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Abstract

We develop a new continuum mechanics modeling framework for liquid-vapor flows, with

particular focus on the van der Waals fluid. By invoking microforce theory, the Coleman-Noll

procedure is generalized to derive consistent constitutive relations in the presence of non-

local effects. A new thermodynamically consistent algorithm for the van der Waals model is

designed, using functional entropy variables and a new temporal scheme employing a family

of new quadrature rules. We show that the resulting fully discrete scheme is unconditionally

stable in entropy and second-order time-accurate. Isogeometric analysis is utilized for spatial

discretization. The analytical properties of the formulation are corroborated by benchmark

problems. Three sets of application problems are simulated to demonstrate the capability

of the model and the algorithm. Our methodology provides a particularly useful predictive

tool for boiling flows.

Keywords: Phase-field model, Diffuse interface, Microforce, Coleman-Noll approach, Van

der Waals fluid, Non-convex flux, entropy variables, Time integration, Isogeometric analysis,

Phase transition, Evaporation, Condensation, Boiling
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1 Introduction

1.1 Phase transition and classical modeling techniques

Liquid-vapor two-phase flows are ubiquitous in the natural world as well as in industry.

Liquid-vapor phase transitions involve a sharp change of the fluid density. Typical environ-

mental changes include pressure variations and thermal variations. For instance, the local

pressure near a rotating propeller may drop below the boiling pressure, and vapor bubbles

may generate near blades [40]. This is the phenomenon of cavitation and it is still a limiting

factor for ship propeller design. Phase transitions induced by temperature variations can be

observed in daily life as boiling, evaporation, and condensation. In industry, liquid-vapor

phase transitions take place in steam generators, heat exchangers, and various pipelines.

The accompanying thermal effects make multiphase flow a widely-used mechanism for en-

ergy transfer.

To date, many modeling techniques have been designed to simulate multiphase flows.

Most of them fall into the categories of interface-tracking methods or interface-capturing

methods. Interface-tracking methods resolve the interface by aligning the computational

mesh along the interface and by updating the mesh accordingly with the fluid flow. This

approach gives a sharp and accurate representation of the interface. However, it requires con-

stant re-meshing of the computational domain, and it is typically intractable for topological

transitions. Three-dimensional problems with severe topological transitions are notoriously

difficult to solve with interface-tracking methods. Interface-capturing methods use additional

unknowns to implicitly represent the interface. The interface is typically immersed in the

computational domain. Consequently, the interface representation is less accurate than that

of the interface-tracking methods. However, the interface-capturing methods enjoy several

advantages: they are relatively easy to implement, the mesh updating burden is reduced, and

topological transitions are easily handled. Existing instantiations of the interface-capturing

methods include the volume-of-fluid (VOF) method [31] and the level-set method [54]. Both

methods have been utilized in commercial codes and remain popular subjects in the litera-

ture. However, they are not without shortcomings. The VOF method uses a post-processing

procedure to construct the interface, which inevitably introduces errors. In level-set methods,

the level-set function needs to be reinitialized every few steps. The reinitialization procedure

is rather ad hoc and does not maintain the conservation structure of the governing equations.
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1.2 Phase-field models

To address the aforementioned modeling difficulties, phase-field models were proposed as an

alternative interface-capturing method. The phase-field method uses an order parameter to

distinguish different phases. Phase-field models postulate that the interface has finite width

and material properties transit across the interfacial region smoothly but sharply. Based

on these postulates, van der Waals developed his Nobel Prize-winning theory to calculate

the capillarity for liquid-vapor interfaces. Later, Korteweg developed the so-called Korteweg

stress formulation and coupled the van der Waals theory with hydrodynamics. The fluid

equations based on the van der Waals theory are called the Navier-Stokes-Korteweg equa-

tions. This theory is characterized by a non-convex free energy, supplemented with a non-

local density gradient term. This non-local term regularizes the singularity introduced by

the non-convex free energy function. The non-local term represents the surface energy. In

contemporary continuum mechanics, this model falls into the category of the grade-N fluid

model [67]. In 1985, Dunn and Serrin studied the thermodynamic consistency of the Navier-

Stokes-Korteweg equations and found that for the model to be consistent with the second

law, a new term had to be added to the energy equation [17]. They called this term the

“interstitial working flux”.

Parallel to the development of the Navier-Stokes-Korteweg equations, another branch of

phase-field models has been developed focusing on multicomponent systems. The original

idea emanates from the work of Cahn and Hilliard [9], in which a fourth-order nonlinear

diffusion equation is proposed to mimic the behavior of a two-component mixture. Recently,

the Cahn-Hilliard type models have been generalized to more complicated multicomponent

systems, such as spinodal decomposition [43], tumor growth [70], fingering effect in porous

medium [23], topology optimization [13], etc. Significant progress was made by Gurtin

and his collaborators in providing a rational mechanics framework for the Cahn-Hilliard

type models [27]. In Gurtin’s theory, microforces were introduced to account for the phase

dynamics. Later, this theory was applied to construct a plasticity theory of single crystals

[28], fracture models [72], alloy models [46], and ferroelectric models [66], to list a few. In

Section 2, this theory is adopted as a means to derive constitutive relations for the van der

Waals fluid material. Interestingly, the “interstitial working flux” appears naturally in this

derivation as the power expenditure of the microstress. This, in part, justifies the work of

Dunn and Serrin within the rational thermomechanics framework of [11].

Traditional interface-tracking and interface-capturing methods are designed to follow ex-

isting interfaces. When dealing with phase transition phenomena, those methods become

intractable. One may need to introduce artificial procedures and empirical assumptions [65]

to mimic such phenomena. In contrast, the solid mathematical and thermodynamic foun-
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dations of phase-field models allow them to describe these complicated phenomena without

resorting to modeling tricks. In this work this advantage will be demonstrated by a suite

of boiling simulations. Boiling is regarded to be highly difficult for numerical simulations.

Traditional models require empirical knowledge, such as the bubble release rate and bubble

departure radius, to describe the boiling process. In this work, two- and three-dimensional

boiling simulations are carried out using the van der Waals fluid model. Owing to the ther-

modynamically consistent nature, the dependency on empirical knowledge is significantly

reduced, and there are no ad hoc procedures involved. Our approach provides a unified

predictive capability for both nucleate and film boiling

Despite their success, phase-field models face several challenges. The entropy function

for phase-field models are always non-convex, which creates difficulty for both mathematical

analysis and numerical simulation. Phase-field models usually have a high-order differential

term, which necessitates novel numerical discretization techniques, and the interface width

for real materials is typically a few nanometers. Therefore, adaptive refinement near the

interfacial region is required for real-world simulations.

1.3 Numerical analysis

In the numerical analysis of nonlinear problems, a central issue is stability. One relevant

example for the current work is the study of entropy-stable schemes for gas dynamics. It was

revealed that the weak form of the compressible Navier-Stokes equations will automatically

satisfy the Clausius-Duhem inequality by utilizing entropy variables [34]. In the late 1980s,

the space-time formulation was applied to the entropy-variables formulation to construct

a fully discrete entropy-stable scheme [63]. Thereafter, the entropy-variables formulation

offered a foundation for computing compressible flows. Interested readers are referred to [35]

for a detailed review. However, it needs to be pointed out that the stability of this entropy-

variables formulation is all contingent upon the convexity of the entropy function. For phase-

field problems, the non-convexity of the entropy function precludes the possibility of directly

applying this methodology. To overcome the challenges posed by the non-convexity of the

entropy, first, the definition of the entropy variables is generalized to the functional setting

[44]. Employing functional entropy variables, we derive an alternative statement of the

original Navier-Stokes-Korteweg equations. The weighted residual formulation based on this

alternative statement leads to a provably entropy-stable semi-discrete formulation. Second,

to develop a stable temporal scheme, we adopt the methodology based on special quadrature

rules [24, 42, 44]. The new difficulty comes from the discretization of the energy time

derivative, since the isothermal Navier-Stokes-Korteweg equations have been well handled,
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as described in [44]. A new “jump” operator (i.e., discrete time-derivative operator) is devised

for the total energy. It is shown that this operator represents a third-order perturbation to the

classical “jump” operator. By using perturbed trapezoidal rules repeatedly, it is proven that

the temporal approximation based on the new “jump” operator dissipates entropy, and the

requirement of convexity is released. It is anticipated that this new temporal discretization

technology is applicable to more general problems.

Non-Uniform Rational B-Splines (NURBS), in the setting of isogeometric analysis, are

utilized to provide a representation of the geometry as well as an approximation for the

spatial discretization [33]. Isogeometric analysis has been shown to enjoy several desirable

numerical properties: (1) it retains an exact representation of the geometry; (2) it possesses

a unique k-refinement technology, which allows one to generate higher-continuity basis func-

tions without proliferation of degrees of freedom; (3) it exhibits superior robustness [14, 41]

and accuracy [18] properties compared with traditional finite elements. The above attributes

make isogeometric analysis a particularly effective approach in the approximation of phase-

field problems [22, 25]. The NURBS-based initial instantiation of isogeometric analysis has

been widely used in both design and analysis [12]. Recent advances of isogeometric analy-

sis include T-splines, divergence-conforming B-splines, and isogeometric collocation methods.

T-splines allow one to create complicated engineering designs in a single watertight geometric

format [4] and enable local refinement [60]. For incompressible flows, divergence-conforming

B-splines guarantee point-wise divergence-free velocity solutions [19, 20, 21]. It is antici-

pated that such technology may be applied to compressible flow simulations with the hope

of attaining well-behaved discretization at the incompressible limit. Isogeometric colloca-

tion methods are shown to be an efficient alternative to isogeometric Galerkin methods [58],

which offers a potentially powerful alternative for phase-field simulations [26, 56].

