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Abstract

In this paper, we introduce hybrid-degree weighted T-splines by means of lo-

cal p-refinement and apply them to isogeometric analysis. Standard T-splines

enable local h-refinement, however, they do not support local p-refinement.

To increase the flexibility of T-splines so that local p-refinement is also avail-

able, we first define weighted B-spline curves of hybrid degree. Then we

extend the idea to weighted T-spline surfaces of hybrid degree. A transition

region is defined so as to stitch the locally p-refined region with the rest of

the mesh. The transition region has the same basis function degree as the

p-refined region, and the same surface continuity as the rest of the mesh.

Finally, we compare the performance of odd-, even-, and hybrid-degree T-

splines over an L-shaped domain governed by the Laplace equation and create

high-genus surfaces using hybrid-degree weighted T-splines.
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1. Introduction

Isogeometric analysis (IGA) adopts the same basis functions for geomet-

ric modeling and numerical analysis in order to fill the gap between these

two fields [1]. Currently, the two popular basis functions in IGA are non-

uniform rational B-splines (NURBS) [2–4] and T-splines [5–7]. The higher

interelement continuity of these spline spaces leads to significant advantages

in analysis in comparison with C0-continuous Lagrange polynomials used in

the conventional finite element method such as, e.g., enhanced robustness

in structural mechanics [8], improved accuracy per degree-of-freedom in fluid

mechanics [9], among others. Fluid-structure interaction (FSI) methods ben-

efit from the aforementioned advantages and have been an active field in IGA,

both body-fitted methods [10–15] and immersed methods [16–20] have been

investigated. Furthermore, the higher continuity of splines enables to solve

higher-order partial differential equations in primal form [21–27] and to col-

locate partial differential equations in strong form [7, 28–32].

The efficiency of any computational method depends strongly on its local

refinement capabilities. Unfortunately, NURBS only allow global refinement,

which is an important limitation in both design and analysis. T-splines

were presented as a generalization of NURBS that allow local h-refinement

by introducing T-junctions. T-splines were presented in CAD in [5] and

brought to analysis in [6]. An important subset of T-splines was later defined,

the so-called analysis-suitable T-splines (ASTS). ASTS were mathematically

shown to satisfy all the important mathematical properties of NURBS while

maintaining the local h-refinement capability of T-splines. This was first
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demonstrated for cubic ASTS [33–36] and then for arbitrary degrees [37, 38].

The subset of ASTS is defined based on a simple topological constraint,

namely, T-junction extensions from different parametric directions cannot

meet with each other. T-splines with arbitrary topology can be obtained by

introducing extraordinary nodes. The topological constraints in order to get

cubic ASTS in the presence of extraordinary nodes were explained in [39].

Finally, these topological constraints can be relaxed by the use of weighted

T-splines leading to higher flexibility [40, 41].

Local h-refinement of T-splines was first studied in [42], introducing the

refinement matrix. An optimized T-junction extension algorithm was devel-

oped for local h-refinement of analysis-suitable T-splines [43]. Some adaptive

h-refinement schemes have a linear computational complexity [44, 45], pre-

serving linear independence of the basis functions. Hierarchical T-splines

were proposed in [46], together with its analysis-suitability and refinabil-

ity. Truncated hierarchical basis functions were also used to perform local

h-refinement while ensuring partition of unity and linear independence, such

as truncated hierarchical B-splines (THB) [47] and truncated hierarchical

Catmull-Clark surfaces (THCCs) [48, 49].

As local h-refinement of T-splines was well studied, local p-refinement

of T-splines has not been studied yet. Basis functions with elevated degree

need to be defined over the whole geometry for global p-refinement. Degree

elevation of B-spline curves was first studied in [50], which presents an algo-

rithm to elevate the degree by one. Efficient algorithms were developed to

raise the degree of B-spline curves/surfaces by representing a curve/surface

of degree m with the linear combination of curves/surfaces of degree m + 1
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[51, 52]. Then a fast algorithm was developed to elevate the degree by arbi-

trary times [53]. A software-engineering approach was presented for degree

elevation of B-spline curves with competitive performance in speed and ac-

curacy [54]. Bézier basis functions were also used for the degree elevation

of B-splines, which first raise the degree of Bézier elements and then remove

unnecessary knots for desired surface continuity [2]. Multi-degree splines

were first introduced comprising segments with different degrees of at most

3 in one spline curve [55], where the basis functions are defined based on

knot intervals like regular B-splines. Then the basis was extended with ar-

bitrary various degrees and improved curve continuity [56]. A de Boor-like

evaluation approach for multi-degree spline curves was then developed which

supports local h-refinement by knot insertion and Bézier representation [57].

However, spline surfaces of multiple degree have not been studied yet.

In this work, we study weighted T-spline basis functions of both odd and

even degree in detail. With a designed T-mesh splitting scheme, hybrid-

degree weighted T-splines are proposed, supporting both local p-refinement

and local h-refinement. The local p-refinement introduces a limited number

of new control points to the T-mesh. Basis functions of different degrees are

defined over the domain. The degree of basis functions of the refined re-

gion and transition region is elevated by one after local p-refinement. An L-

shaped domain is parameterized with odd-, even- and hybrid-degree weighted

T-splines. The Laplace equation is solved over this domain, showing the ad-

vantage of hybrid-degree T-splines. High-genus surfaces with extraordinary

nodes are also parameterized with hybrid-degree weighted T-splines.

The layout of this paper is as follows. T-splines of arbitrary degree are re-
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viewed in Section 2, together with arbitrary-degree weighted T-splines. How

to generate hybrid-degree weighted T-splines is given in Section 3. Isogeo-

metric analysis is performed over over hybrid-degree weighted T-splines in

Section 4 and various high-genus surfaces are constructed. The conclusions

are given in Section 5 with proposed future work.

