Phase-field description of brittle fracture in plates and shells

Josef Kiendl**, Marreddy Ambati®, Laura De Lorenzis?®, Hector Gomez®, Alessandro Reali®4

“Institute of Applied Mechanics — TU Braunschweig,
Bienroder Weg 87, 38106 Braunschweig, Germany.
bDepartamento de Métodos Matemdticos, Universidade da Coruna,
Campus de A Coruiia, 15071, A Coruiia, Spain.
¢Dipartimento di Ingegneria Civile ed Architettura, Universita degli Studi di Pavia, Via Ferrata 3, 27100 Pavia, Italy.
ATechnische Universitdit Miinchen — Institute for Advanced Study, Lichtenbergstrafie 2a, 85748 Garching, Germany.

Abstract

We present an approach for phase-field modeling of fracture in thin structures like plates and shells,
where the kinematics are defined by midsurface variables. Accordingly, the phase field is defined
as a two-dimensional field on the midsurface of the structure. In this work, we consider brittle
fracture with a split of the elastic energy into tensile and compressive terms and a Kirchhoff-Love
shell model for structural analysis. We show that for a correct description of fracture, the variation
of strains through the shell thickness has to be considered and the split into tensile and compressive
elastic energy has to be computed at various points through the thickness. This prohibits the typical
separation of the elastic energy into membrane and bending terms. Instead, the energy is split into
tension and compression terms, each depending on both membrane and bending deformations.
For numerical analysis, we employ isogeometric discretizations and a rotation-free Kirchhoff-Love
shell formulation. In several numerical examples we show the applicability of the approach and

detailed comparisons with 3D solid simulations confirm its accuracy and efficiency.
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1. Introduction

The prediction of fracture in thin structures is a crucial aspect for the safety assessment of
engineering structures in various industries, e.g., in the automotive (car bodies), aeronautic (air-
craft fuselages), and marine (ship hulls, tanks, and vessels) industries, or renewable energies (wind
turbines). A special challenge in such applications is the correct combination of fracture mod-
els, which are mostly derived in a solid mechanics framework, with structural models like plates
and shells, which have a special load-carrying behavior and are based on dimensionally-reduced

kinematics.
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Numerical models for fracture mechanics can be divided into two main categories, namely
discrete and smeared approaches. In the discrete approaches, cracks are modeled as discontinuities,
either between elements, e.g., through the so-called cohesive zone modeling approach, or within
elements by enriching the displacement field using the partition of unity method. A particular form
of this approach is the extended finite element method (XFEM), which has also been applied to
shells and plates in several works [1-4]. The main drawbacks of discrete approaches are the need
for ad hoc criteria for crack nucleation and propagation as well as the difficulty to model complex
fracture patterns like crack branching and merging. An interesting alternative can be found in the
phase-field approach to fracture. Here, the discrete crack is approximated by a crack phase field,
or simply phase field, which smoothens the discontinuity over a small region. This approach can
describe crack initiation and propagation as well as crack branching and merging without ad hoc
criteria and with no need for crack tracking techniques. Phase-field models for brittle fracture
are mostly derived from the work of Bourdin et al. [5, 6] who regularized the variational form
of Griffith’s theory presented by Francfort and Marigo [7]. Over the last years, this approach
has gained a lot of interest with applications to both static and dynamic brittle fracture [8—13],
and it has also been extended to ductile fracture [14-21]. However, there have been only few
approaches combining phase-field modeling of fracture with structural models such as plates and
shells. Ulmer et. al [22] presented an approach for brittle fracture in thin plates and shells, where
shells are considered as a combination of a plate and a standard membrane. Accordingly, the elastic
energy is divided into bending and membrane contributions. The membrane part is additively
decomposed into tensile and compressive terms, while no split on the bending term is performed,
such that the tensile membrane energy and the full bending energy contribute to crack evolution
and are degraded in the fracture zone. Amiri et al. [23] also modeled fracture in thin shells with
the phase-field approach, however, without any split in tension and compression terms, making the
model limited to applications with pure tension states of stress. More recently, Areias et al. [24]
presented an approach for finite-strain plates and shells, where they assume two independent phase
fields, corresponding to the lower and upper face of the shell, in order to correctly account for the
fracture behavior in bending. Ambati et al. [25] have applied phase-field modeling of fracture in a
solid-shell approach, where no shell-specific considerations for fracture are needed, but volumetric
discretization and analysis of both the shell structure and the phase field are necessary.

