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Abstract

We propose the variational collocation method for the numerical solution of partial differen-
tial equations. The conceptual basis is the establishment of a direct connection between the
Galerkin method and the classical collocation methods, with the perspective of achieving
the accuracy of the former with a computational cost of one point evaluation per degree
of freedom as in the latter. Variational collocation requires a discrete space constructed
by smooth and pointwise non-negative basis functions, which makes the approach imme-
diately applicable to isogeometric analysis and some meshfree methods. In this paper, we
concentrate on isogeometric analysis and demonstrate that there exists a set of points such
that collocation of the strong form at these points produces the Galerkin solution exactly.
We provide an estimate of these points and show that applying isogeometric collocation at
the estimated points completely solves the well-known odd/even discrepancy in the order of
spatial convergence. We demonstrate the potential of variational collocation with examples
of linear and non-linear elasticity as well as Kirchhoff plates.

Keywords: Variational collocation, Isogeometric analysis, Galerkin method, Collocation
method, Meshfree method

1. Introduction

The most widely used approach to solve partial differential equations (PDEs) in compu-
tational mechanics is the finite element method, which is normally applied to a weak form
of the PDE of interest. The first step to derive the weak form is to multiply the strong form
of the governing differential equation with a weight function and integrate over the compu-
tational domain, which leads to the so-called weighted residual formulation. For standard
second-order problems of fluid and solid mechanics, the weak formulation is an alterna-
tive weighted residual formulation, which is obtained through integration by parts. An
approach of particular interest is the Galerkin method, obtained by defining a suitable dis-
crete space where the solution is sought, and adopting (in the most used Bubnov-Galerkin
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approach) the same space for the weighting functions. Following the standard convention,
we will also refer to finite element schemes as variational methods.

Collocation methods are an alternative approach in which the strong form of the PDE
is enforced at a set of sites called collocation points1. A simple way to derive a collo-
cation method from a weak form is to counter-integrate by parts to obtain the weighted
residual formulation of the strong form and replace the weight functions with Dirac delta
distributions centered at collocation points. Note that this argument requires additional
smoothness to that needed for the weak form to be well posed, and that all the properties of
the Galerkin method may be lost in the process. The advantage is that collocation methods
are faster than variational methods on a per degree of freedom basis, as the computation
of the residual and the tangent matrix requires only one point evaluation per unknown.
Thus, collocation methods could be also thought of as stable one-point quadratures. The
advantages of collocation are particularly evident in applications where the efficiency is
directly related to the cost of quadrature, such as in explicit structural dynamics, where
the computational cost is dominated by stress divergence evaluations at quadrature points
for the calculation of the residual force vector.

The above-mentioned requirement of additional smoothness has been a significant obsta-
cle for the development of collocation methods in the finite element community (primarily
dominated by second-order PDEs) because classical Lagrangian finite elements are only C0-
continuous at the element boundaries. Some noteworthy exceptions are based on spectral
finite elements [1, 2], but there has also been recent work that accounts directly for the
jumps in the derivatives at the element boundaries using classical C0 finite elements [3].
Another important development has been the recent appearance of isogeometric analysis
(IGA), a spline-based finite element method which uses smooth basis functions commonly
employed in Computer Aided Design (CAD) [4, 5, 6]. The higher-order continuity of the
basis functions used in IGA (among other advantages [7, 8, 9, 10]) allows for a straight-
forward application of the collocation method, while retaining the geometric flexibility of
finite elements [11, 12, 13]. Isogeometric collocation has recently triggered a great interest
in the computational mechanics community [14, 15, 16, 17, 18]. Recent results suggest that
collocation may perform better than Galerkin in terms of accuracy per unit of computing
time [19]. Conversely, its accuracy per degree of freedom is significantly lower than that
of the Galerkin method, especially when odd interpolation degrees are adopted. In par-
ticular, the order of spatial convergence (measured, e.g., in elasticity in the L2 norm of
the displacement error) for isogeometric collocation performed at the so-called Greville or
Demko abscissae is equal to p for even and p− 1 for odd degrees [11, 12].

In this work, we make use of suitable mathematical tools to establish a direct connection
between the Galerkin method and the classical collocation methods, with the perspective
of achieving the accuracy of the former with a computational cost of one point evaluation
per degree of freedom as in the latter, in other words, with the perspective of achieving

1Boundary conditions are also imposed at a set of points, but we do not consider them here to simplify
the discussion.
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the advantages of both simultaneously. We refer to this approach as variational colloca-
tion. We demonstrate that, for discrete spaces constructed with sufficiently smooth and
pointwise non-negative basis functions, there exists a set of points such that collocation at
these sites produces the Galerkin solution exactly. For reasons that will be clear later, we
denote these collocation sites Cauchy-Galerkin points. The aforementioned prerequisites
on the basis functions make the variational collocation approach naturally applicable to
isogeometric analysis and some meshfree methods, e.g., maximum entropy schemes [23]. In
this paper, we concentrate on isogeometric analysis. We prove mathematically and verify
numerically that isogeometric collocation at Cauchy-Galerkin points produces the Galerkin
solution exactly. We then provide an estimate of these points and show that applying isoge-
ometric collocation at the estimated Cauchy-Galerkin points rather than at the traditional
Greville or Demko abscissae completely solves the aforementioned odd/even discrepancy,
guaranteeing a convergence order of p for all interpolation degrees and thus significantly
raising the accuracy for splines of odd degree. A striking result of our analysis is that the
Greville and Demko abscissae are the worst possible choice for splines of odd degree. We
demonstrate the potential of variational collocation with examples of linear and non-linear
elasticity as well as Kirchhoff plates.

In the main application framework of the current paper, i.e., isogeometric analysis, vari-
ational collocation may be regarded as isogeometric collocation at Cauchy-Galerkin points
(or, to be more precise, at their estimates). However, the conceptual basis and the potential
scope of variational collocation are much wider. In this paper, we briefly explore poten-
tial opportunities related to reduced quadrature schemes. Moreover, we expect variational
collocation to have an impact not only on IGA, but also on other fields of computational
mechanics where smooth and non-negative basis functions are used, e.g., in some meshfree
methods, most notably in maximum entropy schemes.

The outline of the rest of the paper is as follows: Sect. 2 illustrates the idea of variational
collocation. Sect. 3 focuses on the application of variational collocation to isogeometric
analysis and proves that collocation at Cauchy-Galerkin points produces the Galerkin so-
lution exactly. This result is corroborated numerically in Sect. 4, where we also give an
estimate of the location of Cauchy-Galerkin points for isogeometric collocation. Sect. 5
illustrates the performance of our method with some numerical examples involving linear
and non-linear elasticity as well as Kirchhoff plates. We explore potential opportunities
opened by the concept of variational collocation in Sect. 6 and close with conclusions in
Sect. 7.

2. The idea of variational collocation

Although the idea behind the variational collocation method is valid for any PDE with
smooth solution, we illustrate the fundamental concepts using a simple boundary value
problem defined by the Poisson equation. Let Ω ⊂ Rd be an open set representing the
problem domain, where d is the number of spatial dimensions. The boundary of Ω, denoted
by Γ, is assumed to be smooth. The problem can be stated in strong form as follows: Given
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f : Ω 7→ R and uD : Γ 7→ R, find u : Ω 7→ R such that

∆u+ f = 0 in Ω (1)

u = uD on Γ (2)

In what follows, we first outline the differences between classical variational and collocation
schemes, and then introduce the idea of variational collocation.

2.1. Variational versus collocation methods

We compare variational and collocation methods by discretizing the boundary value
problem (1)–(2) using both methodologies.

2.1.1. Variational method

Let us consider trial and weighting function spaces defined, respectively, as

U = {u | u ∈ H1, u = uD on Γ} (3)

W = {w | w ∈ H1, w = 0 on Γ} (4)

where H1 is the Sobolev space of square integrable functions with square integrable first
derivatives. The Poisson problem (1)–(2) may be rewritten in weak form as: Given f :
Ω 7→ R, find u ∈ U , such that for all w ∈ W∫

Ω

∇w · ∇u dx−
∫
Ω

wf dx = 0 (5)

To perform space discretization, we define a finite-dimensional space Uh = span{NA}A=1,...,n.
Here, the NA’s are linearly independent basis functions and, as a consequence, dim(Uh) = n.
Let us call D the set of indices A such that NA vanishes on Γ. The complementary set of
indices is called B, therefore the functions {NA}A∈B do not vanish on Γ. We defineWh ⊂ W
as Wh = span{NA}A∈D, which leads to a Galerkin formulation. Then, the discretization of
Eq. (5) may be written as: Given f : Ω 7→ R, find uh ∈ Uh such that∫

Ω

∇NA · ∇uh dx−
∫
Ω

NAf dx = 0 for all A ∈ D (6)

Note that Eq. (6) is imposed only for the NA’s for which A ∈ D. The remaining functions
in Uh, that is, {NA}A∈B, are used to impose the Dirichlet boundary conditions strongly. If
we express uh as a linear combination of the basis functions, i.e.,

uh(x) =
n∑

B=1

uBNB(x), (7)

then, Eq. (6), along with the constraints that impose Dirichlet boundary conditions
strongly, constitute a linear system of equations that allows us to compute uh and ob-
tain the Galerkin solution to the problem.
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2.1.2. Collocation method

To define the collocation method we make use of the same discrete space Uh. The scheme
requires a set of collocation points {αA}A=1,...,n that are distributed over the domain Ω and
sufficiently smooth basis functions. We assume again that the functions {NA}A∈B are used
to impose Dirichlet boundary conditions. We utilize the remaining functions to directly
collocate the PDE as

∆uh(αA) + f(αA) = 0 for all A ∈ D (8)

Using the expression of uh in Eq. (7) and the equations associated to Dirichlet boundary
conditions, we obtain a linear system of equations that allows us to compute uh. The
stability and the accuracy of the method depend on the location of the αA’s. Note that
the linear systems associated to the collocation and variational method have the same size,
but the computation of the matrix and the right hand side vector is significantly faster
for collocation methods due to the absence of integrals. However, collocation methods are
notably less accurate on a per degree of freedom basis [19].

