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Abstract

Surfactants are compounds that find energetically favorable to be located at the boundaries between fluids. They
are able to modify the properties of those interfaces, for example, reducing surface tension. Here, we propose a
new model for liquid-vapor flows with surfactants which captures the dynamics of the surfactant and accounts for
phase transformations in the fluid. The aforementioned model is derived from a free energy functional by using
a Coleman-Noll approach. The proposed theory emanates from the isothermal Navier-Stokes-Korteweg equations,
which describe single-component two-phase flow and naturally allow for phase transformations. We believe that
our model has significant potential to study the influence of surfactants in vaporization and condensation processes.
From a numerical point of view, the proposed model poses significant challenges to existing discretization methods,
including stiffness in space and time, internal and boundary layers as well as higher-order partial differential operators.
To overcome these challenges we propose algorithms based on Isogeometric Analysis, which permit an accurate and
efficient discretization. Finally, we illustrate the viability of the theoretical framework and the effectiveness of our
algorithms by solving several numerical problems in two and three dimensions.

Keywords: Surfactants, Surface tension, Navier-Stokes-Korteweg (NSK), Complex fluids, Phase-field model,
Isogeometric Analysis (IGA).

1. Introduction

Surfactants are very useful products in the chemical industry. They can be found in detergents, cosmetics, or the
dye of our clothes. However, the chemical industry is not the only beneficiary of these extraordinary compounds.
In recent decades, surfactants have also been used in other fields such as biotechnology [1, 2], electronic printing
[3], microelectronics [4] or medical research [5, 6]. They also play an essential role in our organism, increasing the5

pulmonary compliance and preventing atelectasis [7, 8], that is, the complete or the partial collapse of the lungs.
The word surfactant is an abbreviation of surface active agent and is used to name different types of compounds

that find energetically favorable to be located at the interfaces of a system. The consequence is that surfactants are
absorbed by the interface, that is, they get trapped at the boundary between different phases. Even if they are usually
very thin, interfaces play a crucial role in the system dynamics. The composition in the interfacial region can differ10

dramatically from that of the bulk phases. Indeed, across interfaces there are rapid property changes that lead to an
excess of free energy, related to the amount of work required to create the interface. The presence of surfactants at
the interface can significantly reduce the work required to generate interfaces, altering completely the behavior of the
system [9–13]. For a more detailed discussion on surfactant properties the reader is referred to [14–16]

In the literature, one can find a number of computational methods that describe surfactant absorption phenomena.15

For this purpose, different techniques have been employed, such as phase-field models [17–21], front tracking methods
[19, 22] or volume of fluid schemes [23, 24]. However, most of these models only deal with soluble or insoluble
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surfactants in two-component inmiscible flows (see, for example, [25–27]). The influence of surfactants in single-
component two-phase flows remains practically unexplored, at least from the computational point of view. For this
reason, we present our initial steps toward a computational model for surfactants that tries to capture the behavior and20

the effects of surface active agents at the interfaces of single component flows. The proposed model is based on a
complex-fluid theory that allows for spontaneous vaporization and condensation, so it may have a significant potential
to study the influence of surfactants in phase-transition phenomena.

1.1. Fluid dynamics with phase changes

There exist two different approaches to deal with phase transformations: sharp-interface and diffuse interface25

models. The former usually results in mathematical models that require complex numerical treatment: one must solve
simultaneously the partial differential equations that govern each phase’s dynamics as well as the boundary conditions
that hold on a moving, and a priori unknown, interface [28]. An alternative to the previous approach is the diffuse-
interface method in which sharp interfaces are replaced by thin transition regions. The idea is to define an order
parameter, also called phase-field, that varies smoothly on the entire computational domain and acts as marker of the30

location of the different phases. This notably simplifies the numerics because the governing equations can be solved on
the entire domain, which is usually known and fixed. In general, instead of the boundary conditions at the interfaces,
we have to solve a partial differential equation for the evolution of the order parameter. From the computational point
of view, the main disadvantage is that this equation typically includes higher-order partial-differential operators, and it
produces thin layers that evolve dynamically over the computational domain. However, most of these computational35

challenges are being addressed [29–32], and in recent decades phase-field models have been successfully applied
to a large number of fields such as solidification dynamics [33–35], foams [36], fracture dynamics [37], dendritic
growth [38, 39], vesicle dynamics [40], microstructure evolution in solids [41], planet formation [42], infiltration of
water into a porous medium [43, 44], coalescence of bubbles [45], cancer growth [46–48], elasto-capillarity [49] or
fluid-structure interaction [50]. For recent reviews of phase-field methods the reader is referred to [51–55].40

To develop our theory of liquid-vapor flows with surfactants, we use as a starting point the Navier-Stokes-Korteweg
(NSK) equations, which are a phase-field theory for single-component two-phase flows [45]. The model allows for the
fluid to evaporate and condensate naturally due to pressure and/or temperature variations. An interesting feature of the
model is that the fluid density acts directly as the phase-field identifying the liquid and vapor phases. The NSK system
is the result of several works, including the contributions of Gibbs [56], Korteweg [57], van der Waals [58] and Dunn45

and Serrin [59]. Although the current form of the system has been known for several years, computational methods
for the NSK equations are still in their infancy. Some noteworthy publications are, for example, [32, 45, 60–63].

Including surfactants in the theory makes the computational treatment even more difficult. Since surfactants tend
to be located primarily on the interfaces, a common approach is to model surfactant dynamics as a partial-differential
equation that is posed on the lower-dimensional manifold defined by the interface. Our goal is to adhere to the50

phase-field philosophy also to model the surfactant dynamics and define a global field which naturally localizes to the
interface. This leads to a much simpler computational treatment.

1.2. Computational challenges

One of the main challenges when dealing with phase-field approaches or in particular with the Navier-Stokes-
Korteweg equations, is that these models include a length scale that represents the thickness of the interfaces, which55

must be extremely small in order for the model to be realistic. This interface length scale must be captured by the
computational mesh, which makes the NSK theory more difficult to treat numerically than classical Navier-Stokes
equations. Additionally, our model involves third-order partial-differential spatial operators both in the NSK system
and in the equation that describes the behavior of the surfactant. This fact significantly limits the use of finite element
methods since we need to employ basis functions with C1 global continuity, which is very difficult or even impossible60

in 3D complicated geometries.
The aforementioned difficulties are tackled by using Isogeometric Analysis (IGA) for the spatial discretization of

the problem. IGA is a new computational technique that improves and generalizes the standard finite element method.
It was first proposed in [64] and further developed in [65–69]. The main objective of IGA is to bridge the gap between
Computer Aided Design (CAD) and Finite Element Analysis by developing a computational framework based on65

the functions employed in CAD systems. There are a number of computational geometry technologies that may be
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used in Isogeometric Analysis. Heretofore, Non-Uniform Rational B-Splines (NURBS) have been the functions most
widely employed in IGA, and they will also be used for our simulations. However, there are other options such
as T-Splines (see, for example, [66, 70, 71]) or subdivision surfaces [72]. Isogeometric analysis based on NURBS
presents a series of attributes that can be exploited in problems involving higher-order partial-differential operators.70

Among them, it is worth highlighting the following: higher-order accuracy, robustness, and especially, higher-order
global continuity of the basis functions. IGA has been previously used to solve phase-field problems with remarkable
success [29, 31, 45, 50, 73–76]. Another important property of IGA that has been recently proven is that Galerkin
solutions can be obtained with only one evaluation per degree of freedom using the concept of variational collocation
[77].75

1.3. Structure and content of the paper
The rest of the paper is organized as follows. Section 2 gives a quick overview of Isogeometric Analysis based

on NURBS. In Section 3, we derive our model from a free energy functional by using a Coleman-Noll approach
[78]. In Section 4, we describe the governing equations of the model at the continuous level. Then, we present the
weak form of the problem as well as the discretization process. We employ a semi-discrete formulation based on80

Galerkin’s method and we integrate in time using a generalized-α scheme [79]. Section 5 displays several numerical
examples in 2D and 3D. The first example aims at finding the relation between the surface tension at liquid-vapor
interfaces and the parameters of the proposed model. It also shows that our theory succeeds in reproducing the way
in which surfactants lower surface tension. The second simulation demonstrates that surfactants are naturally trapped
at interfaces in accordance with the expected physical behavior of a surface active agent. We also use this example to85

show that our model is able to reproduce how surfactants may inhibit the coalescence of bubbles. For this particular
case, we plot the evolution of the free energy with respect to time, and we confirm that it decreases monotonically
as it was imposed in the derivation of the theory. Subsequently, we present a numerical example in which a drop
of water is attracted by a solid-like boundary due to the capillarity forces associated to the liquid-vapor interfaces.
The contact angle between those interfaces and the boundary will be altered because of the surfactant concentration.90

Additionally, a three-dimensional numerical simulation is presented. Finally, in Section 6, some concluding remarks
are commented.