Isogeometric analysis (IGA) was introduced by Hughes et al. [26] as a new paradigm to bridge
the gap between computer-aided design (CAD) and analysis, by adopting Non-Uniform Rational
B-Splines (NURBS), which are used for geometry representation in CAD, as basis functions for
analysis. In the past ten years, IGA has gained enormous interest in nearly all fields of compu-
tational mechanics and, in particular, it has led to many new developments in shell analysis. The

smoothness of the basis functions allows for efficient implementations of rotation-free Kirchhoft-



Love shell models [27-33], but there are also several developments in the context of Reissner-
Mindlin shells [34—37] and solid-shells [38—42], as well as novel approaches such as blended
shells [43], hierarchic shells [44], and rotation-free shear deformable shells [45]. Furthermore,
IGA was applied successfully to phase-field modeling of fracture. Borden et al. [46] exploited the
higher continuity of isogeometric basis functions for proposing a higher-order phase-field model,
which was combined by Hesch et al. [47] with hierarchical refinement. Schillinger et al. [48]
proposed isogeometric collocation methods for phase-field modeling of fracture, and Ambati et al.
[25] employed isogeometric discretizations for fracture in solid-shells.

In this paper, we pursue an approach for phase-field modeling of fracture in plates and shells,
where the structure is described by a surface model and fracture is described by a single phase
field. We briefly review the existing approaches [22, 23] and make some observations, which, in
our opinion, do not permit a correct description of fracture in pure bending or combined bend-
ing and membrane stress states. Based on these observations, we propose a new approach which
leads to a correct description of the mechanical response in such situations. A key aspect is that
fracture is driven by the tensile part of the total strains, which are composed by membrane and
bending contributions and vary through the shell thickness. For numerical analysis we employ
isogeometric discretizations for both the structure and the phase field. We use a Kirchhoff-Love
shell formulation [27], however, the proposed approach is general and can be applied to other shell
and plate formulations as well. We test our approach on several numerical examples representing
different strain states for shell and plate structures. In all examples, we perform detailed compar-
isons to results obtained with three-dimensional solid simulations, which confirm the accuracy of

the proposed approach.

2. Formulation

We first give a brief review of the employed phase-field model of brittle fracture in a solid
mechanics setting, and then show how this can be projected consistently to dimensionally reduced

continua such as plates and shells.

2.1. Phase-field model of brittle fracture with tension-compression split

The model is based on the variational formulation of brittle fracture by Francfort and Marigo
[7], where the entire process of crack initiation, propagation and branching is governed by the

minimization problem of the free energy functional

E(s,F):fwe(s)dQ+Gcde, (1)
Q r



where Y. (€) is the elastic strain energy density, € the strain tensor, and G. the material fracture
toughness. Q represents the problem domain and I' C Q is an internal discontinuity boundary, i.e.,

the set of crack surfaces. Assuming isotropic linear elasticity, the strain energy density is given by

1
Ye(8) = 4 (tr(8))* + ptr(e?), 2

with A and u as the Lamé constants. In the regularized formulation proposed by Bourdin et al. [5]

the fracture energy is approximated by

f G.dl ~ f Gc(l(l—s)%fowsﬁ)dg: f (s, Vs)dQ. (3)
r Q 4¢y Q

The phase-field variable s takes on values between 1, corresponding to intact material, and O,
corresponding to fully cracked material. The length parameter £, > 0 controls the width of the
transition zone from cracked to uncracked material. If £, tends towards zero, the phase-field ap-
proximation converges to Griffith’s linear elastic fracture mechanics solution, featuring a discrete
fracture surface, in the I'-convergence sense [6].

For a realistic modeling of fracture, where material cracks in tension but not in compression,
the strain tensor is additively decomposed in tensile and compressive contributions, £ and &,

respectively
e=¢g"+¢. %)

Following Miehe et al. [10], this split is obtained through a spectral decomposition of the strain

tensor

3

S:Zsinim,-, (5)

i=1

where ¢; and n; are the eigenvalues and eigenvectors of &, i.e., the principal strains and principal
directions, respectively. €* and & are then defined through the positive and negative principal

strains
3
g = Z<8i>ini ® ny, (6)
i=1

with (x)* = (x = |x])/2.