2.2. The idea of variational collocation

We begin by recalling the first mean value theorem of integral calculus [20], which is
central to our method.

Theorem 1 (Cauchy, 1821). Let Ω be a measurable subset of Rd, where d is the number
of spatial dimensions. We consider the functions R : Ω 7→ R and w : Ω 7→ R. If R is
continuous and w(x) ≥ 0 for all x ∈ Ω, then, there exists τ ∈ Ω such that∫

Ω

w(x)R(x)dx = R(τ )

∫
Ω

w(x)dx (9)

We are now ready to present the idea of variational collocation. Let us first note that the
Galerkin form in Eq. (6) is equivalent to∫

Ω

NA (∆uh + f) dx = 0 for all A ∈ D (10)

provided that the basis functions {NA}A=1,...,n are sufficiently smooth [21]. If we call SA

the support of NA, that is, the set of points where NA takes nonzero values, then Eq. (10)
is equivalent to ∫

SA

NA (∆uh + f) dx = 0 for all A ∈ D (11)

and assuming that NA ≥ 0 on SA, by Theorem 1, there exists a point τA ∈ SA such that

0 =

∫
SA

NA (∆uh + f) dx = (∆uh(τA) + f(τA))

∫
SA

NAdx for all A ∈ D (12)
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which implies that each equation in (6) may be equivalently written as

∆uh(τA) + f(τA) = 0 for all A ∈ D (13)

for a particular point τA ∈ SA. Since the support of different basis functions may overlap,
it remains to be proven that the points {τA}A∈D are all distinct. We will prove this later
for the case in which the NA’s are B-splines, but if we temporarily assume this to hold,
it follows that there exists a set of collocation points that produces exactly the Galerkin
solution. We call the τA’s Cauchy-Galerkin (CG) points. This is the fundamental idea
behind our variational collocation method.

2.3. Scope of variational collocation

Variational collocation only requires the existence of a set of basis functions which are
pointwise non-negative, sufficiently smooth and span an appropriate discrete approxima-
tion space. In particular, we believe that this idea may have significant impact in some
meshless methods [22], maximum-entropy schemes [23] and isogeometric analysis [4, 5],
three computational schemes that use basis functions satisfying the necessary conditions
for variational collocation. The rest of the paper focuses on isogeometric analysis, but we
plan to work on the other topics in the future.

3. Application to isogeometric analysis

A natural application of variational collocation is isogeometric analysis, which is based
on the use of splines to construct approximation spaces and define the geometry. IGA has
had a significant impact, e.g., in solid mechanics [24, 25, 26, 27, 28, 29], fluid dynamics
[10, 30, 31, 32], phase-field modeling [33, 34, 35], contact mechanics [36, 37], biomechanics
[38, 39] and fluid-structure interaction [40, 41, 42, 43]. Several types of CAD functions may
be used to perform isogeometric analysis, but we will focus on B-Splines and non-uniform
rational B-Splines (NURBS), which are pointwise non-negative and can attain Cp−1 global
continuity for functions of degree p. By restricting our discussion to splines, we will be able
to prove the existence of at least n distinct CG points for a space of dimension n. We will
also show that the i-th CG point falls within the support of the i-th basis function of the
space. Assuming sufficient smoothness, this result holds true independently of the PDE to
be solved and shows that it is always possible to find a set of n collocation points which
produce the Galerkin solution exactly. We begin by reviewing some basic aspects of the
theory of B-Splines.

3.1. One-dimensional B-Splines

One-dimensional B-Splines are piecewise polynomials which may be defined as linear
combinations of B-Spline basis functions. Let us assume that we work on a parametric
space I, which is a closed interval of R. Without loss of generality, we will take I = (0, 1)
in most instances. To define a B-Spline basis, the degree of the engendering polynomial
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p and the so-called knot vector Ξ need to be specified. The entries of the knot vector Ξ,
which are called knots, are non-decreasing coordinates of the parametric space, such that

Ξ = {ξ1, ξ2, . . . , ξn+p+1}. (14)

Throughout this paper, we will assume the knot vector to be open, that is, ξ1 = . . . = ξp+1

and ξn+1 = . . . = ξn+p+1. This generates a space of dimension n. The zeroth degree
B-Spline functions {Ni,(0)}i=1,...,n are defined as

Ni,(0)(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise
; i = 1, . . . , n. (15)

The p-th degree B-Spline basis functions are defined recursively using the relation

Ni,(q)(ξ) =
ξ − ξi
ξi+p − ξi

Ni,(q−1)(ξ) +
ξi+p+1 − ξ

ξi+p+1 − ξi+1

Ni+1,(q−1)(ξ); i = 1, . . . , n; q = 1, . . . , p.

(16)

The functions {Ni,(p)}i=1,...,n are C∞ everywhere except at the knots. At a non-repeated
knot, the functions have p − 1 continuous derivatives. If a knot has multiplicity m, the
number of continuous derivatives at that point is p−m. We will call Sp,Ξ the space of splines
generated by the functions {Ni,(p)}i=1,...,n. The functions of Sp,Ξ may be pushed forward
to a physical space using a geometric mapping and the isoparametric concept. Once we
have functions defined on the physical space, they can be utilized to construct discrete
approximation spaces, such as Uh in Sect. 2.1. In turn, these spaces may be employed
to discretize equations in variational form. For the sake of simplicity, in the case of one-
dimensional problems, we will work on the parametric space, as the role of the geometrical
mapping is not so important in this case.

In the rest of the paper, we will omit the subscript indicating the degree in the basis
functions of a spline space for the sake of notational simplicity. Therefore, Ni,(p) will be
simply denoted by Ni and the degree will be inferred from the context.

3.2. Existence of sufficient Cauchy-Galerkin points for isogeometric collocation

In Appendix A we prove that there exist at least n distinct CG points for a spline space
of dimension n. Collocation at those points produces the Galerkin solution exactly.

4. Isogeometric collocation at Cauchy-Galerkin points

Within isogeometric analysis, variational collocation may be regarded as isogeometric
collocation at CG points (or at their estimates). In this section, we first verify numerically
that collocation at the exact CG points reproduces the Galerkin results to machine accuracy,
and then proceed to determine estimates of these points to make the method applicable in
practice.
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4.1. One-dimensional Poisson equation

For simplicity, in this section we focus on a one-dimensional Poisson problem. The goal
is to provide numerical evidence that corroborates the theorem proven in Appendix A and
show that collocation at CG points produces the Galerkin solution to machine accuracy.
Our model problem is defined as

u′′ + f = 0 in x ∈ (0, 1) (17)

u(0) = u(1) = 0 (18)

We study the example given by f(x) = (mwπ)
2 sin(mwπx) and u(x) = sin(mwπx), initially

taking mw = 1. Our discrete space is a spline space associated with a uniform, open knot
vector on the interval [0, 1], namely,

Uh = span{Ni, i = 1, . . . , n} (19)

The functions N1 and Nn are used to impose Dirichlet boundary conditions. Therefore,
using the notation defined in Sect. 2, we have B = {1, n} and D = {2, . . . , n− 1}. We take
p = 3 and n = 8. We compute the Galerkin solution with sufficient quadrature points so
as to make the numerical integration error negligible. If we express the Galerkin solution
as uh =

∑n
B=1 uBNB and collect all control variables in the vector U = {uB}B=1,...,n we

obtain the solution given by

U =



0.000000000000000
0.209433209879956
0.627801092914975
1.015982006292745
1.015982006292745
0.627801092914974
0.209433209879956
0.000000000000000


(20)

Now, we introduce the function Rh = u′′h + f , whose zeros define the CG points; see Eq.
(13). Fig. 1 shows a plot of Rh along with the location of Greville points and knots. Greville
points are knot averages and are routinely used in isogeometric collocation [11, 13]. It may
be observed that, for p = 3, CG points are not coincident with Greville points. Indeed,
Greville sites seem to be the most distant locations to CG points and coincide with local
extrema of Rh, which might explain their poor behavior for cubic splines. Although this
model problem is very simple, we observed that this trend prevailed for all the examples
we computed with splines of odd degree (see Appendix B).