2. A brief overview of NURBS-based Isogeometric Analysis

The current implementation of our IGA model is based on Non-Uniform Rational B-Splines (NURBS). The goal
of this section is to introduce NURBS briefly and to present a quick overview of Isogeometric Analysis. For a more95

extensive discussion on IGA the reader is referred to [80].
B-splines are piecewise polynomial curves constructed by taking linear combinations of B-spline basis functions.

The coefficients of these basis are points in space, which are referred to as control points. The concept is similar
to that of nodal coordinates in finite element analysis. The only difference is that in IGA the basis functions are, in
general, non-interpolatory. A knot vector Ξ in one dimension is a set of non-decreasing coordinates in the parametric100

space, i.e., Ξ = {ξ1, ..., ξnc+p+1}, where ξi ∈ R is the ith knot, i = 1, 2, ..., nc + p + 1, p is the polynomial order, and nc is
the number of basis functions that comprise the B-spline space. Knots divide the parametric space into knot spans or
elements.

For a given knot vector, the B-spline basis functions are defined by the Cox-de Boor recursion formula (see [81],
[82]). This way, starting with piecewise constants (p = 0), i.e,

Ni,0 (ξ) =

1, if ξi 6 ξ < ξi+1,

0, otherwise
; i = 1, . . . , nc (1)

the basis functions of higher degrees are defined by

Ni,p (ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1 (ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1 (ξ) ; i = 1, . . . , nc (2)

Note that for B-spline functions with polynomial order 0 and 1, we obtain standard piecewise constant and linear finite
element functions, respectively. From the Cox-de Boor recursion formula, it can be seen that B-Spline basis functions105
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Figure 1: Quadratic basis functions formed from the open knot vector Ξ = {0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6}

constitute a partition of unity, that is,
∑nc

i=1 Ni,p (ξ) = 1 ∀ξ. Moreover, each basis Ni,p is pointwise nonnegative over the
entire domain, i.e., Ni,p (ξ) > 0 ∀ξ, and its support is compact. For B-spline functions of order p the support is always
p + 1 knot spans. It is also important to note that if internal knots are not repeated, the B-Spline basis functions are at
least Cp−1-continuous everywhere. More specifically, if a knot has multiplicity k, the basis is Cp−k-continuous at that
knot. In Fig. 1 we present an example of quadratic B-spline basis functions generated from the uniform open knot110

vector Ξ = {0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6}.
NURBS are built from B-splines. In particular, a NURBS entity in Rd can be obtained by a projective transforma-

tion of a B-spline object in Rd+1. Given the B-spline basis function Ni,p (ξ), the one dimensional NURBS basis can be
defined as

R
p

i (ξ) =
Ni,p (ξ) wi∑nc

î=1
Nî,p (ξ) wî

, (3)

where wi is a positive real weight. For the two and three dimensional cases, the NURBS basis functions are given by

R
p,q
i, j (ξ, η) =

Ni,p (ξ) M j,q (η) wi, j∑nc

î=1

∑mc

ĵ=1
Nî,p (ξ) M ĵ,q (η) wî, ĵ

, (4)

R
p,q,r
i, j,k (ξ, η, ζ) =

Ni,p (ξ) M j,q (η) Lk,r (ζ) wi, j,k∑nc

î=1

∑mc

ĵ=1

∑lc
k̂=1

Nî,p (ξ) M ĵ,q (η) Lk̂,r (ζ) wî, ĵ,k̂

. (5)

In the expressions above, Ξ = {ξ1, ..., ξnc+p+1}, H = {η1, ..., ηmc+q+1} and Z = {ζ1, ..., ζlc+r+1} are the knot vectors; p,
q and r denote the polynomial orders, and wî, ĵ and wî, ĵ,k̂ are the weights. Note that the NURBS basis functions are
no longer piecewise polynomials, but piecewise rationals. They can exactly represent all conic sections. NURBS
functions inherit most of the properties of B-splines. They are pointwise nonnegative and they still constitute a115

partition of unity. Their continuity, as well as their support is the same as for B-splines. Note also that if the weights
are all equal, as it is the case for the computations presented herein, then NURBS basis functions reduce to B-splines
basis functions, i.e, Rp

i (ξ) = Ni,p (ξ).
Given a mesh of control points, {Bi}, i = 1, 2, ..., nc, polynomial order p and knot vector Ξ = {ξ1, ..., ξnc+p+1} a

NURBS curve may be defined as

C (ξ) =
nc∑

i=1

R
p

i (ξ) Bi. (6)
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Analogously, a NURBS surface S (ξ, η) and a NURBS volume V (ξ, η, ζ) may be defined as

S (ξ, η) =
nc∑

i=1

mc∑
j=1

R
p,q
i, j (ξ, η) Bi, j, (7)

V (ξ, η, ζ) =
nc∑

i=1

mc∑
j=1

lc∑
k=1

R
p,q,r

i, j,k (ξ, η, ζ) Bi, j,k, (8)

where {Bi, j} and {Bi, j,k} are the control points, i = 1, 2, ..., nc, j = 1, 2, ...,mc, k = 1, 2, ..., lc.
IGA is compatible with the two classical mesh refinement strategies, knot insertion (h-refinement) and order120

elevation (p-refinement). However, there is a third option, referred to as k-refinement (see, e.g., [64]), which allows
to increase the order and the smoothness of the NURBS basis functions simultaneously. As in finite elements, in
Isogeometric Analysis the isoparametric concept is used, which means that the unknown variables are represented in
terms of the same NURBS functions [see Eqs. (3)-(5)] that are used for defining the geometry.

Remark125

In what follows, for simplicity, we will omit the index of the basis functions that represents the polynomial
degree. This information will be inferred from the context.

3. Mathematical model

In this section, we show how our model can be derived from a free energy functional. By using a Coleman-Noll
procedure [78] we will find sufficient conditions that must be satisfied to enforce the dissipation inequality for any130

arbitrary solution of the theory. We will also show that our model fulfills those conditions. For simplicity, we will
focus on the isothermal case, but similar arguments may be used to derive a thermally-coupled theory (see, e.g., [63]).

3.1. Energy functional
Let us define the total energy of the system

E(ρ, u) =
∫
Ω

(
Ψ +

1
2
ρ |u|2

)
dΩ, (9)

where Ω is an open subset of R3 and | · | denotes the Euclidean norm of a vector; ρ is the fluid density and u represents
the velocity vector. The free energy Ψ is assumed to belong to the following constitutive class

Ψ = Ψ̂ (L, ρ,∇ρ, c) . (10)

In the above expression, c is the surfactant concentration and L is the symmetric part of the velocity gradient, that is,

L =
1
2

(
∇u + ∇uT

)
, (11)

where �T denotes the transpose of �.

3.2. Derivation of the model135

Our starting point will be the classical balance laws for mass of fluid and surfactant [see Eqs. (12) and (15),
respectively], linear momentum [Eq. (13)] and angular momentum [Eq. (14)]. These equations may be written as,

ρ̇ + ρ∇ · u = 0, (12)
ρu̇ = ∇ · T + ρ f , (13)

T = TT , (14)
ċ + c∇ · u = −∇ · j, (15)
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where T is the Cauchy stress tensor, f represents body forces per unit mass and j describes the mass flux of surfactant;
�̇ denotes the material time derivative of � and may also be expressed as ∂�/∂t + u · ∇�. The quantity �̇ may also
be understood as the time derivative of � holding the material particle fixed.