1.4 Structure and content of the paper

The body of this work is organized as follows. In Section 2, based on the Gurtin mi-

croforce theory, a unified thermomechanical modeling framework is derived. The Navier-

Stokes-Korteweg equations, including the interstitial working flux term, are derived within

this framework by choosing an appropriate Helmholtz free energy functional. The ther-

modynamic properties of this model are discussed. In Section 3, a provably entropy-stable,

second-order time accurate numerical scheme is designed and analyzed for the Navier-Stokes-

Korteweg equations. Our approach is based fundamentally on the concept of functional

entropy variables and utilizes newly developed concepts for the derivation of time stepping

algorithms appropriate for problems involving non-convex potentials. In Section 4, bench-
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mark problems are studied to verify the theoretical estimates. In Section 5, a suite of

application examples, including evaporation, condensation, bubble motion under a tempera-

ture gradient, and boiling flows, are numerically investigated using the model and algorithm

developed. Conclusions and future research directions are presented in Section 6.

2 The Navier-Stokes-Korteweg equations

2.1 Balance laws

The continuum theory setting is the Euclidean space R3, with fixed orthonormal basis vectors

ei, i = 1, 2, 3. The body under consideration occupies a region B ⊂ R3, which is referred

to as the reference configuration. The material point in B is labeled by X = (X1, X2, X3)T .

The motion that the continuum body undergoes is denoted as X : B × [0,∞) → R3. The

image of B by X at time t is denoted as Bt, which is referred to as the current configuration.

The spatial position of material points X at time t is given by

x = X (X, t) ,

where x = (x1, x2, x3)T . We postulate that the map X is differentiable, one-to-one, and

orientation preserving for each time t ≥ 0. Consider an arbitrary open set Ω of B; its image

at time t is denoted as Ωt = X (Ω, t). The boundary ∂Ωt is oriented with a unit outward

normal vector n(x). We assume that there exists a density field ρ(x, t) and a velocity field

u (x, t) in the current configuration. The spatial velocity field is defined as

u (x, t) =
∂

∂t
X (X, t) where x = X (X, t).

In the following, we understand D/Dt to be the material time derivative, i.e.,

D

Dt
(·) :=

∂

∂t
(·) + u · ∇ (·) ,

where ∇ is the spatial gradient operator. We have the following balance laws that govern

the behavior of the body.

• Conservation of Mass

d

dt

∫
Ωt

ρ(x, t)dVx = 0. (1)
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• Balance of Linear Momentum

d

dt

∫
Ωt

ρ(x, t)u(x, t)dVx =

∫
∂Ωt

t(x, t)dAx +

∫
Ωt

ρb(x, t)dVx. (2)

Here the traction field is given by t(x, t) = T(x, t)n(x), where T(x, t) is the Cauchy stress

tensor; b(x, t) is the external body force per unit mass.

• Balance of Angular Momentum

d

dt

∫
Ωt

x× ρ(x, t)u(x, t)dVx =

∫
∂Ωt

x× t(x, t)dAx +

∫
Ωt

x× b(x, t)dVx. (3)

In our work the central modeling subject is the liquid-vapor phase transition. The phase-field

order parameter for the change of the state of matter is chosen as the density ρ. Following

the ideas of Gurtin [27], we assume that there exists a set of forces that accounts for the

kinematics of phase transitions. These forces are called microforces primarily because they

are involved with the local transformation of the material, rather than the macroscopic

movements. We assume that the kinematics of ρ are associated with the following forces:

ξ, the microstress,

χ, the surface microforce,

ϕ, the internal microforce,

l, the external microforce.

This set of microforces is balanced as stated in the following equation.

• Balance of Microforce Associated with Density Phase Transition

∫
∂Ωt

χ(x, t)dAx +

∫
Ωt

ϕdVx +

∫
Ωt

ldVx = 0. (4)

The surface microforce is given by χ(x, t) = ξ(x, t) · n(x).

Remark 1. The notion of microforce was initially introduced to generalized the Cahn-

Hilliard equation [27]. For a comprehensive review, interested readers are referred to [29].

• Conservation of Energy
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d

dt

∫
Ωt

ρ(x, t)E(x, t)dVx =

∫
∂Ωt

(
T(x, t)u(x, t) +

D

Dt
ρ(x, t)ξ(x, t)− q

)
· n(x)dAx

+

∫
Ωt

b(x, t) · u(x, t) + l(x, t)
D

Dt
ρ(x, t) + ρ(x, t)r(x, t)dVx. (5)

In equation (5), the following notations are introduced:

E(x, t) = ι(x, t) + 1
2
|u(x, t)|2, the total energy density per unit mass,

ι(x, t), the internal energy density per unit mass,

q(x, t), the heat flux,

r(x, t), the heat source per unit mass.

Besides the traditional working terms of the macroscopic forces and the macroscopic sources,

there are non-classical terms contributing to the change of the total energy. These terms are

the power expenditures of the microstress ξ and the external microforce l:∫
∂Ωt

D

Dt
ρ(x, t)ξ(x, t) · n(x)dAx,

∫
Ωt

l(x, t)
D

Dt
ρ(x, t)dVx.

The internal microforce does not contribute to the energy change. See [27] for a conceptual

explanation.

• Second Law of Thermodynamics

∫
Ωt

D(x, t)dVx :=
d

dt

∫
Ωt

ρ(x, t)s(x, t)dVx +

∫
∂Ωt

q(x, t) · n(x)

θ(x, t)
dAx

−
∫

Ωt

ρ(x, t)r(x, t)

θ(x, t)
dVx ≥ 0. (6)

Here D(x, t) denotes the total dissipation, s(x, t) denotes the entropy density, and θ(x, t) is

the absolute temperature. This inequality is the second law of thermodynamics, or Clausius-

Duhem inequality.

Applying the divergence and the Reynolds’ transport theorems, we can obtain the gov-

erning equations and the Clausius-Duhem inequality in local forms (omitting the arguments

x and t for simplicity) as

Dρ

Dt
+ ρ∇ · u = 0, (7)

ρ
Du

Dt
= ∇ ·T + ρb, (8)

T = TT , (9)
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∇ · ξ + ϕ+ l = 0, (10)

ρ
DE

Dt
= ∇ ·

(
Tu +

Dρ

Dt
ξ − q

)
+ ρb · u + l

Dρ

Dt
+ ρr, (11)

D := ρ
Ds

Dt
+∇ ·

(q

θ

)
− ρr

θ
≥ 0. (12)

In addition to the governing equations (7)–(12), there is a balance equation for the

internal energy ι. The total energy balance equation can be expanded first as

ρ
Dι

Dt
+ ρu · Du

Dt
=∇ ·T · u + T : ∇u +∇ · ξDρ

Dt
+ ξ · ∇

(
Dρ

Dt

)
−∇ · q + ρb · u + l

Dρ

Dt
+ ρr. (13)

The linear momentum balance equations and the microforce balance equation can be utilized

to give the following relations.

ρu · Du

Dt
= ∇ ·T · u + ρb · u, (14)

∇ · ξDρ
Dt

+ l
Dρ

Dt
= −ϕDρ

Dt
. (15)

Substituting (14)–(15) into (13), we may obtain a balance equation for the internal energy

as follows.

ρ
Dι

Dt
= T : ∇u− ϕDρ

Dt
+ ξ · ∇

(
Dρ

Dt

)
−∇ · q + ρr. (16)

This equation will be used as a starting point for the derivation of constitutive relations.

2.2 Coleman-Noll type analysis and constitutive relations

To close the model, we still need to provide the constitutive relations for the Cauchy stress,

the internal energy density, the entropy density, the heat flux, and the microforces. In this

section, we derive the explicit form of the constitutive relations in terms of a thermodynamic

potential. In this derivation, the Coleman-Noll argument is applied so that the resulting

constitutive relations will be thermodynamically consistent.
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2.2.1 Free energy imbalance

The Helmholtz free energy density per unit mass Ψ(x, t) is defined by

Ψ(x, t) := ι(x, t)− θ(x, t)s(x, t).

Taking material time derivatives at both sides, we get the relation

Dι

Dt
− θDs

Dt
=
DΨ

Dt
+ s

Dθ

Dt
. (17)

Substituting the internal energy balance equation (16) and the second law of thermodynamics

(12) into the above relation, we can get an inequality

ρ
DΨ

Dt
+ ρs

Dθ

Dt
≤ T : ∇u− ϕDρ

Dt
+ ξ · ∇

(
Dρ

Dt

)
− q · ∇θ

θ
.

Moving the term ρsDθ/Dt to the right hand side, we can get a constraint inequality for Ψ

as

ρ
DΨ

Dt
≤ T : ∇u− ϕDρ

Dt
+ ξ · ∇

(
Dρ

Dt

)
− q · ∇θ

θ
− ρsDθ

Dt
. (18)

The inequality (18) is referred to as the free energy imbalance. It plays an analogous role to

(12) in placing restrictions on constitutive relations. In fact, for pure mechanical processes

when thermal effects are negligible, the Helmholtz free energy is the thermodynamic poten-

tial that characterizes the dissipation behavior of the isothermal system. For an isobaric

isothermal process, however, the Gibbs free energy should be chosen as a proper thermody-

namic potential [45]. In this work, an isobaric process is not assumed. Hence, the Helmholtz

free energy is a valid thermodynamic potential. Before proceeding further, we split the

Cauchy stress T and the velocity gradient ∇u into deviatoric and hydrostatic parts.

1. The Cauchy stress T can be split into deviatoric and hydrostatic parts,

T = Td + Th, (19)

where

Td = T− 1

3
(trT) I, (20)

Th =
1

3
(trT) I. (21)
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Here I is the identity tensor, and tr(·) is the trace operator.