2. Arbitrary Degree T-splines

T-splines of arbitrary degree are briefly reviewed here. For further details,

we suggest the readers refer to [5–7, 42]. T-splines discussed here have the

same degree in the two parametric directions. We classify them into even- and

odd-degree T-splines. T-splines with p = 2 and p = 3 are used as examples to

explain the definitions and show the comparison. T-splines of higher degree

can be deduced analogously.

2.1. T-spline Basics

A T-mesh contains all the topological information of a T-spline and is

composed of vertices, edges and faces. Knot intervals are non-negative real

numbers assigned to T-mesh edges. A valid T-mesh configuration requires

that the sum of knot intervals assigned to opposite edges of a face stays the

same. To maintain the open knot vector property, T-meshes have ⌊p/2⌋ rings

of edges with zero-length knot intervals, where the ⌊⋅⌋ represents the integer

part of a real number. For example, Fig. 1(a) shows a T-mesh with one ring

of edges with zero-length knot intervals. The unshaded faces have edges with

zero-length intervals. This T-mesh can be used to define basis functions of

either p = 2 or p = 3.

5



(a) (b) (c) (d) (e)

Figure 1: (a) T-mesh with two selected T-junctions marked with blue squares. The T-

meshes with extensions of these two T-junctions are given in (b) when p = 2 and (c) when

p = 3. The solid red lines represent edge extensions, and the dashed red lines represent

face extensions. (d) and (e) show the elemental T-mesh when p = 2 and p = 3, respectively.

T-junctions are the interior vertices of valance-3 and analogous to hang-

ing nodes in finite element meshes. The blue squares in Fig. 1(a) are two

selected T-junctions. T-junction extension was first discussed in [36], includ-

ing face extension and edge extension. A face extension is a line obtained by

moving from the T-junction along the missing edge direction until ⌊(p+1)/2⌋
orthogonal edges are encountered. An edge extension is a line obtained by

moving opposite to the face extension direction until ⌊p/2⌋ orthogonal edges

are encountered. For example in Fig. 1(b, c), the face extensions are marked

with dashed red lines, and edge extensions are marked with solid red lines

when p = 2 and p = 3. For general analysis-suitable T-splines of arbitrary de-

gree, it is required that T-junction extensions cannot meet with each other

from different parametric directions [37]. Edge and face extensions are used

to check if analysis-suitable requirements are satisfied by the T-mesh. By

only drawing all the face extensions and excluding faces with zero-length in-

terval edges in the T-mesh, we obtain the elemental T-meshes as shown in

Fig. 1(d, e).
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(a) (b)

Figure 2: Three basis functions of different degrees are given with their local knot vectors

and supported regions shaded with light blue. (a) p = 2 with blue dots representing the

anchors; and (b) p = 3 with red dots representing the anchors.

Anchors are used to determine the local knot vectors and each anchor

is associated with one T-spline basis function. For even degree T-splines,

anchors are placed at the centers of the faces. As shown in Fig. 2(a), each

blue dot represents an anchor. For odd degree T-splines, anchors are placed

at each vertex, represented with red dots in Fig. 2(b). Local knot interval

vectors are inferred from the T-mesh. A local knot interval vector in the ξ

direction is a sequence of knot intervals ∆Ξ̂ = {∆ξ̂1,∆ξ̂2,⋯,∆ξ̂p+1}. There

are p+1 interval values in each local knot interval vector. The corresponding

local knot vector is a non-decreasing knot sequence Ξ̂ = {ξ̂1, ξ̂2,⋯, ξ̂p+2} such

that ∆ξ̂i = ξ̂i+1− ξ̂i. Each anchor is assigned with two local knot vectors along

two parametric directions.

To obtain local knot interval vectors, we shoot rays in each parametric

direction (both positive and negative) to place a segment centered in the
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anchor crossing exactly p + 2 orthogonal edges. Note that “centered in the

anchor” means that the segment crosses the same number of orthogonal edges

on the left- and right-hand sides of the anchor, and spans a particular set of

p + 1 edges. The knot interval values of the spanned edges are placed into

the local knot interval vector consecutively. Zero-length edges are appended

when a boundary is crossed before enough orthogonal edges are found.

Based on the local knot interval vectors, local knot vectors are obtained

and T-spline basis functions are defined. If a T-spline basis function has non-

zero value over one region covered in the T-mesh, then it has support over

the geometry in the physical domain extracted from that region. The light

blue regions in Fig. 2 show the support of different T-spline basis functions

associated with the selected anchors.

T-splines of arbitrary degree are defined element-wise. For element e

in the elemental T-mesh, suppose Ne = {N e
i (ξ, η)}n

e

i=1 is the vector of T-

spline basis functions having support over e. N e
i (ξ, η) is the basis function

mapped to the parent element ◻ = [−1,1]2 with the affine map introduced in

[58]. Then the T-spline geometry is defined by the element geometric map,

xe ∶ ◻ → Ωe, from the parent element domain to the physical domain as

xe =

ne

∑
i=1
wiPe

iN
e
i (ξ, η)

ne

∑
i=1
wiN e

i (ξ, η)
, (1)

where Pe
i is the corresponding control point of the basis function N e

i (ξ, η),
and wei is the corresponding weight. Note that Pe

i , w
e
i are all mapped from

global to local numbering by the IEN array [58] such that Pe
i = PIEN(i,e) and

wei = wIEN(i,e). The element control points Pe is a matrix of dimension ne×ds,
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where ds is the spatial dimension. Analysis-suitable T-splines of arbitrary

degree satisfy polynomial partition of unity, which means
ne

∑
i=1
N e
i (ξ, η) = 1.