Our goal is to find a constitutive equation for T and j so that the energy of the system decreases with time for any
arbitrary solution of the theory. In order to do so, we will use the framework of thermomechanics and the Coleman-
Noll approach. We will assume that T belongs to the constitutive class

T = T̂ (L, ρ,∇ρ, c, µ) , (16)

where µ is the chemical potential and is defined as

µ =
δ

δρ

(∫
Ω

ΨdΩ
)
=
∂Ψ̂

∂ρ
− ∇ ·

 ∂Ψ̂
∂∇ρ

 , (17)

with
δ

δρ
denoting the variational derivative with respect to density. Let us also define the following energy dissipation

law

R =
d
dt

{∫
Pt

(
Ψ +

1
2
ρ |u|2

)
dPt

}
=W (Pt) −D (Pt) + Φ (∂Pt) with D (Pt) ≥ 0. (18)

Here, Pt is an arbitrary set of material particles and ∂Pt denotes its boundary. W (Pt) is the work associated to
the external forces, Φ (∂Pt) represents the energy supplies coming through ∂Pt and D (Pt) is the dissipation, which
must be non-negative for all conceivable processes. Using the Reynolds transport theorem (see, for example, [83]), it
follows that

d
dt

{∫
Pt

ΨdPt

}
=

∫
Pt

(
Ψ̇ + Ψ∇ · u

)
dPt, (19)

d
dt

{∫
Pt

1
2
ρ |u|2 dPt

}
=

∫
Pt

[(
1
2
ρ |u|2

)·
+

1
2
ρ |u|2 ∇ · u

]
dPt =

∫
Pt

(
1
2
ρ̇ |u|2 + ρu · u̇ + 1

2
ρ |u|2 ∇ · u

)
dPt

=

∫
Pt

ρu · u̇dPt. (20)

Note that in (20) we have used the mass conservation equation (12). Taking into account the constitutive class of Ψ
given by Eq. (10), and relations (19) and (20), the dissipation law can be written

R =
d
dt

{∫
Pt

(
Ψ +

1
2
ρ |u|2

)
dPt

}
=

∫
Pt

∂Ψ̂
∂L

: L̇ +
∂Ψ̂

∂ρ
ρ̇ +
∂Ψ̂

∂∇ρ · (∇ρ)
· +
∂Ψ̂

∂c
ċ + Ψ∇ · u + ρu · u̇

 dPt, (21)

where the symbol : denotes the usual double-dot product. At this point, we introduce the classical relation

(∇ρ)· = ∇ρ̇ − ∇u∇ρ, (22)

In component notation, the vector ∇u∇ρ would be understood as the product of a square matrix (∇u) with a column
vector (∇ρ), that is, [∇u∇ρ]i =

∂ui
∂x j

∂ρ
∂x j

. Using Eqs. (13), (15) and (22), R results in the following expression

R =

∫
Pt

∂Ψ̂
∂L

: L̇ +
∂Ψ̂

∂ρ
ρ̇ +
∂Ψ̂

∂∇ρ · ∇ρ̇ −
∂Ψ̂

∂∇ρ · ∇u∇ρ − ∂Ψ̂
∂c
∇ · j − ∂Ψ̂

∂c
c∇ · u + Ψ∇ · u + u · (∇ · T + ρ f )

 dPt. (23)

Integrating by parts the terms with ∇ρ̇, ∇ · j and ∇ · T, we obtain

R =

∫
Pt

∂Ψ̂
∂L

: L̇ +
∂Ψ̂

∂ρ
ρ̇ − ∇ ·

 ∂Ψ̂
∂∇ρ

 ρ̇ − ∂Ψ̂
∂∇ρ · ∇u∇ρ + ∇

∂Ψ̂
∂c

 · j − ∂Ψ̂
∂c

c∇ · u + Ψ∇ · u − T : ∇u + ρu · f
 dPt

+

∫
∂Pt

ρ̇ ∂Ψ̂
∂∇ρ · n−

∂Ψ̂

∂c
j · n+ u · Tn

 d(∂Pt). (24)

6



Let us now use that

∂Ψ̂

∂∇ρ · ∇u∇ρ = ∂Ψ̂
∂∇ρ ⊗ ∇ρ : ∇u, (25)

∇ · u = I : ∇u, (26)

where I represents the identity tensor and ⊗ denotes the usual vector outer product. With these identities in mind and
using the mass balance equation (12), it can be shown that R takes on the form

R =

∫
Pt

∂Ψ̂
∂L

: L̇ − ∂Ψ̂
∂ρ
ρI : ∇u + ∇ ·

 ∂Ψ̂
∂∇ρ

 ρI : ∇u − ∂Ψ̂
∂∇ρ ⊗ ∇ρ : ∇u + ∇

∂Ψ̂
∂c

 · j
 dPt

+

∫
Pt

−∂Ψ̂
∂c

cI : ∇u + ΨI : ∇u − T : ∇u + ρu · f
 dPt +

∫
∂Pt

ρ̇ ∂Ψ̂
∂∇ρ · n−

∂Ψ̂

∂c
j · n+ u · Tn

 d(∂Pt)

=

∫
Pt

∂Ψ̂
∂L

: L̇ +
−∂Ψ̂
∂ρ
ρ + ∇ ·

 ∂Ψ̂
∂∇ρ

 ρ − ∂Ψ̂
∂c

c + Ψ
 I − T − ∂Ψ̂

∂∇ρ ⊗ ∇ρ
 : ∇u + ∇

∂Ψ̂
∂c

 · j + ρu · f
 dPt

+

∫
∂Pt

ρ̇ ∂Ψ̂
∂∇ρ · n−

∂Ψ̂

∂c
j · n+ u · Tn

 d(∂Pt) (27)

Examining the previous expression and comparing it with the energy dissipation law defined in Eq. (18), we can
identify the working W (Pt), the dissipation D (Pt) and the energy supplies across the boundaries Φ (∂Pt) as

Φ (∂Pt) =
∫
∂Pt

ρ̇ ∂Ψ̂
∂∇ρ · n−

∂Ψ̂

∂c
j · n+ u · Tn

 d(∂Pt), (28)

D (Pt) =
∫
Pt

−∂Ψ̂
∂L

: L̇ +
µρ − Ψ + ∂Ψ̂

∂c
c
 I + T +

∂Ψ̂

∂∇ρ ⊗ ∇ρ
 : ∇u − ∇

∂Ψ̂
∂c

 · j
 dPt, (29)

W (Pt) =
∫
Pt

ρu · fdPt. (30)

Note that in Eq. (29) we have used the definition of µ given in (17). At this point we just need to find constitutive
equations for T and j such that E decreases with time for any arbitrary solution of the theory. This can be guaranteed
by imposing D (Pt) ≥ 0 for all conceivable processes. In order to do so, we will analyze all the terms in expression
(29). For the first term, we will take into account that the constitutive class of Ψ [see Eq. (10)] does not allow the
dependence of Ψ on L̇. Therefore, the only way to ensure that this term is pointwisely positive or zero is by taking

∂Ψ̂

∂L
= 0. (31)

Focusing now on the last term of Eq. (29), the constitutive choice

j = −κ∇
∂Ψ̂
∂c

 with κ > 0, (32)

guarantees that this term will be pointwise non-negative. Considering this, we enforce the inequalityµρ − Ψ + c
∂Ψ̂

∂c

 I + T +
∂Ψ̂

∂∇ρ ⊗ ∇ρ
 : ∇u ≥ 0. (33)

Note that Eqs. (31)–(33) are sufficient conditions to guarantee D (Pt) ≥ 0. To obtain a constitutive equation for T that
verifies Eq. (33) we assume, without loss of generality, the following splitting of the velocity gradient

∇u = L +W = Ld + Lh +W, (34)
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where W is the skew-symmetric part of the velocity gradient

W =
1
2

(
∇u − ∇uT

)
, (35)

and Lh and Ld are the dilatational and the deviatoric parts of L, that is,

Lh =
1
3
∇ · uI, (36)

Ld = L − 1
3
∇ · uI. (37)

It is easily seen that both Ld and Lh are symmetric tensors and that Ld is traceless, i.e., tr(Ld) = 0. Using now Eqs.
(34), (35) and (14), it is straightforward to obtain the following identities

T : ∇u = T : (L +W) = T : L, (38)
I : ∇u = I : (L +W) = I : L. (39)

Additionally, frame invariance arguments may be used (see, e.g., [84]) to show that
∂Ψ̂

∂∇ρ ⊗ ∇ρ is a symmetric tensor.