The CG points may be computed to machine accuracy by finding the roots of the
equation Rh = 0 using, for example, Newton’s method. Let us call g = {gα}α=1,...,ng the
vector of CG points. Due to Theorem 3 in Appendix A, we know that there are at least
n = 8 CG points, but we ignore a priori the precise value of ng. However, from Fig. 1, we
conclude that ng = 10 in this case. Let us call gkα the k-th Newton iteration of our iterative
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process to find gα. Then, the problem may be written as: Given a set of initial guesses
{g0α}α=1,...,ng , compute

gk+1
α = gkα −

∑n
A=1 uAN

′′
A(g

k
α) + f(gkα)∑n

A=1 uAN
′′′
A (gkα) + f ′(gkα)

, k = 0, 1, . . . (21)

until convergence. We obtain

g =



0.030539694951151
0.141211734676611
0.233391922684160
0.354128521250408
0.441699570836731
0.558300429163268
0.645871478749592
0.766608077315842
0.858788265323387
0.969460305048849



. (22)

Now, we can utilize the points in Eq. (22) to define our variational collocation method.
The problem boils down to defining n collocation points τ = {τA}A=1,...,n. Since we want
to impose Dirichlet boundary conditions strongly on the space, we will take τ1 = 0 and
τn = 1, which is equivalent to using the functions N1 and Nn to enforce the conditions
uh(0) = uh(1) = 0. Therefore, we need to choose n − 2 = 6 interior collocation points.
Since we have ng = 10 CG points, several choices are possible. In principle, we could choose
any subset of g which contains 6 different points with the only restriction that there should
be at least one point on the support of each basis function in the space. We have used the
sets

τ 1 =



0.000000000000000
0.030539694951151
0.141211734676611
0.354128521250408
0.645871478749592
0.858788265323387
0.969460305048849
1.000000000000000


and τ 2 =



0.000000000000000
0.030539694951151
0.233391922684160
0.354128521250408
0.645871478749592
0.766608077315842
0.969460305048849
1.000000000000000


(23)

In both cases we obtained the control variables defined in (20) to machine accuracy. This
result fully supports our theoretical derivations.

4.2. Heuristic study of the location of Cauchy-Galerkin points

Sect. 4.1 shows that collocation at CG points produces the Galerkin solution to machine
accuracy. However, it also illustrates that the location of CG points depends on the Galerkin
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Greville points
Cauchy-Galerkin points

Figure 1: CG points for the one-dimensional Poisson equation. The spline space is defined by n = 8, p = 3
and an open, uniform knot vector. We use a trigonometric forcing f(x) = (mwπ)

2 sin(mwπx) with mw = 1.
The plot shows the function Rh = u′′

h + f as well as the location of CG points, Greville points and knots.

solution itself. This implies that, in order for variational collocation to be practical, an
estimate on the location of CG points needs to be provided. For simplicity, in the following
we will denote as CG points also their estimates. Before proceeding to derive such an
estimate, in this section we summarize the main results of a massive amount of heuristic,
exploratory computations performed for splines of maximum continuity.

The first observation emerging from these computations is that the points are strikingly
invariant. In particular, their location seems to depend only on the partial differential
operator that defines the equation and on the degree of the splines. There is also a very
mild dependence on the forcing function f . For example, let us consider again problem
(17)–(18). This time, we use a spline space given by p = 3, n = 30 and a uniform, open
knot vector. The forcing function and the exact solution are defined as before, but now
we take mw = 1, mw = 2 and mw = 3. The results are shown in Fig. 2. It may be
observed that the location of CG points depends very mildly on the forcing function. It
is also apparent that CG points follow a simple pattern, essentially with two symmetric
occurrences per knot span. The location of the points, relative to the knot span, remains
markedly constant. There are approximately twice as many CG points as needed to define
a collocation scheme, but we know that any subset will produce the Galerkin solution,
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Figure 2: CG points for the one-dimensional Poisson equation. The spline space is defined by n = 30,
p = 3 and an open, uniform knot vector. We use a trigonometric forcing f(x) = (mwπ)

2 sin(mwπx) with
mw = 1, mw = 2, mw = 3. The plot shows the function Rh = u′′

h + f as well as the location of CG points,
Greville points and knots. With respect to Fig. 1 the function Rh has been rescaled for better visualization
of the results.

provided that there is at least one point on the support of each basis function. Again,
collocation at Greville points, routinely used thus far, appears to be the worst possible
choice. A quantitative study of the location of the points suggests that they fall at the
positions ±1/

√
3 within a local parameterization [−1, 1] of each knot span.

We studied a number of different cases, varying the degree of the spline space and the
forcing function. Some of these examples may be found in Appendix B. All our computa-
tions indicate that for C1-continuous, quadratic splines CG points essentially coincide with
Greville points. For splines of maximum continuity and even degree (larger than 2), there
are two families of CG points, one located at Greville points and another one at knots. For
splines of odd degree, CG points are shifted with respect to Greville sites. These regular
patterns apply to the regions of the domain which are sufficiently far from the boundary
points or from other “disturbance points” corresponding e.g. to the zeros of the sinusoidal
forcing distributions. In the next section, we provide a sound mathematical background to
estimate the location of CG points for splines of arbitrary degree.
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4.3. Location of Cauchy-Galerkin points based on the superconvergence theory

Thus far, we have defined CG points as the roots of the equation Rh = u′′h + f , where
uh is the Galerkin solution. However, it is trivial to show that Rh = u′′h−u′′, which implies
that CG points are located where the second derivative of the Galerkin solution is exact.
Points at which the first or the second derivative of the Galerkin solution is exact have
been widely studied in the context of classical C0-continuous finite elements [44]. In the
realm of linear elasticity, the points at which the derivative of the solution is exact (or
at least superconvergent) are referred to as optimal stress points. The points where the
second derivative is exact for the bi-Laplace equation and cubic, Hermite basis functions
are referred to as Barlow curvature points and have been known for decades [21, 45].
Superconvergent points for the second derivative for the Poisson equation have also been
studied in the context of the generalized finite element method [46]. Although the existence
and the location of these points have not been widely studied for splines of maximum
continuity, it is known that such points exist [47] and they have been recently used for
an overdetermined (least-square) collocation scheme [48]. In the following, we present
a complete derivation of the location of superconvergent points for splines of maximum
continuity.

4.3.1. Splines with p = 2 and maximum continuity

For p = 2, it is known that superconvergent points for the second derivative are located
at the midpoints of each knot span [47]. These points are coincident with Greville points,
which confirms that collocation at Greville points for C1-continuous, quadratic splines and
the Laplace operator is a good choice.

4.3.2. Splines with p = 3 and maximum continuity

Let us now study the case of C2-continuous, cubic splines. We consider again prob-
lem (17)–(18), with arbitrary forcing, and its Galerkin solution uh corresponding to a
C2-continuous cubic spline with open knot vector Ξ = {ξ1, . . . , ξn+p+1}. As before, the dis-
crete space Uh is spanned by the functions which vanish on the boundary. The remaining
functions are used to impose the Dirichlet boundary conditions strongly. We define the
error function as e = u − uh. Let us now consider the following one-dimensional Poisson
problem

v′′ + Li = 0 in x ∈ (0, 1) (24)

v(0) = v(1) = 0 (25)

where Li is a piecewise linear spline, which takes the value 1 at the internal knot ξi+1 and
vanishes at ξi and ξi+2. In particular,

Li(x) =



x− ξi
ξi+1 − ξi

, x ∈ [ξi, ξi+1)

ξi+2 − x

ξi+2 − ξi+1

, x ∈ [ξi+1, ξi+2)

0, otherwise

(26)
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It may be simply inferred from Eq. (24) that v, i.e., the exact solution to problem (24)–(25)
is a C2-continuous, cubic spline associated to the knot vector Ξ, which ensures that v ∈ Uh.
Therefore, we can use v as a weight function in the Galerkin formulation of (24)–(25),
which leads to

−
∫ 1

0

v′u′hdx+

∫ 1

0

vLidx = 0 (27)

Due to the consistency of the Galerkin formulation, Eq. (27) is also satisfied replacing uh
with u, from which it may be concluded that

0 =

∫ 1

0

v′e′dx = −
∫ 1

0

v′′edx =

∫ 1

0

Liedx =

∫ ξi+2

ξi

Liedx. (28)

Furthermore, on the interior of each knot span, we can Taylor expand e around the midpoint
and express the result in terms of Legendre polynomials as

e =


ci0P

i
0 + ci1P

i
1 + ci2P

i
2 + ci3P

i
3 + ci4P

i
4 +Ri in (ξi, ξi+1)

ci+1
0 P i+1

0 + ci+1
1 P i+1

1 + ci+1
2 P i+1

2 + ci+1
3 P i+1

3 + ci+1
4 P i+1

4 +Ri+1 in (ξi+1, ξi+2)

(29)

where P i
m denotes the Legendre polynomial of degree m on the interval [ξi, ξi+1], the c

i
m’s

are the coefficients of the Taylor expansion and Ri = O(h5) denotes the remainder. Here,
h is a mesh length scale, for example, the knot span length. Our goal is to define a set
of equations that allows us to derive the coefficients of the Taylor expansion to eventually
find the roots of e′′ on each knot span. We note that there are 10 unknown coefficients,
but we only need 9 independent equations, because the remaining parameter can be simply
thought of as a scaling factor which does not alter the roots of e′′. To define these equations,
we consider the following:

1. It is known [47] that e′ is superconvergent at the knots and the midpoints of the knot
span for odd p. In particular, at these points, e′ is of order O(h4). In the two knot
spans that we are considering, this gives us 6 conditions;

2. e is C2-continuous at ξi+1, which imposes two constraints on Eq. (29). The first
constraint comes from imposing that e is continuous at ξi+1 and the second one
from enforcing the continuity of e′′ at ξi+1. Imposing the continuity of e′ at ξi+1

would produce an equation that is linearly dependent on the constraints that ensure
superconvergence of e′ at knots;

3. e satisfies Eq. (28).