2. The velocity gradient can be split into three parts,

∇u = Ld + Lh + W, (22)

wherein

Ld =
1

2

(
∇u +∇uT

)
− 1

3
∇ · uI, (23)

Lh =
1

3
∇ · uI, (24)

W =
1

2

(
∇u−∇uT

)
. (25)

In this split, Ld and Lh are the deviatoric and hydrostatic (i.e., dilatational) parts of

the rate of strain tensor L; W is the spin tensor (i.e., vorticity tensor).

Consequently, it is straightforward to make the following observations.

1. According to the mass balance equation (7), we have

∇ · u = −Dρ/Dt
ρ

. (26)

2. The gradient of material time derivative Dρ/Dt can be expanded as

∇
(
Dρ

Dt

)
=

D

Dt
(∇ρ) +∇uT∇ρ =

D

Dt
(∇ρ) + Ld∇ρ+ WT∇ρ− Dρ/Dt

3ρ
∇ρ. (27)

3. Making use of the property of deviatoric tensors, the inner product of T and ∇u can

be written alternatively as

T : ∇u = Td : Ld + Th : Lh = Td : Ld +
1

3
(trT)∇ · u. (28)

Making use of the above observations, the free energy imbalance (18) relation can be rewrit-

ten as

ρ
DΨ

Dt
≤Td : Ld − trT

3ρ

Dρ

Dt
− ϕDρ

Dt
+ ξ · D

Dt
(∇ρ) +∇ρ · Ldξ +∇ρ ·Wξ − 1

3ρ
∇ρ · ξDρ

Dt

− q · ∇θ
θ
− ρsDθ

Dt
. (29)
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2.2.2 Coleman-Noll type analysis

Invoking Truesdell’s principle of equipresence [67], we assume that Ψ, s, T, ξ, q, ι, and ϕ

are functions depending on ρ, ∇ρ, Dρ/Dt, θ, ∇θ, and Ld. Specifically, the Helmholtz free

energy density Ψ can be written as

Ψ = Ψ

(
ρ,∇ρ, Dρ

Dt
, θ,∇θ,Ld

)
.

The material time derivative of Ψ and the chain rule lead to

DΨ

Dt
=
∂Ψ

∂ρ

Dρ

Dt
+

∂Ψ

∂(∇ρ)
· D (∇ρ)

Dt
+

∂Ψ

∂ (Dρ/Dt)

D2ρ

Dt2
+
∂Ψ

∂θ

Dθ

Dt
+

∂Ψ

∂ (∇θ)
· D (∇θ)

Dt

+
∂Ψ

∂Ld
:
DLd

Dt
. (30)

Now substituting (30) into the free energy imbalance (29) and making use of the relations

(22)-(28), we can get

ρ
DΨ

Dt
=ρ

(
∂Ψ

∂ρ

Dρ

Dt
+

∂Ψ

∂(∇ρ)
· D (∇ρ)

Dt
+

∂Ψ

∂ (Dρ/Dt)

D2ρ

Dt2
+
∂Ψ

∂θ

Dθ

Dt
+

∂Ψ

∂ (∇θ)
· D (∇θ)

Dt

+
∂Ψ

∂Ld
:
DLd

Dt

)
≤ Td : Ld − trT

3ρ

Dρ

Dt
− ϕDρ

Dt
+ ξ · D

Dt
(∇ρ) +∇ρ · Ldξ

+∇ρ ·Wξ − 1

3ρ
∇ρ · ξDρ

Dt
− q · ∇θ

θ
− ρsDθ

Dt
. (31)

Grouping terms together, the above inequality is reorganized as(
ρ
∂Ψ

∂ρ
+

trT

3ρ
+ ϕ+

1

3ρ
∇ρ · ξ

)
Dρ

Dt
+

(
ρ

∂Ψ

∂ (∇ρ)
− ξ
)
· D
Dt

(∇ρ) + ρ
∂Ψ

∂ (Dρ/Dt)

D2ρ

Dt2

+

(
ρ
∂Ψ

∂θ
+ ρs

)
Dθ

Dt
+ ρ

∂Ψ

∂ (∇θ)
· D (∇θ)

Dt
+

q · ∇θ
θ

+ ρ
∂Ψ

∂Ld
:
DLd

Dt
− Ld :

(
Td +∇ρ⊗ ξ

)
−W : (∇ρ⊗ ξ) ≤ 0. (32)

Here we provide an analysis of (32) by invoking the arguments made by Coleman and Noll

[11]. We notice that (32) is linear in D(∇ρ)/Dt, D2ρ/Dt2, Dθ/Dt, D(∇θ)/Dt, DLd/Dt,

and W. Through appropriate choices of external forces and external sources, we may have

arbitrary levels of the material rates of the state variables and the spin tensor in (32) at a
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particular time. Hence, in order to satisfy (32), we must have

ξ = ρ
∂Ψ

∂ (∇ρ)
, (33)

∂Ψ

∂ (Dρ/Dt)
= 0, (34)

s = −∂Ψ

∂θ
, (35)

∂Ψ

∂ (∇θ)
= 0, (36)

∂Ψ

∂Ld
= −

(
∂Ψ

∂Ld

)T
, (37)

∇ρ⊗ ξ = ξ ⊗∇ρ. (38)

Due to the symmetry of Ld, ∂Ψ/∂Ld has to be symmetric. This fact together with (37)

implies

∂Ψ

∂Ld
= 0. (39)

According to (34), (36), and (39), the Helmholtz free energy density Ψ has to be independent

of Dρ/Dt, ∇θ, and Ld. It can be written as

Ψ = Ψ (ρ,∇ρ, θ) . (40)

The relation (32) is reduced to(
ρ
∂Ψ

∂ρ
+

trT

3ρ
+ ϕ+

1

3ρ
∇ρ · ξ

)
Dρ

Dt
+

q · ∇θ
θ
− Ld :

(
Td +∇ρ⊗ ξ

)
≤ 0. (41)

Based on the above inequality, the following choices are made. While these relations are not

the most general possible forms that can satisfy (41), we will show that they do suffice to

recover the most common physical models.

ϕ = −trT

3ρ
− ρ∂Ψ

∂ρ
− 1

3ρ
∇ρ · ξ −BDρ

Dt
, (42)

q = −κ∇θ, (43)

Td = 2µ̄Ld − 1

2
(∇ρ⊗ ξ + ξ ⊗∇ρ) +

1

3
∇ρ · ξI, (44)

where B, κ, and µ̄ are scalar valued functions.
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Remark 2. The relation (38) can be viewed as a result of objectivity. In conjunction with

(33), it can be rewritten as

∇ρ⊗ ρ ∂Ψ

∂ (∇ρ)
= ρ

∂Ψ

∂ (∇ρ)
⊗∇ρ. (45)

It poses a constraint on how the non-local gradient term ∇ρ can enter into the free energy

density function Ψ. It has been shown in [9] that terms in the form of d · ∇ρ or C : ∇2ρ ,

with d being a constant vector and C being a constant second-order tensor, cannot enter into

the free energy density function Ψ. This assertion can be easily justified using the constraint

relation (45). We will only consider the case with ∇ρ appearing in the free energy density

function Ψ as |∇ρ|2. This is in fact the case considered by van der Waals in his seminal

work [69]. This special choice for the Helmholtz free energy density function guarantees the

satisfaction of the relation (38).

Remark 3. It should be pointed out that (42)-(44) are specific choices made to guarantee the

inequality (41). It is feasible to propose more general constitutive relations for ϕ, q, and Td

which satisfy the inequality (41). However, discussion of such a general constitutive theory

is beyond the scope of this work.

2.2.3 Constitutive relations

Based on the relations (42)-(44), we can obtain the constitutive relations expressed in terms

of Ψ.

Microstress

The relation (33) gives the constitutive relation for the microstress,

ξ = ρ
∂Ψ

∂ (∇ρ)
. (46)

Cauchy stress

From the relations (33), (42), (43), and the microforce balance equation (10), we have

the constitutive relation for trT as

trT

3
= ρ∇ ·

(
ρ

∂Ψ

∂ (∇ρ)

)
− ρ2∂Ψ

∂ρ
− 1

3
ρ

∂Ψ

∂ (∇ρ)
· ∇ρ+ ρl −BρDρ

Dt
. (47)

Replacing the microstress ξ by the relations (33), the deviatoric part of the Cauchy

14



stress is given by the choice (44).

Td =2µ̄Ld − ρ

2

(
∇ρ⊗ ∂Ψ

∂ (∇ρ)
+

∂Ψ

∂ (∇ρ)
⊗∇ρ

)
+
ρ

3
∇ρ · ∂Ψ

∂ (∇ρ)
I. (48)

Combining the two parts, the Cauchy stress T reads

T =Td +
trT

3
I

=2µ̄Ld − ρ

2

(
∇ρ⊗ ∂Ψ

∂ (∇ρ)
+

∂Ψ

∂ (∇ρ)
⊗∇ρ

)
+

(
ρ∇ ·

(
ρ

∂Ψ

∂ (∇ρ)

)
− ρ2∂Ψ

∂ρ
+ ρl −BρDρ

Dt

)
I. (49)

Heat flux

The constitutive relation for the heat flux, given by the choice (43), is the Fourier’s

law [47].

q = −κ∇θ. (50)

Entropy

The relation (35) defines the entropy density s as

s = −∂Ψ

∂θ
. (51)

This definition coincides with the classical thermodynamic definition [47]. Conse-

quently, the internal energy density ι is given by

ι = Ψ + θs = Ψ− θ∂Ψ

∂θ
. (52)

2.3 Dissipation inequalities

In this section, the choices (42)-(44) are validated by analyzing the dissipation of the model.