Therefore,

∂Ψ̂

∂∇ρ ⊗ ∇ρ : ∇u =
∂Ψ̂

∂∇ρ ⊗ ∇ρ : L. (40)

Taking into account Eqs. (38), (39) and (40), we can rewrite the inequality (33) asµρ − Ψ + c
∂Ψ̂

∂c

 I + T +
∂Ψ̂

∂∇ρ ⊗ ∇ρ
 : L ≥ 0. (41)

The goal now is to choose the term in brackets in (41) in such a way that its double contraction with L is non-negative.
We will prove that this can be achieved takingµρ − Ψ + c

∂Ψ̂

∂c

 I + T +
∂Ψ̂

∂∇ρ ⊗ ∇ρ = 2µ̄L + λ̄∇ · uI, (42)

where µ̄ and λ̄ are viscosity coefficients that must fulfill a series of conditions that will be shown later. Using Eqs.
(36), (37) and basic properties of the double dot product, we obtain(

2µ̄L + λ̄∇ · uI
)

: L = 2µ̄L : L + λ̄∇ · u (I : L)

= 2µ̄Ld : Ld + 4µ̄Ld : Lh + 2µ̄Lh : Lh + λ̄∇ · utr (L)

= 2µ̄tr
(
(Ld)2

)
+

4
3
µ̄∇ · utr(Ld) +

2
9
µ̄ (∇ · u)2 tr (I) + λ̄ (∇ · u)2

= 2µ̄tr
(
(Ld)2

)
+

(
2
3
µ̄ + λ̄

)
(∇ · u)2 . (43)

Therefore, since tr
(
(Ld)2

)
=

∑
i j(Ld

i j)
2 ≥ 0 , it follows that(

2µ̄L + λ̄∇ · uI
)

: L ≥ 0 (44)

for any µ̄ and λ̄ such that,

2
3
µ̄ + λ̄ ≥ 0 and µ̄ ≥ 0. (45)

8



Note that our choice in Eq. (42) leads to a classical model of Newtonian fluids if we assume that Ψ̂ depends neither
on ∇ρ nor on c.140

To complete the theory, we need to define the nonlinear function Ψ. Within the constitutive class given by Eq.
(10), we consider the expression

Ψ̂(ρ,∇ρ, c) =W (ρ) +
λ (c)

2
|∇ρ|2 +U (c) , (46)

where λ is a function of c that takes positive values and U (c) is the free energy associated to the surfactant. The second
term represents the free energy that leads to the capillary forces at the gas-liquid interfaces. W (ρ) is the Helmholtz
free energy of a van der Waals fluid [61, 85], which is given by

W (ρ) = Rθρ log
(
ρ

b − ρ

)
− aρ2. (47)

In the above expression, a and b are positive constants, R is the specific gas constant and θ represents the temperature
of the system. Eq. (47) may be thought of as a higher-order modification of the perfect gas Helmholtz free energy
that allows for spontaneous phase changes. The ability of Eq. (47) to predict phase transformations stems from the
fact that W may be a non-convex function of ρ for low temperatures. Using Eq. (46) and isolating the stress tensor in
(42), we obtain the following expression for T

T =
[
W (ρ) +

λ (c)
2
|∇ρ|2 +U (c) − ρW′ (ρ) + ρλ′ (c)∇c · ∇ρ + λ (c) ρ∆ρ − c

λ′(c)
2
|∇ρ|2 − c U′ (c)

]
I

− λ(c)∇ρ ⊗ ∇ρ + 2µ̄L + λ̄∇ · uI. (48)

Finally, identifying ρW′ (ρ) −W (ρ) with the thermodynamic pressure p, the stress tensor T can be written as

T = −pI +
[
1
2

(
λ (c) − cλ′(c)

) |∇ρ|2 +U (c) − c U′ (c) + ρλ′ (c)∇c · ∇ρ + λ (c) ρ∆ρ
]

I

− λ(c)∇ρ ⊗ ∇ρ + 2µ̄L + λ̄∇ · uI. (49)

For the surfactant energy U(c), there are several possible choices. One of the simplest options is to consider U (c) =
c2α/2 where α is a positive constant. This is the free energy associated to classical diffusion processes. With this
expression in mind, the stress tensor becomes

T = −pI +
[
1
2

(
λ (c) − cλ′(c)

) |∇ρ|2 − α
2

c2 + ρλ′ (c)∇c · ∇ρ + λ (c) ρ∆ρ
]

I − λ(c)∇ρ ⊗ ∇ρ + 2µ̄L + λ̄∇ · uI. (50)

Note also that the stress tensor is symmetric, ensuring that the angular momentum equation (14) is satisfied. This
completes the derivation of the theory.

4. Numerical algorithm

4.1. Governing equations
We start by recasting the governing equations in a convenient form for our numerical algorithms. Using the defini-

tion of the material time derivative, and the fundamental equations defined in (12), (13) and (15), it is straightforward
to obtain the Navier-Stokes-Korteweg equations with surfactant in the Eulerian description as follows

∂ρ

∂t
+ ∇ · (ρu) = 0, (51)

∂ (ρu)
∂t
+ ∇ · (ρu ⊗ u) − ∇ · T − ρ f = 0, (52)

∂c
∂t
+ ∇ · (cu) + ∇ · j = 0. (53)

Notice that the rest of the elements that completely define the theory, that is, a constitutive equation for the stress145

tensor and the surfactant mass flux as well as a thermodynamic potential from which we can derive the state variables,
have already been defined in Section 3.2. Nevertheless, these elements will be analyzed in more detail in the following
sections.
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4.1.1. Stress tensor
The constitutive equation for the stress tensor T was defined in (50). However, in order to simplify the notation

we will adopt the following splitting
T = τ − pI + ς + ςs, (54)

where

τ = µ̄
(
∇u + ∇uT

)
+ λ̄∇ · uI, (55)

ς = λ(c)
(
ρ∆ρ +

1
2
|∇ρ|2

)
I − λ(c)∇ρ ⊗ ∇ρ, (56)

ςs =

(
−α

2
c2 − c

λ′(c)
2
|∇ρ|2 + ρλ′ (c)∇c · ∇ρ

)
I. (57)

In the above expressions, ς is the so-called Korteweg tensor, ςs is the part of the stress tensor associated to the
surfactant and τ corresponds to the viscous stress tensor of a Newtonian fluid (see, for example, [86]). Throughout
this paper, we will assume that the Stokes hypothesis is satisfied, that is, λ̄ = −2µ̄/3. Finally, λ is a function that
takes positive values and that modulates the strength of capillary forces. Later, we will show that λ is related with the
surface tension at liquid-vapor interfaces. In particular, surface tension scales approximately linearly with

√
λ. Our

goal is to model the capability of surfactants to lower surface tension. For this reason, λmust be a decreasing function
of the surfactant concentration c. There are several possible choices for λ(c). Among them, we adopt the following
expression

λ(c) = λming (c) , (58)

where λmin is a positive constant that represents the minimum value allowed for the capillarity coefficient. Later,150

we will adopt a value for λmin that depends on the mesh size as proposed in [45]. The function g is defined as
g(c) = 1+ βe−c2

where β is a positive constant that controls the strength with which the surface tension decreases with
the surfactant concentration. Throughout this paper, we will use the value β = 4. Larger values of β would produce
greater variations of the surface tension, and thus, a more significant impact of the surfactant on the dynamics. Lower
values of β would reduce the influence of the surfactant distribution and would produce dynamics which are closer to155

those of a classical Navier-Stokes-Korteweg fluid. The detailed dependency of the solution on β and on the functional
form of λ is an interesting topic that warrants further research.

Remarks

1. We wish to highlight the difference between λ and λ̄. The former is a function that represents the strength of
capillary forces while the latter is one of the viscosity coefficients.160

2. Note that since ς depends upon ∆ρ, the linear momentum balance equation includes third-order partial differ-
ential operators.