This produces 9 independent equations which lead to the result

ci0 = ci+1
0 = ci1 = ci+1

1 = ci3 = ci+1
3 = O(h5), (30)

ci4 − ci+1
4 = O(h5), (31)

ci4 +
3

10
ci2 = O(h5). (32)
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From Eqns. (29) and (30)–(32), we obtain

e = ci2

(
P i
2 −

3

10
P i
4

)
+O(h4) in [ξi, ξi+1] (33)

Eq. (33) can be mapped to the interval [−1, 1] to standardize the location of CG points.
If we call eR the error function on the interval [−1, 1], rescaled to eliminate the missing
constant ci2, we conclude that, to leading order,

eR(η) ≈ P2(η)−
3

10
P4(η) η ∈ [−1, 1] (34)

where P2 and P4 are, respectively, the quadratic and quartic Legendre polynomials in the
interval [−1, 1], i.e.,

P2 =
1

2
(3η2 − 1) (35)

P4 =
1

8
(35η4 − 30η2 + 3) (36)

Direct differentiation of Eq. (34) leads to e′′R(η) ≈ 21(1− 3η2)/4, which indicates that CG
points for the Laplace equation and C2-continuous, cubic splines are located at

η = ±1/
√
3, (37)

which is consistent with the numerical results presented in Sect. 4.2 and Appendix B.

4.3.3. Splines with arbitrary p and maximum continuity

A general procedure to derive the error function and thus the location of the CG points
for the Laplace equation is reported in Appendix C. A summary of the error functions and
of the location of the CG points is provided in Tabs. C.2 and C.3, respectively.

4.4. Generalization to different equations, multiple dimensions and non-linear problems

Thus far, we have focused on the Poisson problem. This section shows how the idea of
variational collocation may be extended to many other problems of interest in computa-
tional mechanics. For example, let us consider the problem

u(4) + f = 0 (38)

with appropriate boundary conditions. Eq. (38) may be thought of as a Poisson problem
for u′′. If we call uh the Galerkin solution to Eq. (38) using a spline space of degree p and
maximum continuity, then it is clear that u′′h belongs to a spline space of degree p−2 whose
basis functions are Cp−3-continuous where uh is Cp−1-continuous. Therefore, it follows that
the CG points associated to Eq. (38) are given by the roots of the second derivative of the
error function for splines of degree p − 2. For example, if we solve Eq. (38) using splines
of degree p = 5, CG points are located exactly as indicated in Eq. (37), i.e., at the roots
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of the second derivative of the error function for cubic splines. In the section devoted to
numerical examples, we exploit this idea to apply variational collocation to the analysis of
Kirchhoff plates.

Let us give another example of how our ideas may be extended to more general situa-
tions. It may be shown [47] that all the results presented in Sect. 4.3 hold true replacing
the model problem (17)–(18) by the more general boundary value problem

−(κ(x)u′)′ − (a(x)u)′ + r(x)u = f in (0, 1) (39)

u(0) = u(1) = 0 (40)

where κ : (0, 1) 7→ R+, a : (0, 1) 7→ R and r : (0, 1) 7→ R. This opens the possibility of
solving advection-diffusion-reaction problems using variational collocation.

Reference [47] also shows that the results proven in Sect. 4.3 can be trivially extended
to tensor product spaces. In this case, the superconvergent points are determined by com-
puting the tensor product of the coordinates of the one-dimensional points. This is a
case of obvious interest for isogeometric analysis, because the most widely utilized type of
functions, namely, NURBS, in the multivariate case are generated as the weighted tensor
product of their univariate counterparts and retain all the important properties of tensor
products. The extension to multivariate cases might be less obvious for other basis func-
tions. For example, in the last few years T-splines have emerged as a promising alternative
to NURBS for IGA [13, 49, 16, 50]. T-splines are tensor products of splines locally, but not
globally. Therefore, the location of CG points for these functions is not obvious a priori
but would be a very promising research line.

The above remarks imply that, for discrete spaces of NURBS, all the derivations in
Sect. 4.3 are valid for a multidimensional domain Ω ⊂ Rd, with d = 2 or d = 3 and for the
problem

−∇ · (κ(x)∇u)−∇ · (a(x)u) + r(x)u = f in Ω (41)

u = uD on Γ (42)

where Γ is the boundary of Ω and uD is a known function. To solve problem (41)–(42), the
usual approach is to map the spline space from a parametric domain to Ω. The question of
whether CG points in Ω are simply the transformation of their parametric analogue using
the geometric map arises naturally. Reference [47] shows that this is indeed the case for
isoparametric mappings.

Finally, it may be shown [47] that, under certain assumptions, superconvergent points
for a non-linear problem coincide with those associated to its linearization.

Collectively, these considerations suggest that variational collocation may find applica-
tion in numerous areas of computational mechanics, including, e.g., linear and non-linear
elasticity, advection-diffusion-reaction problems2, thin plates and shells and phase-field

2For advection-dominated problems, a study of the location of CG points for stabilized formulations
would be necessary.
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modeling. The numerical examples in Sect. 5 fully support this conclusion. In particu-
lar, they demonstrate that, for linear and non-linear elasticity problems in two and three
dimensions as well as for Kirchhoff plates, variational collocation, i.e., isogeometric colloca-
tion at Cauchy-Galerkin points, clearly outperforms standard isogeometric collocation. In
particular, the former achieves a spatial convergence order (in the L2 and H1 norms of the
displacement error) of p for any order of discretization, thus increasing by one the known
convergence order for splines of odd degree.

Note that, despite this significant improvement, the rate of p is still lower by one than
the analogous rate which would be achieved with the Galerkin method. The reason is the
fact that, as noted earlier, CG points can only be estimated, as their exact computation
(at least at the current state of knowledge) would require the prior solution of the Galerkin
problem. Moreover, the estimate based on superconvergence is limited to the interior of
the domain, far from the “disturbance points” mentioned in Sect. 4.2. Improvements in
the estimate should lead to corresponding improvements in the convergence rate and may
be considered in further research.

5. Numerical examples

This section presents two- and three-dimensional examples which demonstrate the accu-
racy of variational collocation in the isogeometric context, i.e., of isogeometric collocation
at CG points as opposed to standard isogeometric collocation at Greville points (the use of
Demko points is known to yield nearly identical results to collocation at Greville points).
We focus on linear and non-linear elasticity and we also address Kirchhoff plates. For
splines of even degree, as Greville points are a subset of CG points, we simply use Greville
points, whereas for splines of odd degrees we use the CG points given in Tab. C.3. For
simplicity, when we use odd degree interpolations we adopt an odd number of knot spans
in each parametric direction.

5.1. Linear and nonlinear elasticity

We begin by describing how we compute CG points for splines of odd degree in the case
of second-order PDE’s. The dimension of the spline space is lower than the total number of
CG points. As shown before, if the exact location of the CG points is used any subset that
hits every function in the space will produce the Galerkin solution exactly. If the location
of CG points is only approximate, there might be some sensitivity to the subset taken,
although we did not observe that. Therefore, we simply took a subset with a symmetric
spatial distribution that uses one point per knot span away from the boundary and the
central knot span. In Listing 1, we provide a MATLABR⃝ code that produces the CG points
that we have used in our computations.