It will be clear how different terms enter into the dissipative mechanisms in isolated and

isothermal processes.

Lemma 1. Given the constitutive relations (46)–(52), the dissipation D defined in (12) takes

15



the form

D =
1

θ
2µ̄|Ld|2 +

1

θ
B

(
Dρ

Dt

)2

+
1

θ2
κ|∇θ|2. (53)

Proof. We start by considering the internal energy balance equation

ρ
Dι

Dt
= T : ∇u− ϕDρ

Dt
+ ξ · ∇

(
Dρ

Dt

)
−∇ · q + ρr. (54)

It is known from (28) that

T : ∇u = Td : Ld +
1

3
(trT)∇ · u. (55)

Making use of the constitutive relation (48), we have

Td : Ld =Ld : 2µ̄Ld − ρ

2

(
∇ρ⊗ ∂Ψ

∂ (∇ρ)
+

∂Ψ

∂ (∇ρ)
⊗∇ρ

)
: Ld +

ρ

3
∇ρ · ∂Ψ

∂ (∇ρ)
I : Ld

=2µ̄|Ld|2 − ρ

2

(
∇ρ⊗ ∂Ψ

∂ (∇ρ)
+

∂Ψ

∂ (∇ρ)
⊗∇ρ

)
: Ld. (56)

According to the constitutive relation (47), we have

1

3
(trT)∇ · u =ρ∇ ·

(
ρ

∂Ψ

∂ (∇ρ)

)
∇ · u− ρ2∂Ψ

∂ρ
∇ · u− 1

3
ρ

∂Ψ

∂ (∇ρ)
· ∇ρ∇ · u

+ ρl∇ · u−BρDρ
Dt
∇ · u

=−∇ ·
(
ρ

∂Ψ

∂ (∇ρ)

)
Dρ

Dt
+ ρ

∂Ψ

∂ρ

Dρ

Dt
+

1

3

∂Ψ

∂ (∇ρ)
· ∇ρDρ

Dt

− lDρ
Dt

+Bρ2 (∇ · u)2 . (57)

Recalling from the relation (27), we have

ξ · ∇
(
Dρ

Dt

)
=ξ ·

[
D

Dt
(∇ρ) + Ld∇ρ+ WT∇ρ− Dρ/Dt

3ρ
∇ρ
]

=ρ
∂Ψ

∂ (∇ρ)
·
[
D

Dt
(∇ρ) + Ld∇ρ+ WT∇ρ− Dρ/Dt

3ρ
∇ρ
]
. (58)

The microforce balance equation implies ϕ = −∇ · ξ − l. Consequently, we have

ϕ
Dρ

Dt
= −∇ · ξDρ

Dt
− lDρ

dD
. (59)
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Now substituting (55)-(59) into (54), and using (38) repeatedly, we obtain

ρ
Dι

Dt
=2µ̄|Ld|2 − ρ

2

(
∇ρ⊗ ∂Ψ

∂ (∇ρ)
+

∂Ψ

∂ (∇ρ)
⊗∇ρ

)
: Ld −∇ ·

(
ρ

∂Ψ

∂ (∇ρ)

)
Dρ

Dt

+ ρ
∂Ψ

∂ρ

Dρ

Dt
+

1

3

∂Ψ

∂ (∇ρ)
· ∇ρDρ

Dt
− lDρ

Dt
+Bρ2 (∇ · u)2 +∇ · ξDρ

Dt
+ l

Dρ

Dt

+ ρ
∂Ψ

∂ (∇ρ)
·
[
D

Dt
(∇ρ) + Ld∇ρ+ WT∇ρ− Dρ/Dt

3ρ
∇ρ
]
−∇ · q + ρr

= 2µ̄|Ld|2 +Bρ2 (∇ · u)2 + ρ
∂Ψ

∂ρ

Dρ

Dt
+ ρ

∂Ψ

∂ (∇ρ)
· D
Dt

(∇ρ)−∇ · q + ρr

= 2µ̄|Ld|2 +Bρ2 (∇ · u)2 + ρ

(
DΨ

Dt
− ∂Ψ

∂θ

Dθ

Dt

)
−∇ · q + ρr

= 2µ̄|Ld|2 +Bρ2 (∇ · u)2 + ρ

(
Dι

Dt
− θDs

Dt

)
−∇ · q + ρr.

Moving all time derivative terms to the left hand side yields

ρ
Ds

Dt
=

1

θ
µ̄|Ld|2 +

1

θ
Bρ2 (∇ · u)2 − 1

θ
∇ · q +

1

θ
ρr.

By definition, we have

D :=ρ
Ds

Dt
+∇ ·

(q

θ

)
− ρr

θ

=
1

θ
2µ̄|Ld|2 +

1

θ
Bρ2 (∇ · u)2 − q · ∇θ

θ2

=
1

θ
2µ̄|Ld|2 +

1

θ
Bρ2 (∇ · u)2 +

1

θ2
κ|∇θ|2,

which completes the proof.

The dissipation formulation (53) suggests that the model will guarantee the second law

of thermodynamics if the material moduli are positive semi-definite, which is summarized in

the following theorem.

Theorem 1. If µ̄, κ, and B are non-negative, the system of balance equations (7)-(11)

satisfies the second law of thermodynamics in the following sense.

D =
1

θ
2µ̄|Ld|2 +

1

θ
Bρ2 (∇ · u)2 +

1

θ2
κ|∇θ|2 ≥ 0.

The proof of this theorem follows straightforwardly from Lemma 1. The significance of

this theorem is that the modeler only needs to design an explicit formulation for the thermo-

dynamic potential. Once it is given, the model is closed with non-negative dissipation. Under
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isothermal conditions, the entropy dissipation relation will degenerate into an inequality for

the summation of the Helmholtz free energy and the kinetic energy.

Lemma 2. Under the isothermal condition, if u = 0 and ξ ·n = 0 on the boundary ∂Ωt, the

following relation holds.

d

dt

∫
Ωt

ρ

(
Ψ +

|u|2

2

)
dVx =

∫
Ωt

(
ρb · u + l

Dρ

Dt
− θD

)
dVx. (60)

Proof. Since θ is constant, according to Ψ = ι− θs, one has

DΨ

Dt
=
Dι

Dt
− θDs

Dt
.

and

Ψ +
1

2
|u|2 = ι+

1

2
|u|2 − θs.

Multiplying the the above equation with ρ and integrating over Ωt results in

d

dt

∫
Ωt

ρ

(
Ψ +

1

2
|u|2
)
dVx =

d

dt

∫
Ωt

ρ

(
ι+

1

2
|u|2 − θs

)
dVx

=

∫
∂Ωt

(
Tu +

Dρ

Dt
ξ

)
· ndAx +

∫
Ωt

(
ρb · u + l

Dρ

Dt
− θD

)
dVx.

The boundary integral terms are canceled due to the boundary conditions, and hence

d

dt

∫
Ωt

ρ

(
Ψ +

1

2
|u|2
)
dVx =

∫
Ωt

(
ρb · u + l

Dρ

Dt
− θD

)
dVx,

which completes the proof of the lemma.

Based on Lemma 2, we may obtain the following stability theorem for isothermal pro-

cesses.

Theorem 2. If (1) the system undergoes an isothermal process, (2) u = 0 and ξ · n = 0 on

the boundary ∂Ωt, (3) the forces b = 0 and l = 0 in Ωt, and (4) the material moduli µ̄ and

B are non-negative, the stability of the system is given by the following dissipation relation.

d

dt

∫
Ωt

ρ

(
Ψ +

|u|2

2

)
dVx = −

∫
Ωt

(
2µ̄|Ld|2 +Bρ2 (∇ · u)2) dVx ≤ 0.

Remark 4. According to the constitutive relation (46), the boundary condition ξ · n = 0 is
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Diffuse Interface

φ

nφ

Figure 1: Illustration of the contact angle boundary condition (61). The red arrow points in
the direction −∇ρ/‖∇ρ‖.

equivalent to ∇ρ · n = 0. The general contact-angle boundary condition is

− ∇ρ
‖∇ρ‖

· n = cos(φ), (61)

wherein

‖∇ρ‖ =
√
∇ρ · ∇ρ,

and φ is the contact angle of the diffuse-interface against the wall boundary measured in the

vapor phase (see Figure 1). Hence, ∇ρ ·n = 0 gives the ninety-degree contact angle boundary

condition.

2.4 The van der Waals fluid model

In the preceding section, a general continuum mechanics modeling framework has been es-

tablished, with the objective of taking non-local effects into account. Theorems 1 and 2

reveal that the model is thermodynamically consistent if the material moduli are positive

semi-definite. Thus, the modeling work is principally reduced to a proper design of the

thermodynamic potential. This design procedure is primarily based on the consideration of

thermodynamics. Our discussion will focus on the van der Waals fluid. The full thermome-

chanical theory of the van der Waals fluid, initially derived by Dunn and Serrin [17], will be

recovered. We will discuss preliminary thermodynamic properties of the system.
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2.4.1 Governing equations

Van der Waals’ theory [69] is considered well-suited for describing liquid-vapor phase tran-

sitions. In thermodynamics, the Helmholtz free energy density for the van der Waals fluid,

Ψ, is given by

Ψ(ρ, θ,∇ρ) = Ψloc(ρ, θ) +
λ

2ρ
|∇ρ|2, (62)

Ψloc(ρ, θ) = −aρ+Rθ log

(
ρ

b− ρ

)
− Cvθ log

(
θ

θref

)
+ Cvθ, (63)

where a, b are associated with fluid properties whose meanings will be revealed in the coming

discussion; θref > 0 is the reference temperature for the model; R is the specific gas constant;

Cv is the specific heat capacity for the van der Waals fluid; λ is the capillarity coefficient. In

this work, we assume λ is a constant. With the Helmholtz free energy given, the constitutive

relations can be readily obtained. According to (46), the microstress for the van der Waals

fluid is

ξ = ρ
∂Ψ

∂ (∇ρ)
= λ∇ρ.