When wei = 1.0 for any Pe
i , Eqn. (1) is simplified as

xe =
ne

∑
i=1

Pe
iN

e
i (ξ, η). (2)

In the following, we set the weights of all the control points are 1.0 for the

sake of brevity.

2.2. Bézier Element Extraction

Based on the Bézier extraction algorithm [58, 59], T-spline basis functions

can be represented as linear combinations of Bézier basis functions. Each

element in the elemental T-mesh corresponds to one Bézier element. The eth

Bézier element in the physical domain can be represented as

xe =
ne

∑
i=1

Pe
iN

e
i (ξ, η) =

ne

∑
i=1

Pe
i

(p+1)2
∑
j=1

M e
ijBj(ξ, η), (3)

where Bj(ξ, η) is the jth Bézier basis function defined on the parent element,

and M e
ij is the Bézier extraction coefficient. By converting Eqn. (3) to matrix

format, we have

xe = (Pe)TNe = (Pe)TMeB, (4)

(a) (b)

Figure 3: Locally h-refined T-splines with Bézier representation. (a) p = 2; and (b) p = 3.
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where Pe is the matrix of control points, Me is the Bézier extraction matrix,

and B is the vector of Bézier basis functions. Eqn. (4) is the Bézier element

representation of T-splines. Fig. 3 shows a rectangular domain parameterized

with locally h-refined T-splines and Bézier element representations when p = 2

and p = 3.

2.3. Arbitrary-Degree Weighted T-splines

The subset of ASTS is defined based on a simple topological constraint,

namely, horizontal T-junction extensions cannot meet with vertical T-junction

extensions. If the quadtree subdivision algorithm is applied to a T-mesh, the

resulting T-mesh may violate the topological constraint mentioned above and

polynomial partition of unity may not be satisfied. However, polynomial par-

tition of unity can be recovered through the use of weighted T-splines [40].

Weighted T-splines enable to use more simple and localized h-refinement

strategies over the T-mesh such as, e.g., quadtree subdivision. For a T-

spline basis function Nj(ξ, η) with corresponding control point Pj obtained

from the knot insertion algorithm, if partition of unity is satisfied in all

the support of Nj(ξ, η), then the weighted T-spline basis function N̂j(ξ, η)
equals to Nj(ξ, η) and P̂j equals to Pj. Otherwise for Nj(ξ, η), the weighting

coefficients of children basis functions [40] or extracted Bézier basis functions

[41] are modified to obtain N̂j(ξ, η). The control points associated with

modified basis functions are computed solving a linear system [40]. The

detailed weighting coefficient modification algorithm is explained as follows.

Given a T-mesh, the weighted T-spline of degree p on the eth Bézier

element is defined as
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xe =
ne

∑
j=1

P̂e
jN̂

e
j (ξ, η) =

ne

∑
j=1

P̂e
j

(p+1)2
∑
k=1

M̂ e
jkBk(ξ, η) = (P̂e)TM̂eB, (5)

where N̂ e(ξ, η) are the weighted T-spline basis functions with support over

this Bézier element, P̂e
j are the corresponding control points. M̂e is the ma-

trix which transfers weighted T-spline basis functions to Bézier basis func-

tions. Bk(ξ, η) is the Bézier basis function. The IEN array is also used here

to handle the mapping from global to local numbering.

To obtain M̂e, we first calculate the Bézier transformation matrix Me for

regular T-spline basis functions N e
j (ξ, η). Note that with Me, partition of

unity may not be satisfied everywhere. For a Bézier basis function Bk(ξ, η),
the summation of calculated weighting coefficients (

ne

∑
j=1
M e

jk) from N e
j (ξ, η)

may not be 1.0. We modify Me to M̂e such that

M̂ e
jk =

M e
jk

ne

∑
i=1
M e

ik

. (6)

Consequently, the regular T-spline basis functions are replaced with weighted

T-spline basis functions and

ne

∑
j=1
M̂ e

jk = 1, k = 1,2,⋯, (p + 1)2 (7)

is always satisfied. Since Bézier basis functions satisfy partition of unity, we

have
ne

∑
j=1
N̂ e
j (ξ, η) =

ne

∑
j=1

(p+1)2
∑
k=1

M̂ e
jkBk(ξ, η) = 1, (8)

and weighted T-splines always satisfy polynomial partition of unity.

Note that we are normalizing each column of Me to obtain M̂e according

to Eqn. (6). This modification only involves elementary matrix operation
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and does not change the rank of the matrix. Since Me is in full-rank, M̂e is

also in full-rank. So the weighted T-splines of arbitrary degree are linearly

independent [36, 40, 41].

3. Hybrid-Degree Weighted T-splines

In this section, we introduce our algorithm to construct hybrid-degree

weighted T-splines by means of local p-refinement. We first introduce hybrid-

degree B-spline curves, and then generalize the ideas to hybrid-degree weighted

T-spline surfaces.

3.1. Hybrid-Degree B-spline Curves

Generally for B-splines, global degree elevation increases the degree of all

the basis functions. Suppose a cubic B-spline is defined on the open knot vec-

tor U = {u0, u0, u0, u0, u1, u2, ..., un, un, un, un}. There are n+3 basis functions.

To elevate it to quartic, each unique knot value in U is duplicated once to form

the new open knot vector U = {u0, u0, u0, u0, u0, u1, u1, u2, u2, ..., un, un, un, un, un},

based on which 2n + 3 new quartic B-spline basis functions are defined. The

detailed algorithm can be found in [2]. B-spline global degree elevation can

increase the degree of basis functions without modifying the geometry [2].

