motion as well as qualitatively realistic

distributions of F-actin and myosin can be observed in the video included in [34].

We have measured the instant velocity and the persistence time for the different widths.

Figure 5 shows how the speed increases as the channel becomes wider, reaching a maximum

value that is close to the free-motion velocity. The persistence time decreases as the width

increases, showing an obvious trend to random free motion for wider channels. These two

features of confined movement can be observed in Fig. 5(a): for wide channels, the instant

velocity reaches greater values, and the x-velocity (in the channel’s direction) sign changes
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more frequently, which means a decrease in the persistence time. The same conclusion can

be drawn from Fig. 5(b) (note that initial conditions in the simulations imply x-velocity>0);

the wider the channel is, the more symmetric the x-velocity histogram will be. The average

velocity (V̄ ) and the persistence time (P ) for the different widths have been plotted in

Fig. 5(c). Here, the parameter D = V̄ 2P is known to measure the cells ability to spread

and disseminate [6, 38] (see Appendix A). It may be observed how D reaches a maximum

for a channel width of ∼12 µm. This suggests that cells may exploit the geometry of their

microenvironment to find effective migration strategies.

V. CONCLUSION

In conclusion, our results suggest that coupling intracellular and membrane dynamics

is crucial to understand amoeboid motion. By including the main cytosolic compounds

involved in cell motion, we are able to represent the dynamics inside the cell when amoeboid

motility is taking place. The use of the phase-field method permits a simple treatment of

phase transformations, avoids the use of moving meshes, which is especially important to

model membrane dynamics, and simplifies the numerics. The model shows quantitative

agreement with experiments of free and confined amoeboid motion. We believe that our

model opens new opportunities to study also mesenchymal and chemotactic migration. The

model can be extended in several ways. For example, replacing rigid obstacles with flexible

fibers may provide insights to understand cell motion in the extracellular matrix.
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Appendix A

1. Initial Conditions and Parameters used in the Simulations

The parameter values used in the simulations are shown in Table I. Some of them

have been taken from the literature, representing experimental values. Others, which are

introduced by the model, have been estimated.

In the case of free movement, we start with a circular cell or radius 8 µm, and uniform

distributions for the different fields: ρm = 1.05 µm−2, a = 0.0 µm−2, ρf = 0.51 µm−2, ρg =

1.1 µm−2, and u = 0.0 µm s−1. Note that the total amount of actin N0 and the total amount

of myosin
∫

Ω
φρm dΩ are kept constant throughout the simulations. Since we need the

location of the two previous pseudopods to define the probability distribution that provides

δx,i [Fig. 1(d)], at the initial time we give two random locations for these points.

In the case of microchannel simulations, we start with a rectangular cell, adjusted to

the channel width, with a suitable length so as to keep a physiological area. The initial

distribution of activator and the initial velocity vanish again. The fields ρm, ρf , and ρg are

initialized using different (uniform) values depending on the channel width, such that N0

and
∫

Ω
φρm dΩ are kept constant for all widths. In particular, we have adjusted the initial

values of ρm and ρf to get N0 = 430 and
∫

Ω
φρm dΩ = 250, by setting ρg = 1.1 µm−2 at the

beginning of the simulation.

2. Governing Equations

Throughout this work, we have employed markers to localize the membrane, the channel

wall, and the activator sources, among others. These markers are defined using a smoothed

out Heaviside function that we callH. The functionH is a hyperbolic tangent approximation

of the actual Heaviside function H, which is defined as

H(x) =

0, x ≤ 0

1, x > 0
(A1)

We employ the smooth function H rather than H in our model to improve the performance

of our numerical algorithms.
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TABLE I. Parameters used in the Simulations

Symbol Description Value Data source

Γ Lagrange multiplier 0.52 µm s−1 a[15]

ε Phase-field interfacial length scale 2 µm [15]

Dmax Myosin diffusion scale 4.16 µm2s−1 a[39]

K Decay rate of mysosin diffusion 1.55 µm2 Estimated

Da Diffusion coefficient of activator 0.195 µm2s−1 Estimated

ra Decay rate of activator 0.325 s−1 Estimated

ba Production rate of activator 7.8 s−1 Estimated

ϕ Scaling of membrane marker width 25 [40]

amax Saturation of activator 1.4 µm−2 Estimated

rp Radius of activator source 1 µm Estimated

εf Diffusive length scale of F-actin 0.707 µm Estimated

εg Diffusive length scale of G-actin 3.16 µm Estimated

α Penalty parameter for actin conservation 0.06 µm−2 [40]

Γf F-actin mobility 0.52 s−1 Estimated

Γg G-actin mobility 0.52 s−1 Estimated

µ Dynamic viscosity coefficient 1500 pN s µm−1 [41]

λ Bulk viscosity coefficient -500 pN s µm−1 [41]

η̄m Strength of contractile forces 22.1 pN µm a[18]

A Range of contractile forces 0.4117 Estimated

η̄f Strength of protrusive forces 1.22 · 104 pN µm3 Estimated

B Range of protrusive forces 0.07659 Estimated

ς Substrate friction coefficient 0.7 pN s µm−3 a[39]

γ Surface tension coefficient 78 pN [42]