With this split of the strain tensor, we obtain the split of the strain energy density and stress



tensor into tensile and compressive terms as follows

1
vi = 5 A’ +ptr((e)7). (7)
o = Atr(e))y* I +2u g™, (8)

with I being the identity tensor. In the cracking zone, the tensile terms are degraded through a

degradation function g(s) and we obtain

Ye(&,5) = g(s) Y, (&) + ¥, (8), )
o(g,s) = g(s)ot (&) + o (&), (10)

where we adopt the degradation function proposed by [10]

g) =1 -m s+, (1)

with n << 1 as a residual stiffness factor, added for avoiding ill-posedness in the fully cracked

state. Finally, the regularized energy functional is given by

Ey(g,5) = f (8() Y7 (&) + ¥, (&) + ¥(s, Vs)) dQ, (12)
Q
and we can derive the strong form of the governing equations as

divo =0, (13)

(4 bo(1 —mys

e + 1) s—4LAs = 1. (14)

In order to ensure irreversibility of the crack evolution, a history variable representing the max-
imum positive elastic strain energy density obtained up to a time (or pseudo-time) instant 7 is
introduced [10]
H(r) := max ¥, (7). (15)
7e[0,1]

This history variable then substitutes ¢ in the strong form equation (14)

(4 Lo(1 —mH N

e 1) s—46As = 1. (16)

Such approaches, which use a split of the strain tensor in order to avoid material cracking in
compression, are often referred to as anisotropic fracture models. Accordingly, we speak of an

isotropic fracture model if the entire strain energy is degraded, corresponding to a material behavior



that fractures equally in tension and compression. This distinction is a key aspect in the approaches

for shells and plates discussed in the following section.

2.2. Phase-field modeling of fracture for plates and shells

In dimensionally reduced structural models, such as shells and plates, the 3D continuum is
usually described by its midsurface and a thickness 4. Deformation is typically described in terms
of (pseudo-)strain variables like membrane strains, curvature changes, and possibly transverse
shear strains, which are all assumed to be constant through the thickness. The crucial question
is then how a fracture model like the one shown above can be described consistently in terms of
such kinematic variables. In the following exposition, we consider a Kirchhoff-Love shell model,
which means that transverse shear strains are neglected, including Kirchhoff plates as a special
case. However, the proposed approach could be applied analogously to shear deformable Reissner-
Mindlin plates and shells.

2.2.1. Shell kinematics

We first briefly introduce the shell kinematics and then show how it can be linked to the phase-
field approach to fracture presented above. For the shell governing equations, a curvilinear coordi-
nate system is used with @', §* as the natural coordinates of the midsurface, and 6° as the thickness
coordinate, with —4/2 < 6° < h/2. Index notation is used where it is more convenient, with Greek
indices taking on values {1, 2} and with implied summation over repeated indices.

A point on the shell midsurface is described by r, and the covariant tangent base vectors are
obtained as a, = r,, with (-) , = d(-)/06". Contravariant base vectors a® are defined by a%-ag = 6‘5,
with 0 as the Kronecker delta, and we further define a unit normal vector by

ay = 1A (17
la; X a|
With the tangent and normal vectors we can compute the first and second fundamental forms of

the surface as

Qop = Q¢ - Ag , (18)

baﬁ =ayp-asz, (19)

where a,z are known as the metric coeflicients and b, as the curvature coeflicients of the midsur-
face.

For computing strain variables, we distinguish between the deformed and undeformed config-
urations, where all variables related to the undeformed configuration are indicated by (). With

the metric and curvature coefficients of the deformed and undeformed configurations, we obtain



membrane strains £” = &), 4" ® & and curvature changes k = k.5 a” ® & with

1 o
Sglﬁ = E(aaﬁ - awﬁ) 5 (20)

[

Kop = baﬁ - baﬁ . (21)

The membrane strains describe the in-plane or membrane deformation of the midsurface, while the

m
Eop Kag

o4

a

Figure 1: Separation of in-plane strains into membrane and bending contributions.

curvature changes describe the deformation due to bending. We note that (20)-(21) are naturally
nonlinear strain measures accounting for large deformations. In this paper, we restrict ourselves to
small deformation problems and use linearized versions of (20)-(21), which are presented in detail
in Appendix A. It is crucial to note that both £” and « induce the same type of strain components,

and the total strain € at any point in the shell is given by
@) =¢&"+6«. (22)

Figure 1 illustrates equation (22), showing that the split into membrane and bending strains simply
represents a split of £(6%) into a constant and a symmetrically linear part. Although it is common
in shell analysis to keep this split also for stress and energy expressions, we will show that this is
not appropriate in the context of fracture.