The disadvantages are that a lot of new control points are calculated and the

interelement continuity is not increased.

To construct hybrid-degree B-spline curves by means of local p-refinement,

we define the spline basis functions on local knot vectors instead of using a

global knot vector, which is analogous to what is done in T-splines. Fig. 4(a)

shows part of a cubic B-spline curve in the index space, where the orange

edge has knot interval value 0 and the black edges have knot interval value 1.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Local p-refinement of B-splines of p = 3. (a) The mesh of B-spline in the

index space, where the orange edge has knot interval value 0, and the black edges have

knot interval value 1; (b) the mesh in the parametric space, where the green edge is set

as the hybrid boundary; (c) the red squares represent the anchors to define cubic basis

functions; (d) for the green edge, the corresponding anchors to define supporting cubic

and quartic basis functions of are represented with the crossed-out red squares and blue

circles, respectively; (e) quartic basis functions are defined on the p-refined region; and (f)

the resulting anchors to define cubic and quartic basis functions . Both cubic and quartic

basis functions have support over the magenta transition region.

The B-spline in the parametric space is given in Fig. 4(b) with parametric

values. The red squares in Fig. 4(c) represent the anchors to define cubic

basis functions before p-refinement. To perform local p-refinement, we define

basis functions of degree p + 1 only on the refined region.

Knot Insertion. A Hybrid boundary is the edge where we add knots to

its ends so as to stitch the p-refined region with the rest of the curve. In Fig.

4(b), suppose we want to perform local p-refinement to the region u ≤ 4, then

the edge marked in green is the hybrid boundary.

There are four cubic basis functions (N3
i (u),4 ≤ i ≤ 7) that have support
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over the green edge before p-refinement. They are defined on local knot vec-

tors {0,1,2,3,4}, {1,2,3,4,5}, {2,3,4,5,6}, {3,4,5,6,7}, respectively. The

corresponding anchors are represented with crossed-out red squares in Fig.

4(d). To perform local p-refinement, two new knots (3 and 4) are inserted.

There are five quartic basis functions (N4
i (u),5 ≤ i ≤ 9) with support over

the green edge (see Fig. 5(b)). They are defined on local knot vectors

{0,1,2,3,3,4}, {1,2,3,3,4,4}, {2,3,3,4,4,5}, {3,3,4,4,5,6}, {3,4,4,5,6,7},

respectively, and the corresponding anchors are represented with blue circles

in Fig. 4(d). To preserve the open knot vector property, zero knot is also

inserted, shown in Fig. 4(e, f).

Definition of Basis Functions. We disactivate the basis functions of

degree p having support over the p-refined region and activate basis functions

of degree p+1 that have support over this region. In the p-refined region

(u ≤ 4), quartic basis functions are defined. The final anchors to define basis

functions over the whole domain are shown in Fig. 4(f). The defined basis

functions before and after local p-refinement as depicted in Fig. 4 are shown

in Fig. 5(a, b). In Fig. 5(a), the dashed red lines are the removed cubic

basis functions from the p-refined region. The solid blue lines in Fig. 5(b)

show the newly defined quartic basis functions in the p-refined region.

Transition Region. A Transition region connects the refined region

and the unchanged region. Only basis functions of degree p+ 1 have support

over the refined region (0 ≤ u ≤ 4 in Fig. 5(b)). Only basis functions of

degree p have support over the unchanged region (u ≥ 7 in Fig. 5(b)). Basis

functions of both degree p and p + 1 have support over the transition region

(4 ≤ u ≤ 7 in Fig. 5(b)). We use hybrid-degree B-splines to represent the
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(a) (b)

4 5 4 5 4 5

(c) (d) (e)

Figure 5: (a) Basis functions of p = 3 (red), where the dashed red basis functions are

removed; (b) basis functions of p = 4 (blue) are defined on the refined region; (c) Bézier

basis functions of p = 4 over region 4 ≤ u ≤ 5; (d) weighted Bézier basis functions obtained

from Eqn. (13); and (e) the difference between (c) and (d).

geometry over this region. Let us take the edge at 4 ≤ u ≤ 5 as an example.

There is one cubic basis function (N3
8 (u)) and three quartic basis functions

(N4
i (u),7 ≤ i ≤ 9) having support over it, shown in Fig. 5(b). To define the

geometry, we have

x = P3
8N

3
5 (u) +

9

∑
i=7

P4
iN

4
i (u), (9)

where P3
8, P4

i are the corresponding control points of the basis functions

N3
8 (u) and N4

i (u) respectively. P3
8 is the 8th vertex in the control polygon of

the original cubic B-spline. P4
i are the center points of each control polygon

edge, which are obtained by linear interpolation of the two vertices of the
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polygon edge. By representing the B-spline basis functions with Bézier basis

functions, we have

x = Pe,p
8

4

∑
j=1
M e,p

8j B
p
j (u) +

9

∑
i=7

Pe,p+1
i

5

∑
k=1
M e,p+1

ik Bp+1
k (u)

=
4

∑
j=1

Qe,p
j Bp

j (u) +
5

∑
k=1

Qe,p+1
k Bp+1

k (u),
(10)

where p = 3, M e,p
8j and M e,p+1

ik are the Bézier extraction coefficients. Qe,p
j and

Qe,p+1
k are the Bézier control points. Based on the degree elevation algorithm

for Bézier elements [2], we have

Qe,p+1
i = (1 − i − 1

p + 1
)Qe,p

i + i − 1

p + 1
Qe,p
i−1, i = 1,2,⋯, p + 2. (11)

When i = 1, i−1
p+1 = 0 and when i = p + 2, 1 − i−1

p+1 = 0. The undefined Qe,p
0

and Qe,p
p+2 do not jeopardize the integrity of Eqn. (11) and we set them as 0.