ηrep Strength of repulsive forces 4550 pN µm Estimated

ςMfr Friction coefficient 0.895 pN µm−2 Estimated

Ku Scaling of frictional cell speed 30 s µm−1 Estimated

∆Ti Growth time of pseudopods See Fig. 1(d) [5]

∆ti Time interval between pseudopods See Fig. 1(d) [5]

a Order-of-magnitude from 17



The spatial localizers of the activator source δx,i are defined as δx,i = H(rp−di(x)), where

di represents the distance to the center of the activator source i and rp its approximate

radius. The center of the new activator source is given by a random variable defined by

a probability distribution similar to that shown in Fig. 1(d), right. In the plot, the bar’s

length is proportional to the probability of pseudopod extension per unit length of cell’s

perimeter. This probability distribution depends on the location of the two previous sources

(each source moves together with the membrane) as we have explained in the main text.

Therefore, this probability function changes over time. Note that the cell-obstacle contact

impedes pseudopod formation [37], thus modifying the probability distribution [PPE(x) = 0

if d(x) < 1.3, where d(x) is the distance from point x to the closest obstacle].

To define the temporal localizers of the function Sa [see Eq. (3) in the main text], we

consider a set of times {t0,1, t0,2, . . . }, such that t0,i is the time at which the activator source

that creates pseudopod i is switched on. We take t0,1 = 0 and t0,i = t0,i−1 + ∆ti, where ∆ti

is called interval, and represents the time interval between the extension of two consecutive

pseudopods. The interval is a random variable whose distribution is given on the top middle

of Fig. 1(d). Finally, the temporal localizers can be defined as δt,i = H(∆Ti − (t − t0,i)),

where ∆Ti is the growth time of pseudopod i, which is another random variable with the

distribution shown in the top left plot of Fig. 1(d).

In summary, each time a new pseudopod emerges, we need to pick three values corre-

sponding to the previous distributions: one corresponds to the location of the center of

the activator source, another represents the time during which the source will be active

(∆Ti), and the remaining one defines the time at which the next pseudopod will arise (∆ti).

Note that the probability distributions plotted in Fig. 1(d) are precise approximations of

statistical experimental data taken from [5].

To achieve accurate results using Eq. (3) we need to employ a steep marker δm [20], as

well as a fine computational mesh. The need for a very steep marker δm and a very fine mesh

may be by-passed by replacing u with u? in Eq. (3). The field u? is obtained by defining

a constant extension of the velocity u at the level set φ = 0.5 in the direction orthogonal

to the membrane, that can be approximated by u?(x) = u(xA), where xA is the closest

point to x such that φ(xA) = 0.5. We found that this procedure significantly speeds up the

computations, introducing negligible errors.

The functions ηm(ρm) and ηf (ρf ) controlling the contractile and protrusive stresses in
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Eq. (10) are expressed as

ηm(ρm) = Aηm + (1− A)ηmH(ρm − 0.9), (A2)

ηf (ρf ) = Bηf + (1−B)ηfH(ρf − 1.0), (A3)

where A, B, ηm and ηf are constants.

The markers employed in Eq. (10) can be expressed as

δf = H(d(x)− 1.6) (A4)

δrepwall = H(0.7−d?(x)) (A5)

δfr = δmemδ
fr
wallδp (A6)

δmem = H(0.45− |φ− 1/2|) (A7)

δfrwall = H(1.0−d?(x)) (A8)

δp = H(ρf − 1.0) (A9)

where d(x) is the distance from point x to the closest obstacle. To determine d?(x), we

make use of the same idea employed for u?, i.e., d?(x) = d(xA). The field d? only plays a

role in a small neighborhood of the membrane and represents the net distance between the

obstacle and the membrane. For example, δrepwall is active (δrepwall ∼ 1) when the distance of

the membrane to the wall is lower than 0.7 µm. The marker δfr corresponds to the friction

force, which arises in the cell membrane (defined by δmem) when a pseudopod (marked by

δp in the model) is pushing the wall (δfrwall).

3. Mean Squared Displacement and Diffusion Coefficient D

The mean squared displacement, defined as MSD(t) = (
∑nc

i=1 |xi(t) − xi(0)|2)/nc, where

nc is the number of cells and xi(t) is the position of the cell’s centroid at time t, is a

common measure of the spatial extent of random motion. For persistent random motion,

the MSD can be fitted by MSD(t) = 2ndD[t− P (1− exp(−t/P ))], where nd is the number

of dimensions, P is the persistence time, and D is the augmented diffusion constant [6]. D

is the parameter controlling the ability of cells to spread and disseminate that we use for

the quantitative study of migration in microchannels in the main text. If we perform the

velocity autocovariance analysis [6], applied to the general case of nd dimensions, we get

D =
V̄ 2P

nd

, (A10)
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where V̄ is the average cell speed.

For free planar movement, nd = 2 [this case corresponds to Fig. 3(b), where our data can

be adjusted to the previous formula MSD(t), resulting D = 233.3 µm2/min]. However, for

confined motility inside channels, the movement of the cells is restricted by the walls. If the

width of the microchannel is small enough, we can consider that there is only one direction

of dispersal, and we can take nd = 1. Therefore, in Fig. 5(c), P and V̄ are obtained directly

from our simulations, and the diffusion coefficient D is calculated using Eq. (A10), with

nd = 1.
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