Since the shell model is based on the plane stress assumption, the stress tensor and strain energy

density are given by

/12
o= /ltr(8)1+2ﬂ8— mtr(b‘)l, (23)
1 A2
e = 5/1 (tr(8))” + ptr(s?) — m (tr(8))?, (24)

where & is the 2D tensor given by (22) and the A%-terms represent the plane stress condition £33 = 0.



Expressed in terms of the shell kinematic variables, (23)-(24) read as

2

2
ﬂﬁpﬂu@hﬂ%ﬂ+@4ﬂ+¢@—Eaifsmﬂ+¢@L (25)
u

Y (6°) = %/l (tr (8’" + 93K))2 +putr ((s’” + 93K)2) - 2(%22#) (tr (8’" + 93K))2 . (26)

Note that (25)-(26) describe the stresses and strains energy density at arbitrary points in the three-
dimensional shell continuum. The stresses are typically integrated through the thickness, yielding

membrane forces n and bending moments m as stress resultants

h/2

- f o df’. @7
—h/2
h/2

m= o Pde’. (28)
—h/2

In a standard linear elastic model, this integration can be performed analytically and the stress

resultants are obtained as
2

2(1+2p)

2
m tr(K) I) . (30)

n=nh (/l tr(e™) I +2u " - tr(g™) I) , (29)

3

mzﬁ

(/l tr(e) I + 2uk —
We furthermore introduce the strain energy surface density ¥,, describing the strain energy per
unit area of the midsurface, as
h/2
Y = W(67)d6. (€29)
~h/2
Assuming linear elasticity, the integral (31) could also be computed analytically and might be

separated into membrane and bending terms ¥, = W7'(g") + ‘I’f (k) with

m _ 1 my\2 my\2 2 my\2
Y =nh (E/l(tr(s )+ ptr((e™)7) — CYFI IR A+ 2 (tr(g™)) ), (32)
n (1 :
b _ " | 2 N _ o~ 2
¥, = T (2/l(tr(l<)) + ptr(k”) T+ 20 (tr(x)) ) (33)

It is also worth noting that (33) represents the strain energy surface density of a Kirchhoff plate.



2.2.2. Previous approaches

Approaches to combine shell models with a phase-field description of fracture using a single
phase field were presented so far in [22, 23]. In the following, we briefly review these approaches
and make some observations, which motivate the new approach proposed in the next section.

In [23], the full strain energy density (31) is degraded by the phase field, i.e., fracture will
appear equally in tension and compression, which apparently does not correctly describe the nature
of fracture. In the context of curved shells it is also worth noting that even under purely tensile
loading compressive strains typically appear as a consequence of bending.

In [22], some split into tension and compression is performed. The elastic energy is first sep-
arated into membrane and bending terms as shown in (32)-(33), where the membrane part V7' is
split into ¥”'" and W'~ by a spectral decomposition of &”, while no split is performed on the bend-
ing energy W’. For the modeling of fracture, the tensile membrane energy and the full bending
energy are degraded, ¥, = g(s)(¥"* +¥°) + ¥, In our opinion, this approach has two significant
shortcomings, which we briefly discuss in the following. The first problem lies in the separation of
the elastic energy in membrane and bending terms, which also implies a separation of the strains
into membrane and bending strains. Such an approach neglects the fact that £” and « contribute to
the same total strain &, see Equation (22) and Figure 1. This can lead to severe problems especially
in cases of combined bending and compression. In such cases, the compressive membrane strains
actually reduce the tensile strains induced by bending, reducing therefore the tendency of the ma-

terial to crack. In Figure 2, we sketch a case of combined bending and compression where the

8(1[3 81(?[3 K(LB
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Figure 2: Combined bending and compression. Strain distribution over the thickness.

total strains are compressive everywhere. The separation of the strain energy into membrane and
bending contributions, however, does not take this effect into account and might lead to fracture
although the strains are purely compressive. The second problem of this approach is in the fact
that the bending energy is degraded entirely without any split into tension and compression terms.
Considering a case of pure bending (typically a plate), such an approach needs to be considered
as an isotropic fracture model. Inspired by these two findings, we propose a new approach in the

following.