Following (49), the Cauchy stress can be written explicitly as

T =2µ̄Ld − ρ

2

(
∇ρ⊗ ∂Ψ

∂ (∇ρ)
+

∂Ψ

∂ (∇ρ)
⊗∇ρ

)
+

(
ρ∇ ·

(
ρ

∂Ψ

∂ (∇ρ)

)
− ρ2∂Ψ

∂ρ
+ ρl +Bρ2∇ · u

)
I

=2µ̄Ld − λ∇ρ⊗∇ρ+

(
λρ∆ρ− ρ2∂Ψ

∂ρ
+ ρl +Bρ2∇ · u

)
I.

For convenience, the Cauchy stress can be split into three parts:

T = τ + ς − pI, (64)

wherein

τ =2µ̄Ld +Bρ2∇ · uI, (65)

ς =− λρ∇ρ⊗∇ρ+

(
λρ∆ρ+

λ

2
|∇ρ|2 + ρl

)
I, (66)

p =ρ2∂Ψloc

∂ρ
= Rb

ρθ

b− ρ
− aρ2. (67)
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Here, τ represents the viscous shear stress, ς represents the capillarity, and p stands for the

thermodynamic pressure. In the subsequent discussion, we assume

l = 0,

B =

(
λ̄+

2

3
µ̄

)
1

ρ2
,

in which µ̄ and λ̄ are the first and second viscosity coefficients. With these choices,

ς =− λρ∇ρ⊗∇ρ+

(
λρ∆ρ+

λ

2
|∇ρ|2

)
I,

which is identical to the stress derived by and named after Korteweg [39], and τ is the

viscous stress for Newtonian fluids:

τ =µ̄
(
∇u +∇uT

)
+ λ̄∇ · uI.

The entropy density s and the internal energy density ι are

s =−R log

(
ρ

b− ρ

)
+ Cv log

(
θ

θref

)
,

ι =− aρ+ Cvθ +
λ

2ρ
|∇ρ|2.

We recall that in the derivation of the constitutive relation for trT in (47), the microforce

balance equation is used. Similarly to the angular momentum balance equation, the micro-

force balance equation (10) is satisfied by the constitutive relations and decoupled from the

system. Let us denote the power expenditure of the microstress as

Π = ξDρ/Dt = λρ∇ · u∇ρ.

The governing equation for the van der Waals fluid in terms of the conservation variables

are

∂ρ

∂t
+∇ · (ρu) = 0, (68)

∂(ρu)

∂t
+∇ · (ρu⊗ u) +∇p−∇ · τ −∇ · ς = ρb, (69)

∂(ρE)

∂t
+∇ · ((ρE + p) u− (τ + ς) u) +∇ · q +∇ ·Π = ρb · u + ρr. (70)
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This system of equations is known as the Navier-Stokes-Korteweg equations [17]. According

to Lemma 1, the dissipation for the system is

D =
1

θ
2µ̄|Ld|2 +

1

θ
Bρ2 (∇ · u)2 +

1

θ2
κ|∇θ|2

=
1

θ
2µ̄|Ld|2 +

1

θ

(
λ̄+

2

3
µ̄

)
(∇ · u)2 +

1

θ2
κ|∇θ|2. (71)

To ensure the second law of thermodynamics, it is sufficient to require that

µ̄ ≥ 0, λ̄+
2

3
µ̄ ≥ 0, κ ≥ 0.

The term Π was initially introduced by Dunn and Serrin to enforce the thermodynamic

consistency and was referred to as the “interstitial working flux” [17]. In our framework,

∇ · Π appears naturally as the power expenditure of the microstress ξ. The previously

mysterious term finds a rational mechanics explanation in the microforce theory [29].

Remark 5. If we assume that the interface parameter λ is constant, the capillary force term

∇ · ς can be written in the following non-conservative form.

∇ · ς = λρ∇ (∆ρ) . (72)

Remark 6. Choosing the Helmholtz free energy density function as

Ψ = Rθ log (ρ)− Cvθ log

(
θ

θref

)
+ Cvθ,

the compressible Navier-Stokes equations can be recovered.

2.4.2 Thermodynamic properties

We start the discussion on the thermodynamic properties by defining the critical point. The

critical point (ρcrit, θcrit) is defined to be the values of density and temperature that satisfy

∂p

∂ρ
(ρcrit, θcrit) = 0,

∂2p

∂ρ2
(ρcrit, θcrit) = 0.

Simple calculations show that the solutions of the above equations are

ρcrit =
b

3
, θcrit =

8ab

27R
,
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Figure 2: Illustration of the van der Waals pressure p given by (67) at different temperatures.
The colored squares delimit the elliptic regions. The critical point is marked by a black circle.

and the critical pressure is pcrit := p(ρcrit, θcrit) = ab2/27. In Figure 2, the van der Waals pres-

sure function is plotted as a function of density by fixing the temperature. It can be observed

from the figure that the pressure function is not monotone when the temperature is below

the critical temperature, and there is a region in which the pressure drops with the increase

of the density. This region is commonly referred to as the elliptic region, since the system of

conservation equations is of the first-order elliptic type in the vanishing viscosity-capillarity

limit within this region. The approximation property of the van der Waals equation of

state is demonstrated by comparing with the data for real fluids. In Figure 3, the van der

Waals equation of state is plotted as a function of density at temperature θ = 0.85θcrit (blue

solid curve). The thermodynamic data for water, carbon dioxide, methane, and propane are

downloaded from the NIST database [50] and plotted in the same figure in dimensionless

form. As can be seen, the van der Waals model gives a qualitatively accurate description of

various fluids in both vapor and liquid states. Considering a binomial expansion

(
1− ρ

b

)−1

≈ 1 +
ρ

b
+
ρ2

b2
, when | ρ

b
|� 1,
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Figure 3: Comparison of the van der Waals equation of state with real fluids at temperature
θ = 0.85θcrit. The data for water, carbon dioxide, methane, and propane are obtained from
[50] and scaled to dimensionless form. Figure (b) gives a detailed view in the vapor phase.
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Figure 4: Illustration of the local free energy ρΨloc of the van der Waals fluid given by (63)
at temperature θ = 0.8θcrit. The green squares delimit the elliptic region. The magenta
dash-dot-line is the common tangent line passing thorough the Maxwell states, which are
marked as the magenta circles.

the thermodynamic pressure can be approximated as

p ≈ Rθρ

(
1 +

(
1

b
− a

Rθ

)
ρ2 +

1

b2
ρ3

)
, (73)

when the density is small. This suggests that the van der Waals theory can be viewed as

a high-order modification of the perfect gas law. Nowadays, modifications of the van der

Waals model are introduced by adding more high-order terms to tune the approximation

property for specific materials. Examples include the Beattie-Bridgeman equation [6] and

the Benedict-Webb-Rubin equation [7]. Another modification was made by Serrin [62], who

introduced a new equation of state in the form

pserrin = Rb
ρθ

b− ρ
− aθŝρr̂,

wherein ŝ < 1 and r̂ > 1 are two parameters. This model was claimed to give very accurate

pressures over a large range of temperature.
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Next, let us introduce the local electrochemical potential νloc as

νloc :=
∂ (ρΨloc)

∂ρ
.

It does not come from our preceding thermomechanical theory. It is a purely thermodynamic

quantity. With the local Helmholtz free energy function given in (63), the electrochemical

potential can be written explicitly as

νloc = −2aρ+Rθ log

(
ρ

b− ρ

)
+

Rθb

b− ρ
− Cvθ log

(
θ

θref

)
+ Cvθ.

The equilibrium state at a given temperature can be determined by constructing a com-

mon tangent line passing thorough the free energy curve ρΨloc at two points (ρl, ρlΨloc(ρl))

and (ρv, ρvΨloc(ρv)). These two points correspond to the energetically stable liquid and vapor

states at the temperature and are usually referred to as the Maxwell states. Mathematically,

the common tangent line requires that

∂(ρΨloc)

∂ρ
(ρv) =

∂(ρΨloc)

∂ρ
(ρl), (74)

ρv
∂(ρΨloc)

∂ρ
(ρv)− ρvΨloc(ρv) = ρl

∂(ρΨloc)

∂ρ
(ρl)− ρlΨloc(ρl). (75)

The relation (74) implies the local electrochemical potentials νloc at the two states are iden-

tical. The relation (75) can be rewritten as

ρ2
v

∂Ψloc

∂ρ
(ρv) = ρ2

l

∂Ψloc

∂ρ
(ρl),

or, equivalently, p(ρv) = p(ρl). Therefore, the system is in electrochemical and mechanical

equilibrium at the Maxwell states. The Maxwell states together with the common tangent

line are illustrated in Figure 4. It can be clearly observed from the figure that the common

tangent line lies below the energy curve, which implies the two-phase state is favored against

the homogeneous mixture state, according to the minimum energy principle.

The thermodynamic properties of the van der Waals fluid model can be better understood

by drawing a θ-ρ phase diagram. In Figure 5, the elliptic region is circumscribed by the

dashed spinodal line and is colored in grey. By connecting the Maxwell states, we get the

binodal line, which is drawn as the black solid curve in Figure 5. The regions enclosed by

the binodal line and the spindoal line are the liquid and vapor metastable regions, which

are colored in green and blue respectively. The metastable states are physically accessible
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Figure 5: Illustration of the elliptic region, the metastable regions, the spinodal line, and
the binodal line for the van der Waals fluid.

but energetically unstable. With enough thermodynamic perturbations, the energy barrier

may be overcome and the metastable states may evolve toward a more stable two-phase

system. The binodal line and the spinodal line meet at the critical point. Above the critical

temperature, the fluid becomes supercritical, and there are no more distinct liquid and vapor

states.