4.1.2. Surfactant mass flux
The constitutive form of the mass flux j has already been defined in Eq. (32). Using the expression adopted for Ψ

[Eq. (46)] and considering the particular case in which U (c) = c2α/2, j may be expressed as

j = −κ∇
(
αc +

λ′(c)
2
|∇ρ|2

)
= −κα∇c − κ

2

(
λ′′(c)∇c |∇ρ|2 + 2λ′(c)∇∇ρT∇ρ

)
. (59)

Notice that the parameters κ and α govern the relative strength of convection and diffusion processes in the surfactant
equation. They will also allow to control the intensity with which the surfactant is drawn by liquid-vapor interfaces.165

Note also that since j depends upon ∇∇ρT , the convection-diffusion equation (53) includes third-order partial differ-
ential operators.
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Figure 2: Non-dimensional plot of van der Waals pressure as a function of density for θ > θc, θ = θc and θ < θc. Note that for values of temperature
below the critical temperature (θ < θc), the pressure is a non-monotone function of density, which allows for spontaneous phase transformations.

4.1.3. State variables
In Section 3.2 we have seen that the thermodynamic pressure p can be identified as ρW′ (ρ) −W (ρ). Using van

der Waals-Helmholtz free energy (47), it is straightforward to obtain

p = Rb
(
ρθ

b − ρ

)
− aρ2. (60)

The above equation is known as van der Waals equation and gives the pressure in terms of density and temperature,
which for the isothermal model is assumed to be constant. Considering θ as a parameter, we can represent a non-170

dimensional plot of the pressure as a function of density for different values of θ (see Fig. 2). In this figure, we can
observe different behaviors of the function p for temperatures below and above a critical temperature θc = 8ab/(27R).
For θ > θc, p is a monotonically increasing function of ρ, and the only phase that is stable is the vapor phase.
However, for values of the temperature below the critical temperature, that is, θ < θc, the pressure function is no
longer monotone, and we can differentiate three regions. The density interval ρ ∈ (0, ρv) corresponds to the vapor175

phase and the interval ρ ∈ (ρl, b) corresponds to the liquid phase. Additionally, there exists a region ρ ∈ (ρv, ρl)
where the pressure function decreases with respect to density (grey line in Fig. 2). This allows for the fluid to
evaporate and condensate naturally due to pressure and/or temperature variations without introducing additional fields
and without precursors. The region where ρ ∈ (ρv, ρl) has no physical meaning, however, mathematically it is just a
smooth interface between the vapor and liquid phases which spans over a length scale

√
λ/a. Note also that in the180

inviscid, non-conducting limit, the equations are ill-posed for λ = 0, and capillary forces are necessary to restore
well-posedness. The reader is referred to [45, 61, 85] for further details on the NSK equations without surfactants.

4.2. Boundary conditions
To define a well-posed boundary value problem we need to specify suitable boundary conditions. For some of

the numerical examples that we will present in Section 5 we have adopted periodic boundary conditions. However,
in order to analyze more practical situations we will consider other possibilities. In particular, we will focus on solid
wall boundary conditions. In classical isothermal compressible gas dynamics, solid wall boundary conditions may be
imposed, for example, by setting velocity to given values, that is, u = uD on the solid wall boundary. However, in the
NSK system, the third-order spatial derivative on the density included in the linear momentum equation [see Eq. (56)]
urges to impose an extra boundary condition to attain well-posedness. One possibility is to set the following boundary
condition,

∇ρ · n = |∇ρ| cos(φ), (61)
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where n denotes the unit outward normal to the boundary, and φ is the static contact angle between the liquid-vapor
interface and the solid, measured in the liquid phase. To define suitable boundary conditions for the surfactant equa-
tion, we must take into account that surfactants are naturally trapped by liquid-vapor interfaces. Thus, the boundary
conditions for the surfactant equation must be compatible with this phenomenon. For the majority of cases of practical
relevance, we will also need the boundary conditions to be mass-preserving. With this idea in mind, we propose the
following boundary condition,

∇c · n = |∇c| cos(φs) (62)

where φs represents the angle between the surfactant gradient and the outward normal to the boundary. We will relate
φs with the contact angle φ in order to ensure that the surfactant is able to follow the liquid-vapor interface without
any incompatibility caused by the presence of the boundary. To do so, we define the following relation,

cos(φs) = cos(φ)h(ρ) (63)

with

h (ρ) = tanh
ρM

l + ρ
M
v

2
− ρ

 s
 (64)

In the above expression, s is a parameter that controls the slope of the hyperbolic tangent function and that we set to
s = 4/(ρM

l −ρM
v ); the constants ρM

l and ρM
v denote the Maxwell states2 for the liquid and the vapor phases, respectively.185

To define the function h(ρ) in Eq. (64), let us first note that a typical equilibrium solution to our model produces a
density profile which is composed by patches of constant density in which ρ = ρM

l or ρ = ρM
v . These patches are

linked by smooth transitions which span over a length scale
√
λ/a. Therefore, the function h(ρ) produces a smooth

and sufficiently fast transition between +1 and −1 when ρ varies in the interval ρ ∈
(
ρM

v , ρ
M
l

)
. As a consequence,

Eq. (64) enforces φs ≃ φ for values of the density close to ρM
v and φs ≃ π − φ for ρ ≃ ρM

l . The boundary condition190

(62)–(64) is also mass preserving. This is due to the fact that the surfactant gets quickly trapped on the liquid-vapor
interface and |∇c| is expected to be small everywhere else. Within the interface, there may be mass flow through
the boundary, but the net contribution will be approximately zero because h(ρ) is an odd function with respect to the
contact line, which is assumed to be located at ρ = (ρM

l + ρ
M
v )/2.

4.3. Continuous problem in the weak form195

Our derivation is based on a weak form of the governing equation. The usual practice to derive a weak form of
a third-order partial differential equation is to introduce additional fields to lower the order of the derivatives in the
variational form and use standard C0-continuous finite elements. Due to the use of IGA, we can generate globally C1-
continuous basis functions and avoid the introduction of additional degrees of freedom. However, in order to facilitate
the imposition of the boundary condition (61), we will introduce the new variable Υ = ∆ρ. The consequence of this200

choice is that our weak form will naturally enforce the boundary condition (61), which otherwise would have to be
built strongly in the finite element space. As we will see later, our formulation still requires the use of C1-continuous
basis functions and IGA due to the higher-order term in the surfactant equation.

We will consider that Eqs. (51)–(53) hold in Ω ⊂ R3. The boundary of Ω is denoted Γ. To derive our weak form,
let us introduce the trial solution space X = X(Ω). Let U = {ρ,u,Υ, c} be a typical member of X. We assume that
for all U ∈ X the velocity field satisfies the solid-wall Dirichlet boundary condition on Γ. For the remaining fields
in U, namely ρ, Υ, and c, Dirichlet boundary conditions are not very relevant in practical applications, so we do not
consider that case. The weighting function space Y = Y(Ω) is identical to X, but all restrictions on the Dirichlet
boundary are homogeneous. The variational formulation is stated as follows: Find U = {ρ,u,Υ, c} ∈ X such that
∀W = {w1,w2,w3,w4} ∈ Y,

B(W,U) = 0, (65)

2 The Maxwell states represent values of the density for which there is chemical and mechanical equilibrium. For a given temperature, they are
simply the equilibrium values of the liquid and vapor densities.

12



where

B(W,U) =
∫
Ω

w1 ∂ρ

∂t
dΩ −

∫
Ω

∇w1 · uρdΩ +
∫
Ω

w2 ·
(
ρ
∂u
∂t
+ u
∂ρ

∂t
− ρ f

)
dΩ −

∫
Ω

∇w2 : u ⊗ uρdΩ +
∫
Ω

∇w2 : (τ − pI) dΩ

+

∫
Ω

∇ · w2λ(c)
(
ρΥ +

1
2
|∇ρ|2

)
dΩ −

∫
Ω

∇w2 : λ(c)∇ρ ⊗ ∇ρdΩ −
∫
Ω

∇ · w2
(
αc2

2
+

cλ′(c)
2
|∇ρ|2

)
dΩ

+

∫
Ω

∇ · w2λ′ (c) ρ∇c · ∇ρdΩ +
∫
Ω

w3ΥdΩ +
∫
Ω

∇w3 · ∇ρdΩ −
∫
Γ

w3|∇ρ| cos(φ)dΓ +
∫
Ω

w4 ∂c
∂t

dΩ

−
∫
Ω

∇w4 · ucdΩ +
∫
Ω

ακ∇w4 · ∇cdΩ −
∫
Γ

w4κα |∇c| cos(φs)dΓ +
∫
Ω

κ

2
∇w4 · ∇

(
λ′(c) |∇ρ|2

)
dΩ

−
∫
Γ

w4 κ

2
λ′′(c) |∇ρ|2 |∇c| cos(φs)dΓ −

∫
Γ

w4κλ′(c)∇∇Tρ∇ρ · ndΓ (66)

Note that the variational formulation (65)–(66) weakly imposes the fluid dynamics and the surfactant equations as well
as the boundary conditions (61) and (62). Note also that if we do not set Dirichlet boundary conditions for velocity205

on the entire boundary, then the variational formulation weakly imposes the conjugate stress-free condition.