We move the superscript p of control points and Bézier extraction matrix to

subscript for convenience, and convert Eqn. (10) to matrix format

xe = (Pe
p)TMe

pB
p + (Pe

p+1)TMe
p+1B

p+1 = (Qe
p)TBp + (Qe

p+1)TBp+1. (12)

With Eqn. (11), Eqn. (12) is converted to

xe = (Qe
p)TTp+1

p Bp+1 + (Qe
p+1)TBp+1 = (Pe

p)TMe
pT

p+1
p Bp+1 + (Pe

p+1)TMe
p+1B

p+1

= ((Pe
p)TMe

pT
p+1
p + (Pe

p+1)TMe
p+1)Bp+1 = RTM

e

p+1B
p+1,

(13)

where Tp+1
p is obtained from Eqn. (11), R are the control points. M

e

p+1 is

the transformation matrix, and Bp+1 represent Bézier basis functions.

Partition of unity is not satisfied here. We recover partition of unity

through the use of weighted T-splines as explained in Section 2.3. Fig. 5(c)
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shows the five quartic Bézier basis functions. The calculated weights of the

five Bézier basis functions obtained from M
e

p+1 are 1.0,1.0,0.95833,0.95833

and 1.0, respectively. The weighted Bézier basis functions are shown in Fig.

5(d). The differences are shown in Fig. 5(e). Finally Eqn. (13) is converted

to

xe = RTM̂e
p+1B

p+1, (14)

which is used to define the hybrid-degree weighted B-splines over the transi-

tion region.

Remark 3.1. The hybrid B-spline defined over the transition region

is of degree p + 1, since we performed degree elevation to the Bézier basis

functions of degree p. But the surface continuity is Cp−1, which is the same

as the unchanged region. The reason is that basis functions of degree p have

support over this region.

3.2. Local p-refinement of T-splines

To explain local p-refinement of T-splines, we define the graph connecting

all the faces to introduce new zero-length edges as the hybrid boundary.

There are two types of hybrid boundaries, namely the interior boundary and

the extended boundary. Interior boundaries are the loops within the domain.

Extended boundaries contain faces lying on the boundary of the geometry.

We constrain that the hybrid boundaries cannot be reached by face extension

of any T-junction. In this way, T-junctions do not influence the faces lying

on the hybrid boundaries.

There are mainly three steps to perform local p-refinement. We first

determine the local parametric directions to split the faces on the hybrid
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boundaries. Then we split the faces along the detected directions to introduce

zero-length interval edges to the T-mesh. After the splitting we define higher

order basis functions over the p-refined region. The last step is to decide the

active original basis functions and calculate the new control points.

Here we take the T-mesh in Fig. 6(a) as an example. Since there is only

one ring of edges with zero-length intervals on the boundary of the T-mesh,

both basis functions of p = 3 and p = 2 can be defined on it. The three steps

are explained mainly based on odd degree T-splines. Even degree T-splines

are used to explain the difference and show the comparison.

Local Splitting Direction Detection (Step 1). Fig. 6(a) and (c)

show the interior and extended hybrid boundaries of the T-mesh, marked

in light green and light blue, respectively. We split the faces on the hybrid

boundaries to introduce zero-length interval edges across them. For a pair

of neighboring faces sharing an edge on the hybrid boundary, the splitting

direction is perpendicular to that edge. If a face has edges of two differ-

ent directions shared by other faces on the hybrid boundary, it should be

split in both directions. For example the faces on the corners of the hybrid

boundaries in Fig. 6(a) and (c) should be split in both directions.

T-mesh Splitting and Basis Function Definition (Step 2). With

the detected splitting directions, we split the faces on the hybrid boundaries

as shown in Fig. 6(b). If one face should be split in one direction, we split it

into three new faces. The new face in the middle has the same edge interval

values as the original faces, see the light green faces. The other two have

zero-length interval across the splitting direction, see the unshaded faces. If

a face should be split in both directions, nine new faces are generated. The
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m)

Figure 6: Local p-refinement of T-splines with p = 3 and p = 2. (a) Interior boundary

marked in light green; (b) T-mesh splitting result of (a); (c) extended boundary marked

in light blue; (d) T-mesh splitting result of (c) when p = 3; The yellow faces on the domain

boundary are split to preserve the open knot vector property; (e) T-mesh splitting result

of (c) when p = 2; (f-i) selected anchors to define active basis functions, where the adjacent

region is marked in cyan, the red and blue dots represent anchors located at corners and

centers of T-mesh faces, respectively, with p = 3 in (f, g) and p = 2 in (h, i); (j-m) the hybrid

T-splines with Bézier representation, where the transition region is marked in purple, and

the p-refined region is marked in pink, with p = 3 in (j, k) and p = 2 in (l, m).

one in the middle has the same interval values as the original one. The other

ones have either two or four edges with zero-length interval.
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In the p-refined region, if there are faces on the boundary of the domain,

then the open knot vector property should be satisfied after T-mesh splitting.

When performing local p-refinement to T-splines of odd degree, one new

boundary layer with zero-length interval edges is introduced. For T-mesh

in Fig. 6(c), if p = 3, there is one layer of faces with zero-length intervals.