3 Numerical analysis

In this section, we focus on the design of numerical schemes for the Navier-Stokes-Korteweg

equations that preserve critical structure of the original strong problem.

3.1 Initial-boundary value problem for the Navier-Stokes-Korteweg

equations

We consider a fixed, open, connected, and bounded domain Ω ⊂ Rd, where d is the number

of spatial dimensions. The boundary of Ω is denoted as ∂Ω and is assumed to be sufficiently

smooth. The time interval of interest is denoted (0, T ), with T > 0. The Navier-Stokes-

27



Korteweg equations are considered in the space-time domain Ω× (0, T ) as

∂ρ

∂t
+∇ · (ρu) = 0, (76)

∂(ρu)

∂t
+∇ · (ρu⊗ u + pI)−∇ · τ −∇ · ς = ρb, (77)

∂ (ρE)

∂t
+∇ · ((ρE + p) u− (τ + ς)u) +∇ · q +∇ ·Π = ρb · u + ρr. (78)

In this section, we impose periodic boundary conditions for all variables. Therefore, the

problem can be regarded to be a periodic flow posed on a d-dimensional torus Td in space.

Given ρ0 : Ω̄ → (0, b), u0 : Ω̄ → Rd, and θ0 : Ω̄ → R as the initial density, velocity, and

temperature, the initial conditions for the strong problem (76)-(78) can be stated as

ρ(x, 0) =ρ0(x),

u(x, 0) =u0(x),

θ(x, 0) =θ0(x),

for x ∈ Ω. In the above balance equations, τ is the viscous shear stress; ς is the Korteweg

stress; p is the thermodynamic pressure; q is the heat flux; Π is the interstitial working flux

or the power expenditure of the microstress; b : Ω× (0, T )→ Rd is the prescribed body force

per unit mass. The constitutive relations for these quantities have been given in Section

2.2.3. For the completeness of this section, we list them here:

τ =µ̄
(
∇u +∇uT

)
+ λ̄∇ · uI,

ς =

(
λρ∆ρ+

λ

2
|∇ρ|2

)
I− λ∇ρ⊗∇ρ,

p =Rbθ
ρ

b− ρ
− aρ2,

q =− κ∇θ,

Π =λρ∇ · u∇ρ.

Remark 7. In the remainder of this work, the Stokes hypothesis is adopted, i.e.,

λ̄ = −2

3
µ̄.
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The total energy can be represented as

ρE = ρι+
1

2
ρ|u|2 = ρΨ + ρθs+

1

2
ρ|u|2. (79)

The definitions of the thermodynamic state variables are recollected here. The Helmholtz

free energy density Ψ, the local Helmholtz free energy density Ψloc, the local internal energy

density ιloc, the internal energy density ι, the entropy density s, and the local electrochemical

potential νloc are defined as

Ψ(ρ, θ,∇ρ) =Ψloc(ρ, θ) +
λ

2ρ
|∇ρ|2, (80)

Ψloc(ρ, θ) =− aρ+Rθ log

(
ρ

b− ρ

)
− Cvθ log

(
θ

θref

)
+ Cvθ, (81)

ι =ιloc +
λ

2ρ
|∇ρ|2, (82)

ιloc =− aρ+ Cvθ, (83)

s =−R log

(
ρ

b− ρ

)
+ Cv log

(
θ

θref

)
, (84)

νloc =− 2aρ+Rθ log

(
ρ

b− ρ

)
+

Rθb

b− ρ
− Cvθ log

(
θ

θref

)
+ Cvθ. (85)

3.2 Dimensionless form of the Navier-Stokes-Korteweg equations

In this section, we perform dimensional analysis of the Navier-Stokes-Korteweg equations

using the MLTΘ system. The reference scale of mass, length, time, and temperature are

denoted as M0, L0, T0, and θ0. We may obtain the dimensionless quantities denoted with a

superscript ∗:

x = L0x
∗, t = T0t

∗, ρ =
M0

L3
0

ρ∗, θ = θ0θ
∗, u =

L0

T0

u∗,

p =
M0

L0T 2
0

p∗, λ =
L7

0

M0T 2
0

λ∗, µ̄ =
M0

L0T0

µ̄∗, τ =
M0

T 2
0L0

τ ∗,

ς =
M0

T 2
0L0

ς∗, b =
L0

T 2
0

b∗, κ =
M0L0

θ0T 3
0

κ∗, E =
L2

0

T 2
0

E∗,

q =
M0

T 3
0

q∗, Π =
M0

T 3
0

Π∗, r =
L2

0

T 3
0

r∗, s =
L2

0

T 2
0 θ0

s∗. (86)
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With the above dimensionless variables, the dimensionless balance equations can be written

as

M0

T0L3
0

(∂ρ∗
∂t∗

+∇∗ · (ρ∗u∗)
)

= 0,

M0

T 2
0L

2
0

(∂(ρ∗u∗)

∂t∗
+∇∗ · (ρ∗u∗ ⊗ u∗) +∇∗p∗ −∇∗ · τ ∗ −∇∗ · ς∗ − ρ∗b∗

)
= 0,

M0

T 3
0L0

(∂(ρ∗E∗)

∂t∗
+∇∗ · ((ρ∗E∗ + p∗)u∗ − (τ ∗ + ς∗)u∗) +∇∗ · q∗ +∇∗ ·Π∗

− ρ∗b∗u∗ − ρ∗r∗
)

= 0.

The constitutive relations can be rescaled as

p∗ = Rb
L0T

2
0 θ0ρ

∗θ∗

bL3
0 −M0ρ∗

− aM0T
2
0

L5
0

ρ∗2,

τ ∗ = µ̄∗
(
∇∗u∗ +∇∗u∗T )− 2

3
µ̄∗∇∗ · u∗I,

ς∗ = −λ∗∇∗ρ∗ ⊗∇∗ρ∗ +

(
λ∗ρ∗∆∗ρ∗ +

λ∗

2
|∇∗ρ∗|2

)
I,

q∗ = −κ∗∇∗θ∗,

s∗ = −RT
2
0 θ0

L2
0

log

(
M0ρ

∗

L3
0b−M0ρ∗

)
+
CvT

2
0 θ0

L2
0

log

(
θ0θ

∗

θref

)
,

Π∗ = λ∗ρ∗∇∗ · u∗∇∗ρ∗.

The dimensionless viscosity coefficient µ̄∗ = L0T0µ̄/M0 measures the ratio of the viscous force

to the inertial force; the dimensionless capillarity coefficient λ∗ = M0T
2
0 λ/L

7
0 measures the

ratio of the surface tension to the inertia force. Hence, the two coefficients can be represented

in terms of the Reynolds number Re and the Weber number We as

µ̄∗ =
1

Re
, λ∗ =

1

We
.

The capillarity number Ca, which measures the relative effect of the viscous force against

the surface tension, is defined as

Ca =
We

Re
.
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The Bond number Bo measures the ratio of the body force to the surface tension and it is

defined as

Bo = |b∗|We .

There is one standard relation in thermodynamics relating the heat capacity at constant

volume Cv and the universal gas constant R:

Cv =
R

γ − 1
,

wherein γ is the heat capacity ratio. Hence, we can denote

Cv
R

=
1

γ − 1
.

Remark 8. The value of γ is related to the degrees-of-freedom of the gas molecule. For

example, γ for water vapor is 1.33 [59].

If the reference scales are chosen as

M0

L3
0

= b,

M0

L0T 2
0

= ab2,

θ0 = θcrit =
8ab

27R
,

and the reference temperature is selected as

θref = θcrit,

the dimensionless Navier-Stokes-Korteweg equations can be written as

∂ρ∗

∂t∗
+∇∗ · (ρ∗u∗) = 0, (87)

∂(ρ∗u∗)

∂t∗
+∇∗ · (ρ∗u∗ ⊗ u∗) +∇∗p∗ −∇∗ · τ ∗ −∇∗ · ς∗ − ρ∗b∗ = 0, (88)

∂(ρ∗E∗)

∂t∗
+∇∗ · ((ρ∗E∗ + p∗)u∗ − (τ ∗ + ς∗)u∗) +∇∗ · q∗ +∇∗ ·Π∗

− ρ∗b∗u∗ − ρ∗r∗ = 0, (89)
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wherein,

p∗ =
8θ∗ρ∗

27(1− ρ∗)
− ρ∗2, (90)

τ ∗ =
1

Re

(
∇∗u∗ +∇∗u∗T − 2

3
∇∗ · u∗I

)
, (91)

ς∗ =
1

We

((
ρ∗∆∗ρ∗ +

1

2
|∇∗ρ∗|2

)
I−∇∗ρ∗ ⊗∇∗ρ∗

)
, (92)

q∗ = −κ∗∇∗θ∗, (93)

Π∗ =
1

We
ρ∗∇∗ · u∗∇∗ρ∗, (94)

Re =
L0b
√
ab

µ̄
, (95)

We =
aL2

0

λ
. (96)

Likewise, the thermodynamic state variables (80)-(85) can be rescaled as

Ψ∗ = Ψ∗
loc(ρ, θ) +

1

We

1

2ρ∗
|∇∗ρ∗|2, (97)

Ψ∗
loc(ρ, θ) = −ρ∗ +

8

27
θ∗ log

(
ρ∗

1− ρ∗

)
− 8

27(γ − 1)
θ∗ log(θ∗) +

8

27(γ − 1)
θ∗, (98)

ι∗ = ι∗loc +
1

2 We ρ∗
|∇∗ρ∗|2, (99)

ι∗loc = −ρ∗ +
8

27(γ − 1)
θ∗, (100)

ν∗loc = −2ρ∗ +
8θ∗

27(1− ρ∗)
+

8

27
θ∗ log

(
ρ∗

1− ρ∗

)
− 8

27(γ − 1)
θ∗ log(θ∗) +

8

27(γ − 1)
θ∗, (101)

s∗ = − 8

27
log

(
ρ∗

1− ρ∗

)
+

8

27(γ − 1)
log (θ∗) . (102)

Henceforth, we will restrict our discussions to the dimensionless form, and the superscript ∗
will be omitted for notational simplicity.
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3.3 Functional entropy variables

The mathematical entropy function H is defined to be

H := −ρs =
8

27
ρ log

(
ρ

1− ρ

)
− 8

27(γ − 1)
ρ log (θ) . (103)

With this definition, the second law of thermodynamics can be written in terms of H as

∂H

∂t
+∇ · (Hu)−∇ ·

(q

θ

)
+
ρr

θ
= −1

θ
τ : ∇u− 1

θ2
κ|∇θ|2 ≤ 0.