4.4. Semidiscrete formulation

For the spatial discretization of Eq. (66) we make use of the Galerkin method. We define finite-dimensional
approximations of the functional spaces, namely, Xh and Yh, such that Xh ⊂ X ⊂ H2 and Yh ⊂ Y ⊂ H2. Here,
H2 denotes the Sobolev space of square integrable functions with square integrable first and second derivatives. We
approximate (66) by the following variational problem over the finite element spaces: Find Uh = {ρh,uh,Υh, ch} ∈Xh,
such that ∀Wh = {w1

h,w
2
h,w

3
h,w

4
h} ∈ Yh,

B(Wh,Uh) = 0, (67)

where

ρh(x, t) =
∑
A∈I
ρA(t)NA(x), w1

h(x, t) =
∑
A∈I

w1
ANA(x), (68)

uh(x, t) =
∑
A∈I

uA(t)NA(x), w2
h(x, t) =

∑
A∈I

w2
ANA(x), (69)

Υh(x, t) =
∑
A∈I
ΥA(t)NA(x), w3

h(x, t) =
∑
A∈I

w3
ANA(x), (70)

ch(x, t) =
∑
A∈I

cA(t)NA(x), w4
h(x, t) =

∑
A∈I

w4
ANA(x), (71)

In Eqs. (68) – (71), the NA’s are a set of basis functions defined onΩ and I is their global-index set. By taking the NA’s
as globally C1-continuous functions, we can define conforming discrete spaces that make the variational formulation
well defined.210

4.5. Time discretization and numerical implementation

In this section, we present the time integration algorithm for the semi-discrete Eq. (67). We employ the generalized-
α method, which was originally proposed by Chung and Hulbert [79] for the equations of structural dynamics, and
subsequently extended to the equations of fluid mechanics by Jansen et al. [87]. This method has also been success-
fully applied in other fields as fluid-structure interaction [88–90] and phase-field modeling [29, 45, 50].215
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4.5.1. Time stepping scheme
Let V denote the vector of control variable degrees of freedom and let V̇ be its time derivative. We define the

residual vectors

Rcont = {Rcont
A }, (72)

Rmom = {Rmom
A,i }, (73)

Raux = {Raux
A }, (74)

Rsur f = {Rsur f
A }, (75)

where A is a control-variable index and i is an index associated to the spatial dimensions. The residual components
are defined as

Rcont
A = B({NA, 0, 0, 0}, {ρh,uh,Υh, ch}), (76)

Rmom
A,i = B({0,NAei, 0, 0}, {ρh,uh,Υh, ch}), (77)

Raux
A = B({0, 0,NA, 0}, {ρh,uh,Υh, ch}), (78)

Rsur f
A = B({0, 0, 0,NA}, {ρh,uh,Υh, ch}), (79)

where ei is the ith cartesian basis vector. The time stepping scheme can be stated as follows: Given the discrete
approximation to the global vectors of control variables at time tn, namely, Vn, V̇n and the current time step ∆t =
tn+1 − tn find Vn+1 and V̇n+1 such that

Rcont(Vn+α f , V̇n+αm ) = 0, (80)

Rmom(Vn+α f , V̇n+αm ) = 0, (81)

Raux(Vn+α f , V̇n+αm ) = 0, (82)

Rsur f (Vn+α f , V̇n+αm ) = 0, (83)

Vn+1 = Vn + ∆t((1 − γ)V̇n + γV̇n+1), (84)

where

Vn+α f = Vn + α f (Vn+1 − Vn) , (85)

V̇n+αm = V̇n + αm

(
V̇n+1 − V̇n

)
, (86)

The parameters α f , αm and γ are chosen as in [45] to ensure second-order accuracy and unconditional stability of the
time-integration algorithm. The non-linear system of equations (80)–(83) may be approximated by using a Newton-
Raphson method, which leads to the following two-stage predictor-multicorrector algorithm.
Predictor stage: We adopt a constant-velocity predictor, that is,

V(0)
n+1 = Vn, (87)

V̇(0)
n+1 =

γ − 1
γ

V̇n, (88)

where the superscript with parentheses denotes the nonlinear iteration index.220

Multicorrector stage: Repeat the following steps for i = 1, 2, ..., imax or until convergence

1. Evaluate solution iterates at the α-levels

V(i)
n+α f
= Vn + α f

(
V(i−1)

n+1 − Vn

)
, (89)

V̇(i)
n+αm
= V̇n + αm

(
V̇(i−1)

n+1 − V̇n

)
. (90)
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2. Use the solutions at the α-levels to assemble the residual and the tangent matrix of the linear system

∂Rcont
(i)

∂V̇n+1
∆V̇(i)

n+1 = −Rcont
(i) , (91)

∂Rmom
(i)

∂V̇n+1
∆V̇(i)

n+1 = −Rmom
(i) , (92)

∂Raux
(i)

∂V̇n+1
∆V̇(i)

n+1 = −Raux
(i) , (93)

∂Rsur f
(i)

∂V̇n+1
∆V̇(i)

n+1 = −Rsur f
(i) . (94)

The resulting linear system is solved using a preconditioned GMRES algorithm [91]. In particular, as precon-
ditioner we have used an incomplete LU factorization. For the numerical examples presented here, solving the
linear system with a tolerance of 10−5 requires normally 30 to 40 GMRES iterations.

3. Use ∆V̇(i)
n+1 to update the iterates as

V̇(i)
n+1 = V̇(i−1)

n+1 + ∆V̇(i)
n+1, (95)

V(i)
n+1 = V(i−1)

n+1 + γ∆t∆V̇(i)
n+1, (96)

This completes one nonlinear iteration. The nonlinear iterative algorithm should be repeated until the norm of each225

of the residual vectors defined in (72)–(75) has been reduced to a given tolerance ϵr of its value using the predictions
defined in (87)-(88). In this work, we use ϵr = 10−4. For the examples presented herein, this typically requires two to
four nonlinear iterations.

5. Numerical examples

In this section we present a series of numerical examples that illustrate the predictive ability of our model and the230

effectiveness of our computational method. The first group of numerical examples shows how surface tension relates
with the parameters of the problem and how our model succeeds in reproducing the way in which surfactants lower
surface tension. The second simulation demonstrates that surfactants are naturally trapped at liquid-vapor interfaces
in accordance with the physical behavior of surface active agents. For this example, we also plot the evolution of
the free energy with respect to time, showing that it decreases monotonically as it was imposed in the derivation of235

the theory. Subsequently, we present a numerical simulation in which a drop of water is being attached to a solid
boundary. The aim is to point out that our theory easily allows to model how the contact angle between the liquid-
vapor interface and the boundary is modified due to the presence of the surfactant. The last example involves the
three-dimensional coalescence of two vapor bubbles. For all the examples, we neglect body forces taking f = 0 in
Eq. (13). In order to test our code for NSK with surfactants, we have also run several numerical computations (not240

included in the manuscript) taking the surfactant concentration to zero in the residual. Then, we have verified that
these results agree with overkill numerical solutions to the NSK equations. We have also repeated these computations
adding the surfactant equation to the residual, but taking very small values for β. In all cases, we achieved the expected
results.