Listing 1: Matlab code to compute Cauchy-Galerkin points for second-order PDEs

1 % DATA: Polynomial degree : p [ Assumed to be 3 , 5 or 7 ]
2 % DATA: Number o f c on t r o l po in t s : ncp [ Assumed to be even ]
3 % RESULTS: Cauchy−Galerk in po in t s : cg ( : ) [ The length o f cg i s ncp ]

16



4 % REQUIREMENTS: Sp l in e Toolbox
5 f unc t i on [ cg ]=CauchyGalerkin (p , ncp )
6 nspn = ncp − p ; % Compute the number o f knot spans
7 knot = augknt (0 : 1/ nspn : 1 , p+1) ; % Compute a uniform knot vec to r
8 k s l e = knot (p+2) − knot (p+1) ; % Compute the knot span length
9 grev = aveknt ( knot , p+1) ; % Compute Gr e v i l l e po in t s

10 % Normalized CG point (Tab . C. 3 )
11 i f (p==3) ; ncgp = 1/ sq r t (3 ) ; end
12 i f (p==5) ; ncgp = sq r t (225−30∗ s q r t (30) ) /15 ; end
13 i f (p==7) ; ncgp = 0.5049185675126533 ; end
14 o f s t = k s l e ∗(1−ncgp ) /2 ; % Compute o f f s e t wrt G r e v i l l e
15 % Compute CG po in t s from Gr ev i l l e po in t s
16 cg ( 1 : ncp /2) = grev ( 1 : ncp /2) + o f s t ;
17 cg ( ncp/2+1:ncp ) = grev ( ncp/2+1:ncp ) − o f s t ;
18 cg (1 ) = 0 ; % We assume D i r i c h l e t BC at x=0
19 cg ( ncp ) = 1 ; % We assume D i r i c h l e t BC at x=1

5.1.1. Linear elasticity: Dirichlet problem with manufactured solution

The first example is a quarter of annulus (Fig. 3) with Ri = 1 and Ro = 4, clamped at
the entire boundary, made of a linearly elastic material with Lamé constants λ = µ = 1.
The displacement field is denoted u = {u, v}. The domain is subjected to a body force
which is computed so as to satisfy the prescribed boundary conditions and to correspond
to the following manufactured solution:{

uref = xy(x2 + y2 − 1)(x2 + y2 − 16)

vref = uref
(43)

which then serves as reference solution uref for the convergence study. Results in terms of
the L2 norm and the H1 seminorm of the error are illustrated in Fig 4. It is evident that,
while results obtained from both sets of collocation points for even interpolation degrees are
obviously identical and feature for both norms a convergence rate of p, odd interpolation
degrees lead to a convergence rate of p− 1 for collocation at Greville abscissae and of p for
the CG points. In other words, collocation at CG points guarantees for both considered
norms a convergence rate of p for all values of p, regardless whether even or odd.

5.1.2. Linear elasticity: infinitely long cylinder under inner pressure

As a second benchmark, we consider an infinitely long cylinder subjected to uniform
internal pressure. The problem can be solved in 2D adopting plane strain assumptions, and
we further exploit symmetry considering only a quarter of annulus, see Fig. 5. We adopt
Ri = 1 and Ro = 4, an inner pressure p̄ = 0.5, and consider a linearly elastic material with
Lamé constants λ = µ = 1. The exact solution is given by

ur, ref =
p̄ (1 + ν)

E

R2
i

R2
o −R2

i

[
(1− 2ν) r +

R2
o

r

]
(44)
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Figure 3: Linear elasticity: Dirichlet problem with manufactured solution. Geometry and boundary con-
ditions.

where ur is the radial displacement, r is the radial coordinate (ranging between Ri and
Ro), and E and ν are respectively the elastic modulus and Poisson’s ratio of the material,
which can be derived from λ and µ using well-known relationships. Note that, due to the
axisymmetric nature of the problem, the circumferential displacement uθ is identically zero
in the entire domain.

Fig. 6 reports the convergence study for this case. Results confirm those observed in
the previous example, with collocation at Greville points featuring a convergence rate of
p− 1 and p for odd and even degrees, respectively, and collocation at CG points leading to
a convergence rate of p for all degrees for both considered norms.

5.1.3. Nonlinear hyperelasticity: infinitely thick cylinder under inner pressure

In this example, we aim at demonstrating the advantages of using CG points for col-
location also in non-linear problems. In particular, we adopt a kinematically non-linear
framework and assume for the material the neo-Hookean constitutive law proposed in [51].
The corresponding strain energy density is

ψ =
µ

2
(IC − 3)− µlnJ +

λ

2
(lnJ)2 (45)

where IC is the first invariant of the right Cauchy-Green deformation tensor, and J is
the determinant of the deformation gradient. For details about isogeometric collocation in
hyperelasticity see [18].

Geometry, loading condition and Lamé constants are the same as in Section 5.1.2. As no
analytical solution is available in this case, we use as reference for the convergence study an
overkill solution obtained from a mesh with 400 control points in each parametric direction.
Results are shown in Fig. 7. It is evident that the convergence properties of collocation
at CG points already obtained from the examples in linear elasticity are further confirmed
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Figure 4: Convergence rates in the L2 norm (top row) and the H1 seminorm (bottom row) for the Dirichlet
problem with manufactured solution in linear elasticity. N denotes the total number of degrees of freedom.
For odd degrees, collocation at CG points produces significantly smaller errors than collocation at Greville
points and increases the rate of convergence by one.
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Figure 5: Linear elasticity: infinitely thick cylinder under inner pressure. Geometry and boundary condi-
tions.

in the hyperelastic framework. Once again collocation at these points achieves the same
convergence rate of p, regardless whether p is even or odd, for both considered norms.

5.1.4. Nonlinear hyperelasticity: hollow sphere under inner pressure

We demonstrate here the extension of the approach to the three-dimensional setting.
We consider a thick hollow sphere with inner radius Ri = 1 and outer radius Ro = 2,
subjected to a uniform outward radial displacement on the inner surface ūr = 0.2. Due to
symmetry we only model one eighth of the geometry (Fig. 8) with symmetric boundary
conditions. We adopt again a kinematically non-linear framework with the neo-Hookean
constitutive law already used in Sect. 5.1.3. We limit ourselves to the case p = 3 and
compare Galerkin results with those obtained with collocation at Greville and at CG points
for two different meshes, denoted in Tab. 1 by the number of control points in the three
parametric directions. The relative error is computed as

eL2 =
∥ur − ur,Gal∥2

∥ur,Gal∥2
(46)

where ur is the radial displacement field computed with collocation, ur,Gal is the same field
obtained from the standard Galerkin approach, and ∥·∥2 is the L2 norm. Once again it
is evident that, for p = 3, results from collocation at CG points are significantly closer to
Galerkin results than those from collocation at Greville points.

5.2. Kirchhoff plates

The theory presented in Sect. 4.3 permits obtaining an estimate of CG points also
for fourth-order operators, which is an area of computational mechanics where methods
based on smooth basis functions shine. To illustrate the performance of our method in this
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Figure 6: Convergence rates in the L2 norm (top row) and the H1 seminorm (bottom row) for the infinitely
long cylinder under inner pressure in linear elasticity. N denotes the total number of degrees of freedom.
For odd degrees, collocation at CG points produces significantly smaller errors than collocation at Greville
points and increases the rate of convergence by one.

Greville CG
Mesh 1: 10×20×6 0.0109 0.00327
Mesh 2: 20×40×12 0.00197 0.000120

Table 1: Relative error with respect to the Galerkin solution for the hollow sphere under inner pressure
in hyperelasticity.
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Figure 7: Convergence rates in the L2 norm (top row) and the H1 seminorm (bottom row) for the infinitely
thick cylinder under inner pressure in hyperelasticity. N denotes the total number of degrees of freedom.
For odd degrees, collocation at CG points produces significantly smaller errors than collocation at Greville
points and increases the rate of convergence by one.
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Figure 8: Hyperelasticity: hollow sphere under inner pressure. Geometry and contour plot of the radial
displacements.

situation, we solve a simple benchmark problem involving Kirchhoff plates. We consider a
clamped plate over the domain Ω = [0, 1]2. The problem is defined by

D∆2w = q in Ω (47)

w = 0 on Γ (48)

∇w · n = 0 on Γ (49)

where ∆2 represents the bi-Laplace operator, Γ is the boundary of Ω and D is a constant
that depends on the material properties and the thickness of the plate. In our computations,
we take D = 1 and

q(x, y) = −16π4[cos(2πx)− 4 cos(2πx) cos(2πy) + cos(2πy)], (50)

which leads to the exact solution

w(x, y) = [1− cos(2πx)][1− cos(2πy)] (51)

To define the discrete space, we utilize splines constructed as the tensor product of a
uniform one-dimensional space with n control variables. Therefore, the two-dimensional
space has n2 control variables associated. Our collocation strategy is as follows: For even
p, CG points essentially coincide with Greville points, so we proceed as in [52]. For odd p,
CG points are shifted with respect to Greville sites (their location may be found in Tab.
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C.3), which suggests that new collocation sites should be adopted. Due to the continuity
requirements imposed by the governing equation, the lowest odd degree that may be utilized
is p = 5, which produces C4-continuous splines when the interior knots are not repeated.
We present results for the odd degrees p = 5 and p = 7, but the ideas can be easily extended
to arbitrarily high degrees. According to the discussion in Sect. 4.4 and the results in Tab.

C.3, CG points are located at η = ±1/
√
3 for p = 5 and η = ±

√
225− 30

√
30/15 for

p = 7. We impose the condition (48) strongly on the space, which constrains the control
variables falling on the topological boundary of the mesh. Eq. (49) is collocated at the
border, skipping the corner points and averaging some equations, exactly as explained in
[52]. After this, we still need to impose (n− 4)2 equations to define a square linear system.
Due to the tensor product structure of our spline space, we just need to define n − 4
interior collocation points in one parametric direction, compute their tensor product and
use them to collocate Eq. (47). Once the location of these n−4 points is given, our method
is completely defined. For odd-degree splines, the location of these points varies slightly
with p. We define the points for p = 5 and p = 7. The extension to higher degrees is
straightforward. For simplicity, let us consider a case with an odd number of knot spans.
In such case, we can define a central knot span. The remaining knot spans are classified
as being on the left or the right hand side of the central. It is known that there are two
CG points on each knot span. For p = 5, we use two CG points on the central knot span.
For the remaining knot spans we use just one CG point, which completes the n− 4 points
needed. For the knot spans on the left (right) of the central span, we employ the leftmost
(rightmost) CG point. For p = 7 the collocation points are analogous, but we also use two
CG points in the first and the last knot spans. Fig. 9 shows the location of the points for
p = 5 and p = 7.