In three dimensions, the conservation variables can be written as

UT = [U1, U2, U3, U4, U5] := [ρ, ρu1, ρu2, ρu3, ρE].

The classical entropy variables for the compressible Navier-Stokes equations are defined as

the partial derivatives of the mathematical entropy function H with respect to the conser-

vation variables U. This definition of the entropy variables was understood as an algebraic

change-of-variables, since the mathematical entropy function for the compressible Navier-

Stokes equation is a function in terms of the conservation variables. In contrast, due to

the constitutive relation (99), the temperature θ for the van der Waals fluid model can be

expressed in terms of the conservation variables as

θ =
27(γ − 1)

8

(
U5

U1

− U2
2 + U2

3 + U2
4

2U2
1

− 1

2 WeU1

|∇U1|2 + U1

)
The above relation includes a non-local gradient-squared term. This fact suggests that when

taking derivatives of the temperature with respect to conservation variables, the deriva-

tion should be taken in the functional setting. Therefore, for the Navier-Stokes-Korteweg

equations, we define the entropy variables V as the functional derivatives:

V =
δH

δU
= [V1, V2, V3, V4, V5]T =

[
δH

δU1

,
δH

δU2

,
δH

δU3

,
δH

δU4

,
δH

δU5

]T
.

Given the test functions δv = [δv1, δv2, δv3, δv4, δv5]T , the entropy variables V are represented

as linear operators acting on the test functions:

V1[δv1] =
1

θ

(
−2ρ+

8

27
θ log

(
ρ

1− ρ

)
− 8

27(γ − 1)
θ log (θ) +

8

27(γ − 1)
θ

+
8θ

27(1− ρ)
− |u|

2

2

)
δv1 +

1

We

1

θ
∇ρ · ∇δv1, (104)
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V2[δv2] =
u1

θ
δv2, (105)

V3[δv3] =
u2

θ
δv3, (106)

V4[δv4] =
u3

θ
δv4, (107)

V5[δv5] = −1

θ
δv5. (108)

Remark 9. The local Helmholtz free energy ρΨloc can be regarded as a function of ρ and θ.

Taking derivatives of ρΨloc gives

H =
∂(ρΨloc)

∂θ
,

νloc =
∂(ρΨloc)

∂ρ
.

Remark 10. In Section 2.4.2, we introduced the local electrochemical potential νloc, defined

as:

νloc =
∂(ρΨloc)

∂ρ
= Ψloc + ρ

∂Ψloc

∂ρ
.

We define the global electrochemical potential ν by generalizing the partial derivative in the

above formula to the functional derivative:

ν[δv1] := Ψ[δv1] + ρ
δΨ

δρ
[δv1]

=

(
−2ρ+

8

27
θ log

(
ρ

1− ρ

)
− 8

27(γ − 1)
θ log (θ) +

8

27(γ − 1)
θ

+
8θ

27(1− ρ)

)
δv1 +

1

We
∇ρ · ∇δv1,

= νlocδv1 +
1

We
∇ρ · ∇δv1.

Interestingly, with this definition, the entropy variable V1 can be written as

V1[δv1] =
1

θ

(
ν − |u|

2

2

)
[δv1].
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Consequently, the entropy variables V can be compactly represented as

V =
1

θ



ν − |u|
2

2

u1

u2

u3

− 1


. (109)

The expression (109) formally coincides with the definition of the entropy variables for the

perfect gas model. However, the entropy variables here should be understood as linear oper-

ators in the dual spaces of the conservation variables. The expression (109) also hints that

the formulation of the entropy variables is invariant under different choices of the Helmholtz

free energy functional.

Theorem 3. The action of entropy variables V on the Navier-Stokes-Korteweg equations

recovers the Clausius-Duhem inequality.

Proof. Testing the entropy variables V with the time derivative terms leads to

V

[
∂U

∂t

]
=
δH

δU

[
∂U

∂t

]
=
∂H

∂t
(110)

Choosing the test functions as the advective fluxes results in

V


∇ · (ρu)

∇ · (ρu⊗ u) +∇p

∇ · (ρEu + pu)

 = ∇ · (Hu)

+
1

We θ

(
∇u : ∇ρ⊗∇ρ+

1

2
|∇ρ|2∇ · u + ρ∇ρ · ∇(∇ · u)

)
. (111)

We emphasize that the notation V [ ] denotes the action of the differential operator V on

the term in square brackets. Taking the test functions as the terms related to the capillarity
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leads to

V


0

−∇ · ς

−∇ · (ςu) +∇ ·Π


= − 1

We θ

(
∇u : ∇ρ⊗∇ρ+

1

2
|∇ρ|2∇ · u + ρ∇ρ · ∇(∇ · u)

)
. (112)

Combing (111)-(112) yields

V


∇ · (ρu)

∇ · (ρu⊗ u) +∇p−∇ · ς

∇ · (ρEu + pu)−∇ · (ςu) +∇ ·Π

 = ∇ · (Hu) . (113)

Testing the entropy variables against the viscous flux gives

V


0

−∇ · τ

−∇ · (τu)

 =
1

θ
τ : ∇u. (114)

The action of entropy variables on the heat flux, the heat source, and the body force yields

V


0

− ρb

∇ · q−ρu · b− ρr

 = −∇ ·
(q

θ

)
+
ρr

θ
+

1

θ2
κ|∇θ|2. (115)

Combing the relations (110), (113), (114), and (115) leads to

∂H

∂t
+∇ · (Hu)−∇ ·

(q

θ

)
+
ρr

θ
= − 1

θ2
κ|∇θ|2 − 1

θ
τ : ∇u,

or equivalently,

∂(ρs)

∂t
+∇ · (ρsu) +∇ ·

(q

θ

)
− ρr

θ
=

1

θ2
κ|∇θ|2 +

1

θ
τ : ∇u.
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This is exactly the dissipation relation for the Navier-Stokes-Korteweg equations.

3.4 An alternative statement of the strong form of the problem

Theorem 3 suggests that a weak formulation for the Navier-Stokes-Korteweg equations will

satisfy the Clausius-Duhem inequality weakly as long as the entropy variables V are in the

test function spaces. For the compressible Navier-Stokes equations, one may rewrite the

equation in terms of the entropy variables V, since the mapping between U and V is purely

algebraic. By using the Bubnov-Galerkin method, the entropy variables are enforced in

the test function spaces, and consequently one can prove the entropy stability for the finite

element formulation [34]. This approach has been adopted for constructing entropy stable

finite element formulations for a variety of problems [3, 8, 10, 34, 35]. However, for the van

der Waals fluid, there is an additional difficulty coming from the differential relation in the

definition of V1 in (104). The classical approach becomes nonviable, since there is a second-

order differential operator in the definition of V1, and inverting a differential operator is not a

straightforward task. Inspired from the form of V1, we introduce a new independent variable

and couple it with the conservation laws by replacing the pressure. Hence, we may derive a

new system of equations, which is a consistent statement of the original strong problem. In

doing so, the definition of the entropy variable V1 is weakly enforced for the mass balance

equation, and we can prove entropy stability for the weak problem. To derive the alternative

statement of the Navier-Stokes-Korteweg equations, we introduce the auxiliary variable V

here as

V :=
1

θ

(
νloc −

|u|2

2

)
− 1

We
∇ ·
(
∇ρ
θ

)
. (116)

Recall that the local electrochemical potential is related to the thermodynamic pressure by

νloc =
p

ρ
+ Ψloc.

Hence, the auxiliary variable V can be rewritten as

V =
1

θ

(
p

ρ
+ Ψloc −

|u|2

2

)
− 1

We
∇ ·
(
∇ρ
θ

)
.