After refining it to p = 4, there should be two layers. We equally split the

faces on the geometric boundary to two smaller ones. The splitting follows

the direction of the geometry boundary. If the face is at the corner of the

geometry, it is equally split into four smaller ones. In Fig. 6(d), those faces

marked in yellow are the newly generated faces with zero-length intervals. If p

is even, no boundary face splitting is required to satisfy the open knot vector

property. In Fig. 6(e), faces on the geometric boundary remain unchanged,

except those on the extended hybrid boundary.

After T-mesh splitting, we place anchors on both the corners and the

centers of T-mesh faces. Local knot vectors are inferred for each anchor. For

an anchor at the corner, a T-spline basis function of odd degree is defined.

Whereas for an anchor at the center, a T-spline basis function of even degree

is defined.

We define an adjacent region as the first-ring neighborhood of the hybrid

boundary beyond the p-refined region. In Fig. 6(f - i), the adjacent regions

are marked in cyan. All the basis functions of degree p + 1 in the p-refined

region are set as active. All basis functions of degree p beyond the adjacent

region are also set as active. When p is odd, the basis functions of degree

p + 1 at the face center in the adjacent region are set as active. In Fig. 6(f,

g), the anchors to define active cubic basis functions are represented with
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red dots. The anchors to define active p-refined quartic basis functions are

represented with blue dots. When p is even, the basis functions of degree

p + 1 at the corners shared by the adjacent region and the hybrid boundary

are set as active. In Fig. 6(h, i), the anchors to define active quadratic basis

functions are represented with blue dots, and the anchors to define active

cubic basis functions are represented with red dots.

Control Point Calculation (Step 3). Local p-refinement may slightly

change the geometry. The refinement algorithms introduced in [2] to calculate

control points cannot be used here because zero-length interval edges are only

introduced along the hybrid boundary. Here we introduce a direct way to

calculate the new control points from the original ones by linear interpolation.

We place five control points on each T-mesh element. Four are at the

corners and the last one is in the center. If p is odd, we use corner points

to interpolate the center control points for the new basis functions of degree

p + 1. For example in Fig. 7(a), a center control point C1 is calculated by

C1 =
P1 +P2 +P3 +P4

4
, (15)

where P1 ∼ P4 are four control points at the corners. If p is even, we use

center points to perform the interpolation. In Fig. 7(b), a corner control

point P1 is calculated by

P1 =
∆ξ2∆η2C1 +∆ξ1∆η2C2 +∆ξ1∆η1C3 +∆ξ2∆η1C4

(∆ξ1 +∆ξ2)(∆η1 +∆η2)
, (16)

where C1 ∼ C4 are four control points at the centers of the elements which

share P1. After the T-mesh splitting and control point calculation, we can

define the hybrid-degree weighted T-splines.
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(a) (b)

Figure 7: Interpolation scheme to obtain new control points. (a) Using corner control

points to calculate the center control point; and (b) using center control points to calculate

the corner control point.

3.3. Hybrid-Degree Weighted T-spline Construction

We define the hybrid-degree weighted T-splines with Bézier element rep-

resentation. In the p-refined region, only basis functions of degree p+ 1 have

support over extracted Bézier elements. In the unchanged region, only ba-

sis functions of degree p have support over extracted Bézier elements. Both

basis functions of degree p and p+1 have support over the Bézier elements ex-

tracted from the transition region. There are ⌊(p+1)/2⌋+1 rings of elements

in the transition region (see Fig. 6(j-m)).

Bézier elements in the p-refined or unchanged region are calculated using

Eqn. (4). Over the transition region, the hybrid-degree T-spline for the eth

element is defined as

xe = ∑
m

Pe
mN

e,p
m (ξ, η) +∑

n

Ce
nN

e,p+1
n (ξ, η) (17)
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when p is odd, and

xe = ∑
m

Ce
mN

e,p
m (ξ, η) +∑

n

Pe
nN

e,p+1
n (ξ, η) (18)

when p is even. In Eqns. (17)-(18), Pe
m, Pe

n are the corner control points,

and Ce
n, Ce

m are the center control points. N e,p
m (ξ, η) and N e,p+1

n (ξ, η) are the

active T-spline basis functions defined on the T-mesh after refinement. We

first derive the expression for T-splines of hybrid degrees when p is odd.

With the Bézier extraction algorithm, Eqn. (17) is converted to

xe = ∑
m

Pe
m

(p+1)2
∑
j=1

M e,p
mjB

p
j (ξ, η) +∑

n

Ce
n

(p+2)2
∑
k=1

M e,p+1
nk Bp+1

k (ξ, η)

=
p+1
∑
α=1

p+1
∑
β=1

Qe,p
α,βB

p
α,β(ξ, η) +

p+2
∑
α=1

p+2
∑
β=1

Qe,p+1
α,β Bp+1

α,β (ξ, η),
(19)

where M e,p
mj and M e,p+1

nk are the Bézier extraction coefficients. Bp
j (ξ, η) and

Bp+1
k (ξ, η) are Bézier basis functions of degree p and p + 1. We have j =

(α − 1) × (p + 1) + β, and k = (α − 1) × (p + 2) + β. Qe,p
α,β and Qe,p+1

α,β are the

Bézier control points.