We used the approach described above to solve Eqns. (47)–(50) and computed the L2

norm of the deflection, rotation, bending moment and shear force error using the expression
of the exact solution given in (51). For comparison purposes, we report also the results
using classical collocation at Greville points; see Fig. 10(a)-(c) and Fig. 11(a)-(c). The
results using our approach are shown in Fig. 10(b)-(d) and Fig. 11(b)-(d). As expected,
the results for even p are identical. However, for odd p our method clearly outperforms
collocation at Greville points. The convergence rate for splines of odd degree is p− 3 using
collocation at Greville sites and p − 2 using collocation at CG points. The results are
consistent with those obtained for linear and non-linear elasticity.
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Knots

Interior collocation points for p = 5

Interior collocation points for p = 7

Figure 9: Example of the interior collocation points for p = 5 (top) and p = 7 (bottom) in the case of
Kirchhoff plates. The actual collocation points are defined by taking the tensor product of each of the
one-dimensional cases with themselves. For p = 5 we use two collocation points in the central span. For
p = 7 we use two collocation points in the central, the first and the last knot spans.
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(a) Greville points, deflection
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(b) CG points, deflection
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(c) Greville points, rotation
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(d) CG points, rotation

Figure 10: Convergence rates in the L2 for a clamped Kirchhoff plate with a manufactured load. The top
row shows deflections and the bottom row rotations. N denotes the total number of degrees of freedom.
For odd degrees, collocation at CG points produces significantly smaller errors than collocation at Greville
points and increases the rate of convergence by one.
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(a) Greville points, bending moment
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(b) CG points, bending moment
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(c) Greville points, shear force
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(d) CG points, shear force

Figure 11: Convergence rates in the L2 for a clamped Kirchhoff plate with a manufactured load. The top
row shows bending moments and the bottom row shear forces. N denotes the total number of degrees of
freedom. For odd degrees, collocation at CG points produces significantly smaller errors than collocation
at Greville points and increases the rate of convergence by one.
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6. Opportunities: reduced quadrature schemes for isogeometric analysis

We believe that the concept of variational collocation may open a number of new possi-
bilities in computational mechanics. As target areas, we envision in particular the problems
in which standard collocation has proven to be insufficiently accurate or robust with respect
to Galerkin methods. These include some non-linear (in particular non-smooth) problems
or problems prone to locking. Moreover, we believe that variational collocation could also
lead to the development of new reduced quadrature schemes. As follows, we provide an
exploratory example of the latter application.

Let us consider a linear elasticity problem in the weak form. The problem domain is
Ω ⊂ Rd. For simplicity, we consider zero-displacement boundary conditions in all directions
on the entire boundary. Letting Uh denote a suitable discrete space, the problem may
be written in Galerkin form as: Given the vector of body forces f : Ω 7→ Rd, find the
displacement field uh ∈ Uh such that∫

Ω

∇wh : σ dx =

∫
Ω

wh · fdx for all wh ∈ Uh, (52)

where σ is the Cauchy stress tensor. If we define Uh using a spline space of degree p in all
directions, and assuming that there is no geometrical mapping, the exact evaluation of the
stiffness matrix using element-based Gaussian quadrature requires (p+1)d evaluation points
per element3. Integration formulas which do not integrate exactly all the polynomials in
the bilinear form given an affine mapping are called reduced quadratures.

For sufficiently smooth basis functions, and sufficiently accurate numerical integration,
Eq. (52) is equivalent to∫

Ω

wh · ∇ · σ dx+

∫
Ω

wh · f dx for all wh ∈ Uh, (53)

Under the same conditions as before, i.e., Uh is a spline space of degree p in all directions
defined in the parametric domain, the exact evaluation of the first integral in Eq. (53) using
element-based Gaussian integration also requires (p+ 1)d quadrature points per element.

Reduced quadrature rules have been extensively investigated in the field of finite ele-
ments and, in particular, in isogeometric methods [53, 54]. However, as far as we are aware,
these studies focus on the weak form given in Eq. (52).

We believe that variational collocation opens new opportunities to derive reduced
quadrature formulas for the weighted residual formulation of the strong form given in
Eq. (53). The idea is to introduce new quadrature rules that use CG sites as integration
points. Since we have shown that there exist exact quadratures that use only one point
per degree of freedom for Eq. (53), it seems that the weighted residual formulation of the
strong form might be more amenable to numerical integration than its weak counterpart.
We illustrate this point by considering again the example studied in Sect. 5.1.1. We employ

3This statement also holds true for affine geometrical mappings.
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p = 3

2-point quadrature weak form

Collocation Cauchy-Galerkin

2-point quadrature strong form

4-point quadrature

Order 3

Order 4

Figure 12: Comparison of several quadrature formulas for the weighted residual formulation of the weak
and strong form of a linear elasticity example.

a spline space of degree p = 3 in each direction and, unless otherwise stated, we utilize
Gauss-Legendre integration on each element. Therefore, standard element-based Gaussian
quadrature requires 4 integration points per element in each direction. We solved the prob-
lem using: (a) the Galerkin formulation (52) with full integration, i.e., 4 points per element
in each direction, (b) the Galerkin formulation (52) with 2 integration points per element
in each direction, (c) the weighted residual formulation of the strong form (53) using CG
sites as integration points (this leads to 2 integration points per element in each direction),
and (d) collocation at CG points. Note that, for the particular case of p = 3, the 2-point
quadrature rule that uses CG sites as integration points coincides with the 2-point Gauss-
Legendre formula, so the integration rules used in cases (b) and (c) are identical, although
the integrands are obviously different. Fig. 12 shows the results for all cases. Option (c)
clearly outperforms options (b) and (d), which suggests that reduced quadrature rules for
the weighted residual formulation of the strong form may be indeed an interesting new
method to explore. The fact that (c) outperforms (d) is especially important because it
suggests that a new family of schemes may be derived, which outperform collocation at
CG points even on the basis of accuracy per computing time.

This idea can be further exploited for other degrees. In some cases, e.g., even degree
splines, the use of CG points leads to well-known quadrature formulae, but as far as we are
aware, they have not been utilized for Eq. (53). For odd-degree splines, except for p = 3,
integration at CG points will produce new quadratures, and the standard procedure can
be used to determine the proper weights.
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7. Conclusions

We proposed the concept of variational collocation as a method for the numerical so-
lution of partial differential equations. The approach shows the potential of achieving the
accuracy of variational methods with the computational cost of collocation methods, and is
applicable to discretization methods using pointwise non-negative and sufficiently smooth
basis functions, prime examples being isogeometric analysis and some meshfree methods
(e.g., maximum entropy schemes). This paper focused on isogeometric analysis. We showed
that there exists a set of points (denoted as Cauchy-Galerkin points) such that direct col-
location of the strong form of the governing partial differential equation at these points
produces the Galerkin solution exactly. We then provided both a comprehensive heuristic
analysis and a mathematically sound estimate of these points for splines of arbitrary degree
and maximum continuity. With examples of linear and non-linear elasticity as well as Kirch-
hoff plates, we showed that isogeometric collocation at estimated Cauchy-Galerkin points
completely solves the well-known odd/even discrepancy in the order of spatial convergence
and thus clearly outperforms standard isogeometric collocation. Beyond these already sig-
nificant results, we believe that variational collocation is a very promising framework to be
exploited in several additional problems of computational mechanics.
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Appendix A. Existence of sufficient Cauchy-Galerkin points for isogeometric
collocation

The proof of the main theorem follows closely [55, Lemma (38)]. In preparation for the
theorem, we recall some basic notions of approximation theory.

Definition 1. Given two functions F and H, and a set of points {γi}i=1,...,k+1, we will say
that the function F matches H in Hermite sense at {γi}i=1,...,k+1 if for every site ζ that
occurs m times in the sequence {γi}i=1,...,k+1, F and H verify

F (j)(ζ) = H(j)(ζ) for j = 0, . . . ,m− 1, (A.1)

where F (j) denotes the j-th derivative of F .

Definition 2. The k-th divided difference of a function F at the points {γi}i=1,...,k+1,
denoted by ∆(γ1:k+1)F , is the leading coefficient of the polynomial of degree k that matches
F in Hermite sense at the set of points {γi}i=1,...,k+1.
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Note that the divided difference is well defined even when there are repeated values in
the set {γi}i=1,...,k+1 because Eq. (A.1) imposes k+1 independent conditions irrespectively
of the multiplicities of the points. From Definition 2, it is trivial to show that ∆(γ1:1)F =
F (γ1). When there are no repeated points in the sequence {γi}i=1,...,k+1 or the repetitions
are clustered, divided differences can be also defined recursively. The following statement
holds true [56]: Assume that the sequence {γi}i=1,...,k+1 has all its repeated points (if any)
clustered, meaning that, for any i < j, γi = γj implies that γi = γi+1 = · · · = γj. Then,

∆(γi:j)F =


∆(γi+1:j)F − ∆(γi:j−1)F

γj − γi
, γi ̸= γj

F (j−i)(γi)

(j − i)!
, γi = γj

1 ≤ i ≤ j ≤ k + 1 (A.2)

To prove the main theorem of this Appendix we will also utilize the following Lemma.