2.3. Proposed approach

In this section, we present an approach for phase-field modeling of fracture for plates and shells
with a focus on the correct modeling of the tension-compression split under bending and on the
interaction of membrane and bending strains. For a correct prediction of fracture, we consider
the total strain (22) and split it into tension and compression. Here it is important to note that the

spectral decomposition of & cannot be obtained by spectral decompositions of €” and «
0% = (6" + k) % "% + 6. (34)

As a consequence, we cannot consider a split into tensile and compressive terms and into mem-
brane and bending terms at the same time. It is also worth noting that splitting « into positive and
negative terms would have no physical meaning in the sense of a tension-compression split, since
both positive and negative k,p induce tension as well as compression. Accordingly, we split the
stress tensor and strain energy density into tensile and compressive terms based on the split of the

total strain including both membrane and bending contributions

2

A m 3 +
ETIEET (tr(e™ + 8 Kx))* 1, (35)

TH(O°) = At + rY* T +2u (6" + 6°k)

/12

- Z(TZIU) ((tr (8m + 03K)>i)2 . (36)

-t o ol o)

The effective stress resultants are obtained by integrating (35) through the thickness and degrading
the tensile stresses

/2

n(e", K, s) = (g(s) (", k) + 0 (", K)) dE’, (37)
—h/2
h/2

m(g", K, s) = (g(s) (", k) + T (", Kk)) 6°d6°. (38)
—h/2

Clearly, the decomposition and split operations in (35) depend on the thickness coordinate 6° lead-
ing to a nonlinear distribution of o in thickness direction. Accordingly, the integrals in (37)-(38)
cannot be obtained analytically. Instead, numerical integration is used, where in each integration
point the total strain is computed as sum of membrane and bending contributions (22) and then
&* and o* are computed as in a standard 2D plane stress problem, independently of the specific
shell formulation. A remarkable advantage of this approach is that we can describe a varying
degradation of stresses through the thickness although the phase field s, and with it the degradation
function g(s), are assumed as constant over the thickness. This allows for a very good approxi-
mation of the three-dimensional fracture problem with shell models and a single two-dimensional

phase field, as will be also demonstrated in the numerical tests section.

10



For the energy functional, we also split the strain energy surface density (31) in tension and
compression terms by integrating (36) through the thickness
h/2

wi= | ygiEae. (39)
—h/2

With (39), the regularized energy functional of the shell can be written as
Eq (" K, s) = f(g(s) Y (", k) + ¥, (", k) + (s, Vs)) dA, (40)
A

where A denotes the midsurface and ¥, is obtained by integrating ¢, through the thickness

h/2 1
¥, (s,Vs) = Ws(s,V$)de® = hG.|—(1 — 5)* + £|Vs|*]. 41)
—h/2 450
2.4. Variational formulation and implementation
For the solution of the coupled problem, we employ a staggered approach [10, 13], where in
each step, we first solve the momentum equation and then the phase-field equation. The weak form

of the phase-field equation is

440(1 -
f M_,_l sgdA+4[§st~V§dA:f§dA. 42)
4 hG, A A

where A indicates the shell midsurface and 5 is a test function. Here, the history variable is defined

as the maximum of the positive strain energy surface density (39)
H(1) = m[%x] W (7). (43)
T€(0,1

The weak form of the momentum equation is given by the virtual work expression of a Kirchhoft-
Love shell

f(é:n+7<:m)dA:fﬂ~fdA, (44)
A A

where f is the external load, & is the test function, interpreted as virtual displacement, and &,k
are the corresponding virtual strain variables. For details on the linearization and discretization
of (44), yielding the stiffness matrix and residual vector, we refer to [27, 31]. Due to the second
derivatives inherent in the curvatures, C'-continuity of the basis function is required. We employ
NURBS-based isogeometric analysis, which provides the necessary continuity and allows for a
rotation-free shell formulation [27], and, in the sense of an isoparametric approach, we use the

same discretization also for the phase field. Integration through the thickness for computing the

11



stress resultants (37)-(38), as well as ¥} (39), is performed numerically, where the strains at inte-
gration points outside the midsurface are obtained by the midsurface variables through Equation
(22). It is worth noting that the numerical thickness integration does not imply discretization in

thickness direction, and no additional evaluation of shape functions is necessary.