We elevate the Bézier basis functions of degree p to p + 1 by extending

Eqn. (11) to 2D such that

Qe,p+1
α,β = (1 − α − 1

p + 1
)((1 − β − 1

p + 1
)Qe,p

α,β +
β − 1

p + 1
Qe,p
α,β−1)

+ α − 1

p + 1
((1 − β − 1

p + 1
)Qe,p

α−1,β +
β − 1

p + 1
Qe,p
α−1,β−1),

(20)

where α = 1,2,⋯, p + 2, and β = 1,2,⋯, p + 2. Similarly, the undefined Qe,p
0,β,

Qe,p
α,0, Q

e,p
p+2,β and Qe,p

α,p+2 do not jeopardize the integrity of Eqn. (20) since

they all have 0 coefficients, and they are set as 0. To obtain the matrix

format of Eqn. (19), we move superscript p of Bézier control points and
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Bézier extraction matrix to subscript for convenience. We have

xe = (Pe)TMe
pB

p + (Ce)TMe
p+1B

p+1 = (Qe
p)TBp + (Qe

p+1)TBp+1. (21)

With Eqn. (20), Eqn. (21) is converted to

xe = (Qe
p)TTp+1

p Bp+1 + (Qe
p+1)TBp+1 = (Pe)TMe

pT
p+1
p Bp+1 + (Ce)TMe

p+1B
p+1

= ((Pe)TMe
pT

p+1
p + (Ce)TMe

p+1)Bp+1 = (Re)TM
e

p+1B
p+1,

(22)

where

Re =
⎡⎢⎢⎢⎢⎢⎣

Pe

Ce

⎤⎥⎥⎥⎥⎥⎦
, Me =

⎡⎢⎢⎢⎢⎢⎣

Me
pT

p+1
p

Me
p+1

⎤⎥⎥⎥⎥⎥⎦
. (23)

Re are the control points, M
e

p+1 is the Bézier extraction matrix, and Tp+1
p is

obtained from Eqn. (20). Analogously we can get the same expression for

Eqn. (18) when p is even, except that

Re =
⎡⎢⎢⎢⎢⎢⎣

Ce

Pe

⎤⎥⎥⎥⎥⎥⎦
. (24)

As in Section 3.1, partition of unity is not satisfied necessarily. We use

weighted T-splines in order to restore partition of unity, namely, M
e

p+1 is

changed to M̂e
p+1 by normalizing each column of M̂e

p+1 with Eqn. (6). Thus

the hybrid-degree weighted T-spline is defined as

xe = (Re)TM̂e
p+1B

p+1. (25)

The calculated hybrid T-splines with different hybrid boundaries of p = 3 and

p = 2 are given in Fig. 6(j - m).

With the developed way to introduce zero-interval length edges and define

basis functions of degree p+1, the calculated T-spline surface is Cp-continuous
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at the p-refined region except the hybrid boundaries. It is Cp−1-continuous

at the unchanged region, the transition region, and the hybrid boundaries.

Remark 3.2. For now, the degree difference of basis functions over the

transition region is one. It is also possible to make the hybrid-degree weighted

T-splines more general by introducing further p-refined basis functions to

support the transition region, such as basis functions of degree p+ 2, or even

higher. For the transition regions, the surface continuity is determined by

the basis function with the lowest degree. The degree of extracted Bézier

element is determined by the basis function with the highest degree.

Handling Extraordinary Nodes. Hybrid-degree weighted T-splines

can also be used to perform local p-refinement to arbitrary topology sur-

faces with extraordinary nodes. Till now, the developed algorithms to deal

with extraordinary nodes always use cubic basis functions [39, 41, 60]. Since

extraordinary nodes influence their two-ring neighborhoods, we can apply in-

terior boundaries to enclose the two-ring neighborhood of each extraordinary

node. Then beyond the hybrid boundaries, we define T-splines of p = 2 or

p = 4. In this way, we can define hybrid T-spline surfaces of odd and even

degrees on arbitrary shape topology. However, directly using even degree

basis functions to deal with extraordinary nodes is still an open problem.

Remark 3.3. The main limitation of hybrid-degree weighted T-splines

is that the geometry may be slightly changed after the local p-refinement.

The reason is that we are defining basis functions of higher degree without

sacrificing the surface continuity, and basis functions of different degree have

support over the transition region. Zero-length interval edges are only intro-

duced to the hybrid boundaries, not to all the faces in the p-refined region.
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If we introduce the zero-length interval edges to all the p-refined region, the

surface change will only exist in the transition region. However this limi-

tation will not bring trouble to analysis of 2D flat surfaces or 3D solids if

the local p-refinement is performed such that the geometry boundary is not

modified.

4. Results and Discussion

Here we first test hybrid-degree weighted T-splines with a common patch

test of linear elasticity. Then, we use odd-, even- and hybrid-degree weighted

T-splines to solve a classical benchmark problem that can be physically in-

terpreted as a steady heat conduction. Finally, four other hybrid-degree

weighted T-spline surfaces are given.

4.1. Isogeometric Analysis using Hybrid-Degree Weighted T-splines

We perform a patch test on a unit square. The Young’s modulus is E =
1.0, and the Poisson’s ratio is ν = 0.3. Regarding the boundary conditions,

the displacement in x direction is set to be 0 and 0.1 on the left and right

boundaries, respectively. The displacement in y direction is set to be 0

on the bottom boundary and homogeneous Neumann boundary conditions

are imposed elsewhere. Hybrid-degree weighted T-splines with interior and

extended hybrid boundaries as shown in Fig. 6(a, c) are tested here. The

results are shown in Fig. 8. We obtain linearly distributed displacement

along x and y directions and uniform stress in x direction. The analysis

results give the exact solution to the problem up to the machine precision.