Lemma 2 (Peano form of the divided difference). Let us consider the spline space Sp,Ξ

associated to the degree p and the knot vector Ξ = {ξ1, ξ2, . . . , ξn+p+1} on the closed interval
[a, b]. Let {Ni}i=1,...,n be a basis of Sp,Ξ. Then, for any sufficiently smooth function F ,

∆(ξi:i+p+1)F =
1

(ξi+p+1 − ξi)p!

∫ b

a

Ni(s)F
(p+1)(s)ds for all i = 1, . . . , n (A.3)

Proof. The reader is referred to [55] for a proof.

Theorem 3. If the knot vector Ξ = {ξi}i=1,...,n+p+1 is in the closed interval [a, b] with
ξj < ξj+p+1 for all j = 1, . . . , n (this ensures that the multiplicity of knots is at most p+1),
and the integrable function R : [a, b] 7→ R is orthogonal to the spline space Sp,Ξ on [a, b],
that is ∫ b

a

s(x)R(x)dx = 0 for all s ∈ Sp,Ξ (A.4)

then, there exists Λ = {λ1, λ2, . . . , λn+1} in [a, b], strictly increasing with ξi ≤ λi ≤ ξi+p

(any equality holding only in the trivial case ξi = ξi+p) so that R is also orthogonal to S0,Λ,
that is, ∫ λi+1

λi

R(x)dx = 0 for all i = 1, . . . , n. (A.5)

Proof. Let us define the function G : [a, b] 7→ R

G(x) = Q(x) +
1

p!

∫ x

a

(x− s)pR(s)ds (A.6)

where Q is a polynomial of degree p. The polynomial Q can always be taken such that

G(ξ1) = G(ξ2) = · · · = G(ξp+1) = 0 (A.7)
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because its p+ 1 coefficients may be determined using the conditions

Q(ξl) = − 1

p!

∫ ξl

a

(ξl − s)pR(s)ds for l = 1, . . . , p+ 1 (A.8)

Note that for open knot vectors, Q is identically zero4. The derivatives of G, which will be
used later, may be computed using Leibniz’s rule as

G′(x) = Q′(x) +
1

(p− 1)!

∫ x

a

(x− s)p−1R(s)ds (A.9)

G′′(x) = Q′′(x) +
1

(p− 2)!

∫ x

a

(x− s)p−2R(s)ds (A.10)

...
...

G(p)(x) = Q(p)(x) +

∫ x

a

R(s)ds, where Q(p) is a constant (A.11)

G(p+1)(x) = R(x) (A.12)

Therefore, if we apply Lemma 2 to the functionG and the spline space Sp,Ξ = span{Ni}i=1,...,n,
we obtain

∆(ξi:i+p+1)G =
1

(ξi+p+1 − ξi)p!

∫ b

a

Ni(s)R(s)ds for all i = 1, . . . , n (A.13)

and we know that the right hand side of Eq. (A.13) vanishes due to the assumption (A.4)
and the obvious fact that Ni ∈ Sp,Ξ. Then, we conclude

∆(ξi:i+p+1)G = 0 for all i = 1, . . . , n (A.14)

Let us focus on Eq. (A.14) for i = 1. We know that Eq. (A.7) holds and the recursive
definition of the divided difference may be used to show that G(ξp+2) = 0. This argument
may be applied recurrently to show that G vanishes at all knots. If there are repeated
knots in Ξ, then some derivatives of G can also be proven to be zero at the repeated knots,
but this is not needed for the proof.

We could now use Rolle’s theorem to show the existence of the set of points {η1, η2, . . . , ηn+p}
such that G′(ηi) = 0 with ηi ∈ (ξi, ξi+1) for all i = 1, . . . , n+ p. If we apply the same argu-
ment again, we may prove the existence of the set {µ1, µ2, . . . , µn+p−1} such that

G′′(µi) = 0 with µi ∈ (ξi, ξi+2), i = 1, . . . , n+ p− 1 (A.15)

Using Rolle’s theorem recursively, we can show the existence of {λ1, λ2, . . . , λn+1} such that

G(p)(λi) = 0 with λi ∈ (ξi, ξi+p), i = 1, . . . , n+ 1 (A.16)

4Note that in many cases of practical relevance, Q might not be zero because some functions in the
spline space are not used to enforce Eq. (A.4), but to impose Dirichlet boundary conditions.
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Now, utilizing Eq. (A.11) repeatedly at the λi’s, it follows trivially that∫ λi+1

λi

R(s)ds = 0 for i = 1, . . . , n (A.17)

which shows that R is orthogonal to S0,Λ and concludes the proof.

Corollary 3.1. If R is continuous, then there exists the set τ = {τ1, τ2, . . . , τn}, strictly
increasing, with τi ∈ (ξi, ξi+p+1) for all i = 1, . . . , n, such that

R(τi) = 0, i = 1, . . . , n (A.18)

Proof. The result follows trivially from the application of the mean value theorem of integral
calculus to Eq. (A.17).

Final result: If we apply Theorem 3, and Corollary 3.1 to Eq. (10) with Ω = [a, b], it
follows directly that there exist at least n distinct CG points for a space of dimension n.
Collocation at those points produces the Galerkin solution exactly.

Appendix B. Heuristic study of the location of Cauchy-Galerkin points

This Appendix follows up on Sect. 4.2. We study heuristically the location of CG
points for different forcing functions and for various degrees of the spline space. Our model
problem is

u′′ + f = 0 in x ∈ (0, 1) (B.1)

u(0) = u(1) = 0 (B.2)

with f(x) = −pw(pw − 1)xpw−2 and u(x) = xpw − x. We always take pw > p, where p is
the degree of the splines, so that the Galerkin solution is not exact. In all cases we take
uniform knot vectors, although the results carried on in the cases with non-uniform knot
vectors that we computed.

Appendix B.1. Cauchy-Galerkin points for splines of odd degree

We studied spline spaces of degree p = 3, p = 5, p = 7 and p = 9, but we only show
here p = 3 and p = 5 for conciseness. The cases with odd degree and p > 5 behaved very
similarly to p = 3 and p = 5. Fig. B.13 shows a rescaled plot of Rh for a cubic spline space
with a uniform knot vector and n = 30. We use the forcing given by pw = 4 (blue), pw = 5
(red) and pw = 6 (green). Again, Greville points seem to be the worst possible choice for
all forcing functions. It may also be observed that, irrespectively of the forcing, there are
approximately two CG points per knot span. These points are symmetrically distributed
over the knot span and the offset with respect to knots is markedly constant. The location
of the points coincides with the theoretical prediction given in Eq. (37). Fig. B.14 shows
the same information as Fig. B.13, but now using p = 5 and with the polynomial forcing
defined by pw = 6 (blue), pw = 7 (red) and pw = 8 (green). The pattern is almost identical,
but the offset with respect to knots is slightly different. A quantitative study of the location
of the points suggested that they fall at the positions given in Tab. C.3. All these trends
remained for larger values of n.
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Figure B.13: CG points for the one-dimensional Poisson equation. The spline space is defined by a uniform,
open knot vector and n = 30, p = 3. We use the polynomial forcing f(x) = −pw(pw−1)xpw−2 with pw = 4,
pw = 5 and pw = 6.

Appendix B.2. Cauchy-Galerkin points for splines of even degree

We studied the cases p = 2, p = 4, p = 6 and p = 8, but we only show here p = 2
and p = 4 for conciseness. The cases with even degree greater than 4 behave very similarly
to the case p = 4. We start by emphasizing that the case p = 2 is special and actually
Corollary 3.1 does not apply for p = 2 because the function Rh = u′′h − f is discontinuous.
However, in all the cases that we computed we always found enough CG points to perform
variational collocation. Fig. B.15 shows the results using a uniform and open knot vector
with n = 30. The forcing function is defined by pw = 3 (blue), pw = 4 (red) and pw = 5
(green). Essentially, CG points fall on top of Greville points as predicted by the theory (cf.
Tab. C.2). Fig. B.16 shows the results for quartic splines and the forcings given by pw = 5
(blue), pw = 6 (red) and pw = 7 (green). As in the odd-degree case, there seems to be
roughly two families of CG points, but in this case, one family falls on top of Greville points
and another one on top of knots. The results confirm again the theoretical predictions.
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Figure B.14: CG points for the one-dimensional Poisson equation. The spline space is defined by a uniform,
open knot vector and n = 30, p = 5. We use the polynomial forcing f(x) = −pw(pw−1)xpw−2 with pw = 6,
pw = 7 and pw = 8.
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Figure B.15: CG points for the one-dimensional Poisson equation. The spline space is defined by a uniform,
open knot vector and n = 30, p = 2. We use the polynomial forcing f(x) = −pw(pw−1)xpw−2 with pw = 3,
pw = 4 and pw = 5.
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Figure B.16: CG points for the one-dimensional Poisson equation. The spline space is defined by a uniform,
open knot vector and n = 30, p = 4. We use the polynomial forcing f(x) = −pw(pw−1)xpw−2 with pw = 5,
pw = 6 and pw = 7.
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Appendix C. Location of Cauchy-Galerkin points based on the superconver-
gence theory

As follows, we propose a general method to find the CG points for splines of order p
and maximum continuity µ = p− 1. We also introduce r = p+ 1.