All the parameters and the results presented in Section 5 are given in non-dimensional form. We have rescaled the
units of measurement of length, mass, time and temperature by L0, bL3

0, L0/
√

ab and θc, respectively, where L0 = 1
denotes a length scale of the computational domain size. Using this non-dimensionalization, it may be shown that the
dynamics of the governing equations are controlled by four dimensionless numbers,

Re =
L0b
√

ab
µ̄

, Ca =
√
λmin/a
L0

, Ba =
α

ab2 , Pe =
L0
√

ab
κα

, (97)

where Re is the Reynolds number, Ca denotes the capillary number, Ba is the non-dimensional form of α and Pe is
the Peclet number. The capillary number Ca and the Reynolds number Re were chosen according to the methodology
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proposed in [45], which relates these parameters to the computational mesh. The objective of this upscaling method
is to obtain the largest Reynolds number and the lowest capillary number that can be resolved by a particular mesh.
To this end, in [45] the authors propose to scale Ca and Re as

Ca = h/L0 and Re = ϕL0/h, (98)

where h is a characteristic length scale of the spatial mesh and ϕ is an O(1) constant. We have adopted ϕ = 2 for all245

the computations. The reader is referred to [45] for further details about this method.

Remarks

1. Note that Eqs. (97) and (98) imply that λmin is related to the mesh size h by the expression λmin = ah2.
2. Note also that the interface thickness

√
λ/a depends on the surfactant concentration through the relation

√
λ/a =√

λming(c)/a = h
√

g(c).250

5.1. Surface tension in the proposed model

It is already known the way surface tension and the NSK parameters are related (see, for example, [61]). In
particular, the effect of surface tension σLV is implicitly included in the NSK model by the relation

σLV ≃ K0
√
λ, (99)

where K0 is a nonlinear function of θ. Eq. (99) is accurate for values of the temperature close to the critical temperature
θc. Our goal is to show that (99), or equivalently, the non-dimensional form

γLV ≃ k0Ca
√

g(c) (100)

stands approximately for the NSK model with surfactants, where γLV is the non-dimensional surface tension, k0 is a
constant for a given temperature and g(c) has been defined right after Eq. (58). With this purpose, we have carried out
a number of numerical simulations (each point in Fig. 3 represents a computation) for different initial conditions of the
surfactant. In all cases, the initial configuration for the density was the same, namely, it consisted in two vapor bubbles
of radius R1 = 0.17 and R2 = 0.1 centered at C1 = (0.35, 0.5) and C2 = (0.75, 0.5), respectively. The initial values
of the density for the liquid and the vapor phases were those corresponding to the Maxwell states3. As expected, the
two bubbles merge into one circular vapor area, whose radius is given by the temperature (see, e.g., [45]). The initial
density condition does not have an impact on the scaling that we want to analyze, so the study could be repeated with
different density initial conditions and the results would not be altered. For the surfactant, we have employed in all
cases a flat initial condition representing a constant surfactant concentration. Different simulations employed different
values of the constant so as to vary the right-hand side of Eq. (100). In each simulation we have waited for the steady
state and then we have measured the radius r of the resulting bubble and the pressure difference ∆p between the liquid
and the vapor phases. Then, we have used the two dimensional form of Young-Laplace equation

∆p =
γLV

r
, (101)

to define an estimate of surface tension at the liquid-vapor interface, that is, γLV = r∆p. Finally, we have plotted
(see Fig. 3) our estimate of suface tension with respect to Ca

√
g(c). This procedure was carried out for two different255

temperatures, θ = 0.7 and θ = 0.85.

3 The Maxwell States for the liquid (ρM
l ) and the vapor phases (ρM

v ) employed in the numerical examples of Sect. 5.1 are those listed below:

θ ρM
v ρM

l
0.85 0.10 0.60
0.7 0.04 0.71
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The computational domain, Ω = (0, 1)2 , was comprised of 128 C1-quadratic elements in each direction. We
adopted periodic boundary conditions. The other parameters employed in these computations are Re = 256, Ca =
0.0078125, Ba = 0.1 and Pe = 500. The time step used was constant and equal to ∆t = 0.01.

As it can be seen in Fig. 3, the surface tension follows approximately a linear relation with the values of the260

capillarity function at the interface. This proves that the parameter k0 remains constant in our model for given tem-
peratures close to the critical temperature θc. Thus, the expression (100) is valid for the theory presented herein. We
have also plotted our estimate of surface tension with respect to the surfactant concentration at the interface (see inset
in Fig.(3)), which makes evident that surface tension decreases with surfactant concentration. This is in agreement
with the behavior of most of the surfactants employed in the chemical industry.265
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Figure 3: Non-dimensional plot of our estimate of surface tension r∆p as a function of capillarity for two different temperatures. For the steady
state, surface tension scales almost linearly with the values of the capillarity function at the interface. In the inset we also plot surface tension as a
funcion of the surfactant concentration at the interface. Note that surface tension decreases with surfactant concentration.

5.2. Trapping of surfactant at the liquid-vapor interface
This numerical example shows how our model naturally predicts the trapping of the surfactant at the liquid-vapor

interface. As shown in the previous example, the surfactant can also change the properties of the interface, which, in
turn may alter the dynamics of the system, for example, inhibiting partially or completely the coalescence of vapor
bubbles. This example illustrates both phenomena. Finally, we also use this computation to show that the free-energy270

defined in Eq. (9) decreases along solutions to the governing equations. We have carried out a numerical simulation
predicting the dynamics of three vapor bubbles (see left column in Fig. 4) using the traditional NSK model without
surfactants (see [45] for further details). Then, we repeated exactly the same simulation with the theory presented
herein (middle and right columns in Fig. 4).

Three bubbles of radius R1 = 0.11, R2 = 0.18 and R3 = 0.08 were initially centered at C1 = (0.25, 0.45),275

C2 = (0.65, 0.45) and C3 = (0.51, 0.70). The initial condition for the density variable [see Figs. 4(a) and 4(b)] inside
and outside of the bubbles was that corresponding to the Maxwell states of the vapor (red color) and the liquid water
(blue color), respectively, for a temperature θ = 0.85, that is, ρM

v = 0.10 and ρM
l = 0.60. We have used a uniform

mesh comprised of 512 C1-quadratic elements in each direction and we have imposed periodic boundary conditions.
In both simulations we have employed Re = 1024 and Ca = 0.001953125. For the NSK theory with surfactant we280
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(a) t = 0.0 (b) t = 0.0 (c) t = 0.0

(d) t = 3.5 (e) t = 37.5 (f) t = 37.5

(g) t = 8.5 (h) t = 212.5 (i) t = 212.5

(j) t = 43.75 (k) t = 337.5 (l) t = 337.5

Figure 4: Simulation of three vapor bubbles using the NSK theory without surfactant (left column) and with surfactant (middle and right columns).
In both cases, we use a square-shaped domain Ω = (0, 1)2 composed of 5122 elements. The initial configuration consists in three vapor bubbles
[red color in the density plots (a) and (b)] deposited on a liquid matrix (blue color). For the NSK theory with surfactant we also adopt as initial
condition an homogeneous distribution of the surfactant concentration, namely, c0 = 0.8. Comparing the density plots of both theories (left and
middle columns) we can see that the NSK model with surfactant inhibits the coalescence of the small and big bubbles. Since the surfactant is
attracted by the areas with higher density gradients, the surfactant concentration increases at the interfaces (green color in the surfactant plots). The
parameters used in these simulations are Re = 1024, Ca = 0.001953125, Ba = 0.005 and Pe = 10000.
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Figure 5: Plot of the total free energy of the system (red color) and the surfactant free energy U (green color) with respect to time. The total energy
is a monotonically decreasing function in agreement with the conditions imposed during the derivation of our model. The surfactant energy reaches
two peaks in the moments previous to the collapse of the smaller bubbles. Initially, the surfactant concentration is uniform. We have used the
parameters Re = 1024, Ca = 0.001953125, Ba = 0.005 and Pe = 10000.

have adopted Ba = 0.005 and Pe = 10000. Initially, the surfactant [see Fig. 4(c)] was evenly distributed on the whole
domain so that the initial surfactant concentration was the constant c0 = 0.8. In both cases, we used a constant time
step equal to ∆t = 0.00125.