3. Numerical tests

In this section we test the proposed formulation on various numerical examples. In order to
carefully investigate the different possible strain states in a shell, we first study some in-plane
loading problem, then a series of plate problems, and finally curved shell problems. A focus in all
the tests is to show that the shell fracture model appropriately approximates the 3D fracture model.
For this purpose we perform all tests also with 3D computations, where we use isogeometric solid
elements. We note that we have performed these computations also with solid-shell elements [25],
in order to avoid possible locking effects, but due to the fine meshes employed there is practically
no difference between the solid and solid-shell results. In all tests, quadratic NURBS are used
(both for shells and solids) and for the integration through the shell thickness, we use three Gauss

points, such that it is comparable to the solid computations.

i o

[¢———>»«——>| Thickness=0.1 |[¢«——>l«——>|
5 5 5 5
(a) (b)

Figure 3: Single-edge notched (a) tension test and (b) shear test. Geometry and boundary conditions, dimensions in
mm.

3.1. Single-edge notched specimen tension and shear test

We start with an example in a purely membrane state of stress, which is a well studied problem
in the phase-field literature, see e.g. [5, 10, 11, 13, 25]. It consists of a square plate containing
a straight horizontal notch, located at mid-height of the left edge. The geometric properties and
boundary conditions of the specimen are shown in Figure 3. A vertical/horizontal displacement
is applied to all points of the top edge for the tensile/shear test case. The material parameters are
chosen as E = 10 x 108 N/mm?, v = 0.3, G. = 2 N/mm and ¢, = 0.05 mm. For both tests, the

12
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Figure 4: Single-edge notched specimen tension/shear test. (a-b) Crack phase field at initial and completely fractured
states. (b-c) Comparison between results obtained with Kirchhoff-Love (KL) shell and solid elements.

spatial discretization contains 15,000 elements and is refined a priori in the region where crack
propagation is expected. The simulations are performed under displacement control with fixed
displacement increments. Figure 4 shows the phase field at two instants, before crack initiation
and after complete fracture for both the shell and the solid computations, with the colors indicat-
ing the value of the phase field ranging between 1 (blue) and O (red). The resulting crack paths
coincide with those obtained in previous investigations [10, 11, 13, 25]. The corresponding load-
displacement curves in Figure 5 confirm also quantitatively the very good agreement of the shell

results with those obtained by 3D simulations.

3.2. Simply supported beam

In the following, we study a series of plate problems, starting with a rectangular plate simply
supported on the two short sides and subjected to a constant load, see Figure 6. The material pa-
rameters are as follows: E = 10 x 10° N/mm?, v = 0, G, = 3 N/mm, and ¢, = 0.01lmm. Due to the
setup and v = 0, this example represents a simple beam problem where the solution is constant in
the width direction. The spatial discretization of the model comprises 7395 elements, with refine-

ment in the central region where the crack is expected to form. The simulation is performed with

13
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Figure 5: Single-edge notched specimen tension/shear test. Load-displacement curves. Comparison between KL shell
and solid elements.

P.
A v i " ’ ¥
< 7
Simply supported

Length (L)=8 Width (W)=2 Thickness (t) = 0.01

Figure 6: Simply supported beam modeled as a plate, with transverse loading. Problem setup, dimensions in mm.

arc-length control until failure and the transverse displacement u, of a point (A) located at the cen-
ter of the beam is monitored at every load step. Figure 7 illustrates the transverse deflection field
and the phase field, on the undeformed and deformed configurations, at the final loading stage.
A very good agreement of the shell and solid results can be observed. In order to demonstrate
the importance of considering the split into tensile and compressive strains even in the case of
pure bending, we also perform the shell computations with the approach from [22], i.e., degrading
the full bending energy, see 2.2.2. As discussed above, we believe that such an approach corre-
sponds to an isotropic fracture model. Accordingly, we will indicate the corresponding results as
“isotropic KL plate model” (plate instead of shell because this investigation refers to pure bend-
ing). Although the results obtained with such a model look qualitatively very similar to the ones
obtained with the proposed approach, large quantitative differences can be observed when looking
at the force-displacement curves, see Figure 8. For the sake of comparison we also perform 3D

solid computations with the isotropic fracture model which confirm the previously made interpre-
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Solid KL shell

(c)

Figure 7: Simply supported beam with transverse loading. (a) Transverse deflection field and (b)-(c) crack phase
field at final fracture stage, on the undeformed and the deformed configurations. Comparison between shell and solid
solutions.

tation. As can be seen in the resulting load-displacement curves, the isotropic approaches lead to a
significant underestimation of the critical load for a plate in bending. In order to confirm that this
phenomenon is not limited to this simple example, we will perform this comparison in all the pure
bending examples in the following.