As illustrated in Sect. 4.3 for p = 3, in order to find the points it is first necessary to
perform a Taylor expansion of the error e = u− uh up to order r = 4 within two adjacent
knot spans around their respective midpoints, and to find for each knot span the r + 1
coefficients in the expansion up to a scaling factor. This implies imposing a total number
of conditions equal to 2 (r + 1)−1 = 9. What these conditions are has been already detailed
in Sect. 4.3. Following the same reasoning for splines of arbitrary order and maximum
continuity, the expansion of the error must be performed within a suitable number of knot
spans ns around their respective midpoints, with ns chosen in such a way that the total
number of equations available to find the coefficients be ns (r + 1) − 1. These equations
stem from (a) the known conditions on superconvergence of e (for even p) or of e′ (for odd
p) at knots and midpoints [47]; (b) the continuity conditions of e and its derivatives up to
order µ at the knots; (c) weighted residual conditions of the type of Eq. (28) written using
as weighting functions all the splines of degree p−2 having full support on the ns considered
knot spans. The above procedure becomes increasingly cumbersome as p increases. For
this reason, we propose henceforth an alternative method which is significantly simpler,
yet rigorous, and which delivers identical results to the aforementioned procedure. The
method is based on the a priori assumption that the coefficients of the error expansion are
the same in each knot span, so that the expansion reads

e = c0P0 + c1P1 + ...+ crPr +R in [−1, 1] (C.1)

with R = O (hr+1) as the remainder. Here Pm denotes the Legendre polynomial of degree
m on the normalized domain [−1, 1], and cm is the corresponding coefficient in the Taylor
expansion. As follows, we list the conditions available and illustrate the strategy to find
the unknown coefficients c0, ..., cr up to a scaling factor for the cases of even and odd p.
Note that the aforementioned a priori assumption can be verified a posteriori, so that the
found solution is certainly exact.

Appendix C.1. Finding the points for even p

For even p, it is known [47] that e is superconvergent at the knots and at the midpoint of
each knot span. The superconvergence conditions at the knots of the (generic normalized)
knot span under consideration read e (−1) = e (+1) = O (hr+1) and lead to the following
two equations

c0 + c2 + ...+ cr−1 = O
(
hr+1

)
(C.2)

c1 + c3 + ...+ cr = O
(
hr+1

)
(C.3)

Furthermore, the superconvergence condition on e at the midpoint, e (0) = O (hr+1), gives
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c0P0 (0) + c2P2 (0) + ...+ cr−1Pr−1 (0) = O
(
hr+1

)
(C.4)

The second set of conditions is related to continuity. Being e automatically continuous as a
result of the superconvergence conditions at the knots, continuity needs to be enforced for
e′, e′′ and all the subsequent derivatives up to the order µ = p− 1 = r− 2. E.g., continuity
of e′ leads to e′ (1)− e′ (−1) = O (hr), and thus to

c2P
′
2 (1) + c4P

′
4 (1) + ...+ cr−1P

′
r−1 (1) = O

(
hr+1

)
(C.5)

Continuity of e′′ leads to

c3P
′′
3 (1) + c5P

′′
5 (1) + ...+ crP

′′
r (1) = O

(
hr+1

)
(C.6)

We can further enforce continuity of all derivatives up to e(p−1) = e(r−2), this last condition
yielding

cr−1 = O
(
hr+1

)
(C.7)

Eq. (C.7), in combination with continuity conditions of the odd derivatives e′, e′′′, ..., e(r−4)

and with Eq. (C.4), gives

c0 = c2 = ... = cr−1 = O
(
hr+1

)
(C.8)

which eliminates all terms with even index from the expansion (C.1). As a result, Eq. (C.2)
becomes a redundant identity. We are thus left with Eq. (C.3), and all continuity conditions
of the even derivatives e′′, e(4), ..., e(r−3). This is a reduced set of neq = 1 + r−3

2
= r−1

2

equations, in the reduced set of unknowns nunk =
r+1
2
. As desired, it is thus neq = nunk−1,

with no need to exploit weighted residual conditions such as in the general procedure
outlined earlier. The condition on the continuity of e(r−3) reads

cr−2P
(r−3)
r−2 (1) + crP

(r−3)
r (1) = O

(
hr+1

)
(C.9)

from which we obtain, to leading order,

cr−2 = −P
(r−3)
r (1)

P
(r−3)
r−2 (1)

cr (C.10)

The condition on the continuity of e(r−5) leads to

cr−4P
(r−5)
r−4 (1) + cr−2P

(r−5)
r−2 (1) + crP

(r−5)
r (1) = O

(
hr+1

)
(C.11)

which can be combined with Eq. (C.10) to express also cr−4 as a function of cr. Proceeding
with the remaining continuity conditions of the even derivatives, all other coefficients with
even index can be computed as functions of cr.
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Appendix C.2. Finding the points for odd p

For odd p, it is known [47] that e′ is superconvergent at the knots and at the midpoint
of each knot span. The superconvergence conditions at the knots read e′ (−1) = e′ (+1) =
O (hr) and lead to the following two equations

c1 + c3P
′
3 (1) + ...+ cr−1P

′
r−1 (1) = O

(
hr+1

)
(C.12)

c2P
′
2 (1) + c4P

′
4 (1) + ...+ crP

′
r (1) = O

(
hr+1

)
(C.13)

Furthermore, the superconvergence condition on e′ at the midpoint, e′ (0) = O (hr), gives

c1 + c3P
′
3 (0) + ...+ cr−1P

′
r−1 (0) = O

(
hr+1

)
(C.14)

Also in this case the second set of conditions stems from continuity. Being e′ automatically
continuous as a result of the superconvergence conditions at the knots, continuity needs to
be enforced for e, e′′ and all the subsequent derivatives up to the order µ = p− 1 = r − 2.
Continuity of e leads to e (1)− e (−1) = O (hr), and thus to

c1 + c3 + ...+ cr−1 = O
(
hr+1

)
(C.15)

Continuity of e′′ yields

c3P
′′
3 (1) + c5P

′′
5 (1) + ...+ cr−1P

′′
r−1 (1) = O

(
hr+1

)
(C.16)

We can further enforce continuity of all derivatives up to e(p−1) = e(r−2), this last condition
yielding

cr−1 = O
(
hr+1

)
(C.17)

Eq. (C.17), in combination with continuity conditions of e and of its even derivatives
e′′, ..., e(r−4), gives

c1 = c3 = ... = cr−1 = O
(
hr+1

)
(C.18)

which eliminates all terms with odd index from the expansion (C.1). As a result, Eqns.
(C.12) and (C.14) become redundant identities. We are thus left with Eq. (C.13), and all
continuity conditions of the odd derivatives e′′′, ..., e(r−3). This is a reduced set of neq =
1+ r−4

2
= r−2

2
equations, in the reduced set of unknowns nunk =

r+2
2
. In this case it is thus

neq = nunk − 2. However, using a weighted residual condition it can be proven that c0 = 0.
We omit this proof as we are only interested in the derivatives of the error, for which the
term with coefficient c0 does not play any role. The condition on the continuity of e(r−3)

leads as before to

cr−2 = −P
(r−3)
r (1)

P
(r−3)
r−2 (1)

cr, (C.19)

which holds to leading order. Once again we can proceed in using the remaining continuity
conditions of the odd derivatives to express all other coefficients with odd index as functions
of cr.
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p eR(η) e′′R(η)
2 η3 − η η
3 15η4 − 30η2 + 7 3η2 − 1
4 3η5 − 10η3 + 7η η3 − η
5 21η6 − 105η4 + 147η2 − 31 15η4 − 30η2 + 7
6 3η7 − 21η5 + 49η3 − 31η 3η5 − 10η3 + 7η
7 15η8 − 140η6 + 490η4 − 620η2 + 127 21η6 − 105η4 + 147η2 − 31

Table C.2: Error functions and their second and fourth derivatives for different interpolation degrees.

p Zeros of e′′

3 ± 1√
3

5 ±
√

225−30
√
30

15

7 ±0.5049185675126533

Table C.3: CG points for different interpolation degrees.

Appendix C.3. Summary of results

We summarize the results of the procedure outlined above, in terms of the rescaled error
function eR and of its second derivative, in Table C.2. The zeros of the second derivative
for even degrees, as expected, coincide with the knots and midpoint of the knot span. The
same zeros for odd degrees are summarized in Table C.3 and represent the sought CG
points.
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