In Fig. 4 we plot the evolution of the density for the NSK theory (left column) and the evolution of the density and
surfactant concentration for the NSK theory with surfactant (middle and right columns) for different time steps until285

a steady state is reached. As it can be seen, in the simulation without surfactants, the bubbles that are closer are able
to coalesce [Fig. 4(d)]. However, the presence of the surfactant can inhibit the coalescence of these two bubbles [Fig.
4(e)], altering the behavior of the system. The surfactant is attracted by the regions with a higher density gradient,
that is, the interfaces between the vapor and the liquid phases (see the right column of Fig. 4). This is in agreement
with the physical behavior of surface active agents.290

Fig. 5 (red line) shows the time evolution of the free-energy of the system [see Eq. (9)], which is monotonically
decreasing as predicted by the theory. For further insight into the model, we also plot the evolution of the free energy
corresponding to the surfactant (green line), that is, U in Eq. (46). There is no reason why we should expect U to be
a decreasing function of time, and, in fact, it is not. One can observe two sharp increases in the surfactant free energy
at times t ≃ 50 and t ≃ 215, which coincide with the previous instants to the disappearance of each of the bubbles295

[see Figs. 4(h) and 4(i)]. When bubbles collapse, the surfactant gets trapped in smaller areas and therefore, achieves
higher concentrations. The oscillatory behavior of the surfactant free energy at early stages (t < 20) is caused by
the initial conditions4. The initial condition for the surfactant is a flat function representing a constant value. The
surfactant gets quickly trapped at the interfaces and produces strong dynamics at early times, which manifests itself
with small-amplitude oscillations in the surfactant free energy.300

4We have repeated the computation with a time step four times smaller to make sure that the oscillatory behavior was not a consequence of the
discretization errors.
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5.3. Attachment of a drop of water to a wall

In all the previous simulations we have imposed periodic boundary conditions. However, in this case we will try
to emulate how the presence of the surfactant may modify the contact angle φ between a drop of water and a solid
substrate. For ideal solid surfaces, where the solid is flat and rigid, the equilibrium contact angle φE between the
liquid-vapor interface and the boundary is given by Young equation, that is,

γS L + γLVcos(φE) = γS V (102)

where γS V and γS L are the surface tension at the solid-vapor interface and at the solid-liquid interface, respectively.
Young’s relation (102) and expression (100) allow us to approximate the contact angle φ as

cos(φ) ≃ γS V − γS L

γLV
≃ ε

Ca
√

g(c)
(103)

where we consider ε =
γS V − γS L

k0
as a positive constant. Therefore, the boundary condition (61) becomes

∇ρ · n = |∇ρ| ε

Ca
√

g(c)
(104)

Analogously, (62) takes on the form

∇c · n = |∇c| ε

Ca
√

g(c)
h (ρ) (105)

where h(ρ) is given by (64).
In order to illustrate the effectiveness of our model we have carried out the following numerical simulation (see

Fig. 6). A drop of liquid water [blue color in Fig. 6(a)] is initially located close to a solid boundary where we are
imposing (104) and (105). In the horizontal direction we adopt periodic boundary conditions. The computational305

domain is a rectangle Ω = (0, 1.0) × (0, 0.5) and the computational mesh is uniform and composed of 256 × 128
C1-quadratic elements. Initially, the water droplet has a radius R = 0.12 and is centered at C = (0.5, 0.15). For
the initial values of the density in the liquid and the vapor phase we use the Maxwell States at θ = 0.85, that is,
ρM

l = 0.60 and ρM
v = 0.10. The initial distribution for the surfactant is the one indicated in Fig. 6(b) and it consists of

a drop of surfactant of radius Rs = 0.05 (green color) located near to the upper boundary, more specifically, centered at310

Cs = (0.5, 0.4). Note that the water droplet is attracted by the lower boundary due to the capillary forces [see Fig.6(e)],
as we have neglected gravity forces. The parameters used in this numerical example are Re = 512, Ca = 0.00390625,
Ba = 0.04, Pe = 125 and ε = 0.003845215. The time step was constant and equal to ∆t = 0.0001. From Eq.
(104), it is obvious that different initial conditions for the surfactant would lead to different static contact angles. This
phenomena is very important to control wettability with surfactants in practical applications.315

5.4. Coalescence of vapor bubbles in three dimensions

This example shows the details of two coalescing bubbles with surfactants in three dimensions (see Fig. 7). The
computational domain is the cube Ω = (0, 1)3 which is discretized with 128 C1-quadratic elements in each direction.
The two vapor bubbles have a radius R1 = 0.12 and R2 = 0.25 and they are initially centered at C1 = (0.35, 0.57, 0.5)
and C2 = (0.70, 0.40, 0.50). The initial values of the density for the liquid and the vapor phases are those corresponding320

to the Maxwell states at θ = 0.85, that is, ρM
l = 0.60 and ρM

v = 0.10. For the surfactant [see Fig.7(a)], we have adopted
a constant initial condition, namely, c0 = 0.8. The rest of the parameters are Re = 256, Ca = 0.0078125, Ba = 0.01,
Pe = 1000 and ∆t = 0.005. We impose periodic boundary conditions in all directions.

In order to facilitate the visualization of the results in the surfactant plot (see Fig. 7), we have made a clip of
the cubic domain. Moreover, we are plotting an isocontour surface of the density (grey color) which represents the325

liquid-vapor interface so that we can know where the bubbles are located. As in the previous examples, the surfactant
(green color in Fig. 7) is trapped by the regions with a higher density gradient, that is, the liquid-vapor interfaces (grey
color).

20



6. Conclusions

We propose a model for single-component, two-phase flow with surfactants. The fluid naturally undergoes phase-330

transformations between vapor and liquid states. The model is derived from a free-energy functional using the thermo-
dynamics framework and successfully predicts important features of two-phase flow with surfactants. For example,
the model predicts that the surfactant reduces the liquid-vapor surface tension and is naturally trapped at the interface,
as observed in experiments.

The discretization of the model poses significant challenges for classical numerical algorithms due to the pres-335

ence of higher-order derivatives, stiffness in space and time an the existence of moving interfaces. We propose a
computational method based on Isogeometric Analysis that leads to an efficient and accurate numerical solution.

Finally, we show the viability of our theoretical framework and numerical algorithm by showcasing several exam-
ples of vapor bubble dynamics in two and three dimensions. We believe our model has significant potential to study
the influence of surfactants on phase transformations. In the future, we plan to extend it to the non-isothermal case.340
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(a) t = 0.0 (b) t = 0.0

(c) t = 0.275 (d) t = 0.275

(e) t = 0.75 (f) t = 0.75

(g) t = 1.5 (h) t = 1.5

(i) t = 29.25 (j) t = 29.25

Figure 6: Evolution of density (left) and surfactant concentration (right) for the attachment of a drop of water to a wall. The commputational
domain is the rectangle Ω = (0, 1.0)× (0, 0.5) and the computational mesh is u¡niform and composed of 256×128 C1-quadratic elements. Initially,
a drop of liquid water (blue color in the density plot) is located close to the lower boundary where we are controlling the contact angle as a function
of surfactant concentration. In the horizontal direction we adopt periodic boundary conditions. The surfactant is initially concentrated close to
the upper boundary (Fig. 6(b)) though it is rapidly attracted by the liquid-vapor interface (green color in the surfactant plot). The water droplet is
attracted by the lower boundary due to the capillary forces (see Fig.6(e)). Note that we are neglecting gravity forces. We have adopted Re = 512,
Ca = 0.00390625, Ba = 0.04, Pe = 125 and ε = 0.003845215.
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(a) t = 0.0 (b) t = 1.75

(c) t = 3.75 (d) t = 9.85

Figure 7: Evolution of surfactant concentration for the three dimensional coalescence of two vapor bubbles. The computational domain is the
cube Ω = (0, 1)3 , which is composed of 1283 C1-quadratic elements. We impose periodic boundary conditions in all directions. Initially, an
homogeneous distribution of the surfactant concentration is adopted (Fig.7(a)), namely, c0 = 0.8. We have made a clip of the geometry to facilitate
the visualization of the results. We are plotting an isocontour surface of the density (grey color) which represents the liquid-vapor interface. The
surfactant is trapped by the regions with higher density gradients, that is, the liquid-vapor interfaces. We have used the parameters Re = 256,
Ca = 0.0078125, Ba = 0.01 and Pe = 1000.
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