The second problem solved here is a heat transfer problem defined over

an L-shaped domain governed by the Laplace equation ∆u = 0 with ho-
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(a) (b) (c)

(d) (e) (f)

Figure 8: Patch test with weighted hybrid-degree T-spline with interior hybrid boundary

(a-c) and extend hybrid boundary (d-f). (a, d) Displacement along x direction; (b, e)

displacement in y direction; and (c, f) stress int x direction.

mogeneous Dirichlet boundary conditions on the re-entrant edges. Proper

Neumann boundary conditions are imposed on the remaining boundaries so

that the exact solution in polar coordinates (r, θ) is

u(r, θ) = r2/3 sin(2θ/3), r > 0 and 0 ≤ θ ≤ 3π/2. (26)

The problem setting is shown in Fig. 9(a). The domain is parameterized

with locally h-refined T-splines of p = 3 and p = 4 first. Then the hybrid-

degree weighted T-splines are obtained by performing local p-refinement to

the T-spline with p = 3 near the re-entrant corner. Fig. 9(b) shows the

refined meshes with hybrid degrees p = 3,4, respectively.

Fig. 9(c) shows the solution over the domain. Fig 9(d) shows the relative
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Figure 9: Isogeometric analysis of the Laplace equation over an L-shaped domain with

re-entrant corner. (a) Geometry and problem settings; (b) Bézier elements with 4 levels of

local h-refinement and local p-refinement with hybrid degrees p = 3,4 near the re-entrant

corner; (c) solution field over the domain; (d) convergence curves of the three meshes.

error of H1 semi-norm with respect to the square root of degrees of freedom.

With local p-refinement, hybrid-degree weighted T-splines perform better

than T-splines of p = 3. Hybrid-degree weighted T-splines generate results

as good as T-splines of p = 4. The reason is that the maximal error happens

28



at the re-entrant corner where the first partial derivatives of the solution

field have a singularity. Therefore, we extract Bézier elements of p = 4 from

hybrid-degree weighted T-splines for the region close to the re-entrant corner

in order to improve the performance. In conclusion, local p-refinement gives

additional flexibility to T-splines in order to enhance its efficiency in analysis.

Remark 4.1. Note that both h- and p-refinement are performed close to

the singularity in the second problem. This is done in order to decrease the

relative error of the H1 seminorm which is concentrated near the singular-

ity. However, in more complex settings, such as compressible gas dynamics,

other hp-refinement strategies are known to perform better [61]. It is quite

widespread to use local h-refinement where the solution is rough and to use

local p-refinement in the rest of the domain where the solution is smooth.

4.2. Open and Closed Hybrid-Degree Weighted T-spline Surfaces

Here we show four hybrid-degree weighted T-spline surfaces, including

two open surfaces as shown in Fig. 10 and two high genus closed T-spline

surfaces as shown in Fig. 11.

A square model is shown in Fig. 10(a), with a combination of degrees

2, 3, 4 and 5 basis functions, marked with different colors. Extended hy-

brid boundaries exist in this model. Hybrid-degree weighted T-splines can

combine basis functions of different degrees using different layers of transi-

tion regions. In Fig. 10(b), a circle model is provided with a combination

of degrees 3, 4 and 5 basis functions. Interior hybrid boundaries exist in

this model. There are 4 valance-3 extraordinary nodes. T-splines of p = 3 are

used to handle the extraordinary nodes. After local p-refinement with hybrid-

degree weighted T-splines, the surface is changed along the radial direction
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(a) (b)

Figure 10: Open surface hybrid-degree weighted T-spline models. (a) A square model with

extended hybrid boundaries and the difference before (white lines) and after refinement

(black lines); and (b) a circle model with interior hybrid boundaries and the difference

before (white lines) and after refinement (black lines).

near the hybrid boundaries. In Fig. 10, the white and black lines show the

difference before and after local p-refinement. For open surface models, with

the scheme to calculate the control points, the local region around the hybrid

boundaries in the interior of the geometry is changed. The boundary of the

geometry remains unchanged after refinement.

Two closed surface models with extraordinary nodes are given in Fig. 11.

The Tetra model in Fig. 11(a) has eight valance-6 extraordinary nodes. The

original T-spline surface is of degree 3. After local p-refinement, the hybrid-

degree weighted T-spline is shown in Fig. 11(b), with the comparison before

and after refinement. Fig. 11(d-f) shows the Genus-three model before and

after local p-refinement. In this model, we set the two-ring neighborhood of

the four valance-8 extraordinary nodes as degree 3. For all the other regions,

the surface is of degree 4. With hybrid-degree weighted T-splines, we can

generate T-spline surfaces with basis functions of different degrees in one
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(a) (b) (c)

(d) (e) (f)

Figure 11: Tetra model (a-c) and Genus-three model (d-f) of hybrid-degree weighted T-

splines. (a, d) Original model of degree 3; (b, e) local p-refinement results, where the

white and black lines show the difference of Bézier elements before and after refinement;

and (c, f) show the zoom-in of (b, e).

model.

5. Conclusions and Future Work

In conclusion, in this paper we develop a new algorithm to generate

hybrid-degree weighted T-splines which can be used in isogeometric anal-

ysis. Weighted T-splines of arbitrary degree are proposed which satisfy all

the analysis-suitable requirements. Hybrid-degree weighted T-splines are de-

veloped with two types of hybrid boundaries for local p-refinement. Both

odd- and even-degree T-spline basis functions are defined. The p-refined

regions and unchanged regions are connected via transition regions. Both
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p-refined basis functions and original basis functions have support over the

transition regions, over which the hybrid-degree weighted T-splines are de-

fined. The transition region has basis functions of the same degree as the

p-refined region, and the same surface continuity as the unchanged region.

Bézier elements of different degrees are extracted for isogeometric analysis.

The Laplace equation is solved on an L-shaped domain, which is parameter-

ized with odd-, even-, and hybrid-degree T-splines. Hybrid T-splines provide

better performance after local p-refinement. In the future, we are planning to

develop a better control point calculation algorithm to decrease the surface

change after local p-refinement.
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