In a next step, we use this simple example to demonstrate another crucial aspect, namely the
importance of considering the additive nature of membrane and bending strains (22) when per-
forming the split into tensile and compressive strains. For this purpose we add a compressive
in-plane load, which is chosen such that the total strains are compressive everywhere, see Figure
9. This approach of “prestressing” for reducing tensile stresses is typically applied in the design
of concrete structures. We perform the calculation both with our proposed formulation as well as
with a shell formulation where tension and bending energy are degraded separately [22]. As can
be seen in Figure 10, the separation into bending and membrane energy, indicated by “KL shell
P wh leads to fracture although the total strain is compressive everywhere. Indeed, the results
are the same as in the case without compression, cf. Figure 8. With the approach proposed in
this paper, instead, the interaction of bending and compression is correctly taken into account and
no fracture appears. Furthermore, the results are in perfect agreement with those obtained by 3D

elements.
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Figure 8: Simply supported beam with transverse loading. Load-displacement curves.
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as in Figure 6) and strain distribution over the thickness.
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Figure 12: Simply supported plate. Crack phase field at various fracture stages.

3.3. Simply supported plate

While the previous example represented a state of unidirectional bending, i.e., a beam-like be-
havior, we now consider a plate with bidirectional bending. A square plate under uniform pressure
loading is simply supported on all sides. For such a setup, previous investigations showed that
four cracks initiate near the center and propagate towards the corners [49, 50]. The geometry and
boundary conditions of the problem are illustrated in Figure 11 and the material parameters are
E = 190 x 10° N/mm?, v = 0.29, G. = 0.295 N/mm and ¢, = 0.02mm. Exploiting symme-
try, only one quarter of the plate is modeled and discretized uniformly with 7225 elements and
arc-length control is adopted. Figure 12 depicts the crack phase field obtained with the proposed
formulation, at various stages. As can be seen, the crack initiates in the middle of the specimen and
propagates towards the corners of the plate. Failure occurs once the boundaries of the specimen
are reached. The results are in good agreement with the observations in [49, 50]. For plotting
the load-displacement curves, we monitor the norm of the total displacement vector, defined as
Unorm = \/% , where i is the vector of the control point displacements and n;, is the total number

of control points. The results are depicted in Figure 13, where we can see again a good agreement
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Figure 13: Simply supported plate. Load-displacement curves.

of the proposed model with the 3D solution as well as the confirmation regarding the isotropic

models.
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3.4. Annular plate
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Figure 14: Annular plate. Geometry and boundary conditions (a) without initial cracks [51] and (b) with initial cracks
[25]. Dimensions in mm.

We now model an annular plate simply supported at the inner and outer edges, with a uniformly
distributed transverse load. This example has also been studied in [22, 25, 51]. We consider two
cases: an initially uncracked plate, and a plate with four small initial cracks. The goal of the latter
case is to investigate the capability of the phase-field formulation to deal with crack interaction and
merging. Geometry and boundary conditions are depicted in Figure 14. The material parameters
are E = 10.92 x 10’ N/mm?, v = 0, G, = 3 N/mm and ¢, = 0.01 mm. A discretization with 8,670
elements is used for the initially uncracked plate, whereas the plate with initial cracks consists of
7,395 elements. In both cases, local mesh refinement is used in the expected crack propagation
region. Exploiting symmetry, only one quarter of the geometry is modeled. The simulation is
performed under arc-length control. For the annular plate without initial cracks, Figure 15 shows
the transverse deflection field and the phase field at the final loading stage. For the annular plate
with initial cracks, the evolving crack path is illustrated in Figure 16, which proves the ability
of the phase-field approach to naturally describe the interaction and merging of different cracks
without the need for specific modeling features. Both problem cases have been computed with
both shells and solids in anisotropic fracture as well as with their isotropic counterparts and the
results are reported in Figures 17. As in the previous examples, the results confirm the validity
of the proposed approach as well as the significant difference between isotropic and anisotropic

fracture models in pure bending situations.
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Figure 16: Annular plate with initial cracks. (a) Initial crack phase field and (b)-(f) crack phase field at various fracture
stages.
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Tear straps

Figure 18: Notched cylinders under internal pressure (a) without tear straps, (b) with tear straps. Problem setup,
dimensions in mm.

3.5. Notched cylinder under internal pressure

In the following, we study a couple of shell examples with combined bending and membrane
action. The first example is an axially-notched cylindrical shell subjected to internal pressure,
which has been studied also in [25]. As shown in Figure 18, we consider two cases, one without
and one with the presence of tear straps. The aim of the latter is to restrain the axially propagating
crack by inducing the so-called flapping, i.e., crack turning in the vicinity of the straps. The
simulation setup is given in Figure 18. The displacements in X and Y directions are fixed at the
cylinder ends. The material parameters taken from [25] are as follows: E = 70 x 10° N/mm?,
v = 0.3, G. = 1.5 N/mm and ¢, = 0.05 mm. The cylinder without tear straps is meshed with
20,800 elements, whereas the structure with straps is discretized with 20,580 elements. In both
cases, local refinement is performed in the region where the crack is expected to form. Exploiting
symmetry, only a quarter of the geometry is modeled. For the cylinder without tear straps, a series
of snapshots with the crack phase field plotted on the deformed shape is shown in Figure 19.
For visualization purposes, the elements with s < 0.05 are removed from the contour plots. A
straight crack path is observed as expected. For the cylinder with tear straps, the deformed shape
with the phase field contour plot is shown in Figure 20. It can be seen that the crack initially
forms at the existing notch and then propagates parallel to the axis of the cylinder toward its
ends. As the crack approaches the straps, a sudden redirection of its trajectory takes place with
simultaneous branching in the circumferential direction. This phenomenon, termed flapping [52,
53], is successfully simulated by the proposed model. The corresponding load-displacement curves
are given in Figure 21, which shows good agreement of the proposed formulation with the 3D
simulation also in cases of combined membrane and bending action as well as in complex crack

situations involving branching and flapping.
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Figure 19: Notched cylinder without tear straps under internal pressure. Crack phase field at various fracture stages.
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Figure 20: Notched cylinder with tear straps under internal pressure. Crack phase field at various fracture stages.
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Figure 21: Notched cylinders under internal pressure. Load-displacement curves.
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4. Conclusion

We presented an approach to apply phase-field modeling of fracture to thin structures like
plates and shells. A focus hereby is on the correct description of fracture driven by tensile strains,
within a framework where both the structure and the phase field are described as surface models,
avoiding the necessity for three-dimensional discretizations or for multiple phase fields. This is a
challenge for problems involving bending since the related kinematic variable (curvature or cur-
vature change) describes a deformation which induces both tension and compression, distributed
over the thickness of the structure. We showed that the spectral decomposition for the tension-
compression split has to be performed on the total strain, which varies over the thickness, not on
the typical shell kinematic variables related to the midsurface. As a result of this approach, the
degradation of the elastic properties can vary over the thickness although the degradation function
itself (being a function of the phase field) is assumed constant. This, in turn, allows for the correct
degradation of the tensile parts of the stresses and strain energy, which is essential for a correct
prediction of fracture. At the same time, this approach accounts for the interaction of bending and
membrane strains, which is especially important in cases where compressive membrane strains
reduce (or even eliminate) the tensile strains induced by bending. We have shown the applicability
of the approach in several numerical examples of plate and shell structures. Detailed comparisons
with results obtained by 3D solid computations, as well as with results from the literature, confirm
the correctness of the method, while the numerical costs are significantly reduced compared to the
solid computations. At the same time, we have also performed comparisons to a simpler model,
where the tension-compression split is performed only on the membrane strains but not on the
bending part. Although the results look qualitatively similar in some examples, significant quan-
titative differences are observed in the load-displacement curves. These comparisons demonstrate
the importance of the aspects discussed above. In our opinion, the proposed approach exhibits a
good combination of accuracy and efficiency for phase-field modeling of fracture in thin structures.
As future work, we want to extend it to nonlinear analysis including large deformation and large

strains, and ductile fracture.
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Appendix A. Linearized strain variables

The definitions of £” and « given in (20)-(21) are based on geometric quantities in the deformed

and undeformed configurations, and, thus, are naturally nonlinear strain measures. For linear anal-

ysis,

we can use the following linearized versions, expressed in terms of the displacement u and

geometric variables of the undeformed configuration, indicated by )

1
L . .
Sgﬁ = E(aﬁ ‘W,, +a, - ll,ﬁ) (A.1)
L _
K(I,B -
— 83 U+ ((f‘,aﬁ Xay) - W, +(4) X Fogp) - W +,45 -85 (82 X 43) -1, +(23 X &) - u,, ))

[a; X &,
(A2)

where | - | indicates the length of a vector.
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