Rearranging terms in the above relation yields

p = ρV θ − ρΨloc +
ρ|u|2

2
+

1

We
ρθ∇ ·

(
∇ρ
θ

)
. (117)
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The above relation is an equivalent expression of the van der Waals equation of state (67) in

terms of the newly introduced auxiliary variable V . Taking gradient of both sides of (117),

we have

∇p = ∇
(
ρV θ +

ρ|u|2

2
+

1

We
ρθ∇ ·

(
∇ρ
θ

))
−∇ (ρΨloc)

= ∇
(
ρV θ +

ρ|u|2

2
+

1

We
ρθ∇ ·

(
∇ρ
θ

))
− ∂ (ρΨloc)

∂ρ
∇ρ− ∂ (ρΨloc)

∂θ
∇θ

= ∇
(
ρV θ +

ρ|u|2

2
+

1

We
ρθ∇ ·

(
∇ρ
θ

))
− νloc∇ρ−H∇θ

= ∇
(
ρV θ +

ρ|u|2

2
+

1

We
ρθ∇ ·

(
∇ρ
θ

))
−
(
V θ +

|u|2

2
+

1

We
θ∇ ·

(
∇ρ
θ

))
∇ρ−H∇θ. (118)

Using (117), the term ρE + p can be reorganized as

ρE + p =ρΨloc − θH +
1

2 We
|∇ρ|2 +

1

2
ρ|u|2

+ ρV θ +
1

2
ρ|u|2 − ρΨloc +

1

We
ρθ∇ ·

(
∇ρ
θ

)
=ρV θ − θH +

1

2 We
|∇ρ|2 + ρ|u|2 +

1

We
ρθ∇ ·

(
∇ρ
θ

)
. (119)

Making use of (118) and (119), the pressure force ∇p and the power expenditure of pressure

∇ · (pu) can be consistently represented in terms of V . Then the original strong problem

(87)-(89) can be rewritten as

∂ρ

∂t
+∇ · (ρu) = 0, (120)

∂(ρu)

∂t
+∇ · (ρu⊗ u) +∇

(
ρV θ +

ρ|u|2

2
+

1

We
ρθ∇ ·

(
∇ρ
θ

))
−
(
V θ +

|u|2

2
+

1

We
θ∇ ·

(
∇ρ
θ

))
∇ρ−H∇θ −∇ · τ −∇ · ς = ρb, (121)

∂(ρE)

∂t
+∇ ·

((
ρV θ − θH +

1

2 We
|∇ρ|2 + ρ|u|2 +

1

We
ρθ∇ ·

(
∇ρ
θ

))
u

)
−∇ · ((τ + ς) u) +∇ · q +∇ ·Π = ρb · u + ρr, (122)

V =
1

θ

(
νloc −

|u|2

2

)
− 1

We
∇ ·
(
∇ρ
θ

)
. (123)
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The equation (123) defines the auxiliary variable V . Based on our derivation, the new

balance equations (120)-(122), together with the auxiliary variable (123), is equivalent to

the original Navier-Stokes-Korteweg equations.

3.5 Weak formulation

In this section, we construct a weak formulation based on the alternative statement (120)-

(123). In the weak formulation, we solve for six unknowns in three dimensions. The set of

variables is denoted as

Y =



Y1

Y2

Y3

Y4

Y5

Y6


:=



ρ

u1

θ
u2

θ
u3

θ

−1

θ

V



. (124)

Let V1 be the trial solution space for Y1 = ρ and Y6 = V ; V2 be the trial solution space for

Yi+1 = ui/θ, i = 1, 2, 3; V3 be the trial solution space for Y5 = −1/θ. The test function spaces

are taken to be identical to the corresponding trial solution spaces. The weak formulation can

be stated as follows. Find Y1(t) = ρ(t) ∈ L2(0, T ;V1)∩H1(0, T ;L2(Ω)), Yi+1(t) = ui(t)/θ(t) ∈
L2(0, T ;V2)∩H1(0, T ;L2(Ω)) for i = 1, 2, 3, Y5(t) = −1/θ(t) ∈ L2(0, T ;V3)∩H1(0, T ;L2(Ω)),

and Y6(t) = V ∈ L2(0, T ;V1), such that(
w1,

∂ρ

∂t

)
Ω

− (∇w1, ρu)Ω = 0, ∀w1 ∈ V1, (125)(
w,

∂(ρu)

∂t

)
Ω

− (∇w, ρu⊗ u)Ω −
(
∇ ·w, ρV θ +

1

2
ρ|u|2 +

1

We
ρθ∇ ·

(
∇ρ
θ

))
Ω

−
(

w,

(
V θ +

|u|2

2
+

1

We
θ∇ ·

(
∇ρ
θ

))
∇ρ
)

Ω

− (w, H∇θ)Ω + (∇w, τ )Ω + (∇w, ς)Ω

= (w, ρb)Ω , ∀w = (w2;w3;w4)T ∈ (V2)3 , (126)
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(
w5,

∂(ρE)

∂t

)
Ω

−
(
∇w5,

(
ρV θ − θH +

1

2 We
|∇ρ|2 + ρ|u|2 +

1

We
ρθ∇ ·

(
∇ρ
θ

))
u

)
Ω

+ (∇w5, τu)Ω + (∇w5, ςu)Ω − (∇w5,q)Ω − (∇w5,Π)Ω

= (w5, ρb · u)Ω + (w5, ρr)Ω , ∀w5 ∈ V3, (127)

(w6, V )Ω =

(
w6,

1

θ

(
νloc −

|u|2

2

))
Ω

+

(
∇w6,

1

We θ
∇ρ
)

Ω

,∀w6 ∈ V1, (128)

with ρ(0) = ρ0, u(0)/θ(0) = u0/θ0, and −1/θ(0) = −1/θ0 in Ω.

Comparing (128) with (104), one may find that the auxiliary variable V is identical to the

entropy variable V1 in the weak formulation. Therefore, in the set of variables (124), we are

actually solving for the entropy variables V together with density ρ, which is the conjugate

variable to V1 = V . By choosing the test function and trial solution spaces identical for

the equations (120) and (123), the entropy variable V1 is weakly enforced to be in the test

function space for the mass balance equation. This is a key ingredient in the proof of the

following theorem.

Theorem 4. Sufficiently smooth weak solutions of the problem (125)-(128) verify the second

law of thermodynamics, i.e.,

∫
Ω

(
∂H

∂t
+∇ · (Hu)−∇ ·

(q

θ

)
+
ρr

θ

)
dVx = −

∫
Ω

1

θ
τ : ∇udVx −

∫
Ω

κ|∇θ|2

θ2
dVx. (129)

Proof. Choosing w1 = V in (125) and w6 = ∂ρ/∂t in (128) yields(
V,
∂ρ

∂t

)
Ω

− (∇V, ρu)Ω = 0,(
∂ρ

∂t
, V

)
Ω

=

(
∂ρ

∂t
,
1

θ

(
νloc −

|u|2

2

))
Ω

+

(
∇
(
∂ρ

∂t

)
,

1

We θ
∇ρ
)

Ω

.

Combing the above two relations leads to∫
Ω

δH

δρ

[
∂ρ

∂t

]
dVx =

(
∂ρ

∂t
,
1

θ

(
νloc −

|u|2

2

))
Ω

+

(
∇
(
∂ρ

∂t

)
,

1

We θ
∇ρ
)

Ω

= (∇V, ρu)Ω . (130)

Taking w = u/θ in (126) results in∫
Ω

δH

δ(ρu)

[
∂(ρu)

∂t

]
dVx =

(
u

θ
,
∂(ρu)

∂t

)
Ω

=
(
∇
(u

θ

)
, ρu⊗ u

)
Ω
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+

(
∇ ·
(u

θ

)
, ρV θ +

1

2
ρ|u|2 +

1

We
ρθ∇ ·

(
∇ρ
θ

))
Ω

+

(
u

θ
,

(
V θ +

|u|2

2
+

1

We
θ∇ ·

(
∇ρ
θ

))
∇ρ
)

Ω

+
(u

θ
,H∇θ

)
Ω
−
(
∇
(u

θ

)
, τ
)

Ω
−
(
∇
(u

θ

)
, ς
)

Ω

+
(u

θ
, ρb
)

Ω
. (131)

Choosing w5 = −1/θ in (127) yields∫
Ω

δH

δ(ρE)

[
∂(ρE)

∂t

]
dVx =

(
−1

θ
,
∂(ρE)

∂t

)
Ω

= −
(
∇
(

1

θ

)
,

(
ρV θ − θH

+
1

2 We
|∇ρ|2 + ρ|u|2 +

1

We
ρθ∇ ·

(
∇ρ
θ

))
u

)
Ω

+

(
∇
(

1

θ

)
, τu

)
Ω

+

(
∇
(

1

θ

)
, ςu

)
Ω

+

(
1

θ
,∇ · q

)
Ω

−
(
∇
(

1

θ

)
,Π

)
Ω

−
(

1

θ
, ρb · u

)
Ω

−
(

1

θ
, ρr

)
Ω

. (132)

Grouping all terms in (130)-(132) involving V , one has

(∇V, ρu)Ω +
(
∇ ·
(u

θ

)
, ρV θ

)
Ω

+
(u

θ
, V θ∇ρ

)
Ω
−
(
∇
(

1

θ

)
, V θρu

)
Ω

=

∫
Ω

∇ · (ρV u) dVx =

∫
∂Ω

ρV u · ndAx = 0. (133)

Summing all terms in (130)-(132) involving H yields

(u

θ
,H∇θ

)
Ω

+

(
∇
(

1

θ

)
, θHu

)
Ω

=
(u

θ
,H∇θ

)
Ω
−
(

1

θ
,∇ (θHu)

)
Ω

= −
∫

Ω

∇ · (Hu) dVx. (134)
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Next, collecting all terms in (130)-(132) explicitly involving We, we have(
∇ ·
(u

θ

)
,

1

We
ρθ∇ ·

(
∇ρ
θ

))
Ω

+

(
u

θ
,

1

We
θ∇ ·

(
∇ρ
θ

)
∇ρ
)

Ω

−
(
∇
(

1

θ

)
,

1

We
ρθ∇ ·

(
∇ρ
θ

)
u

)
Ω

−
(
∇
(

1

θ

)
,

1

2 We
|∇ρ|2u

)
Ω

=

∫
Ω

1

We
∇ · (ρu)∇ ·

(
∇ρ
θ

)
− 1

2 We
∇
(

1

θ

)
· u|∇ρ|2dVx

=−
∫

Ω

1

Weθ
∇ (∇ · (ρu)) · ∇ρ+

1

2 Weθ
∇ ·
(
u|∇ρ|2

)
dVx

=

∫
Ω

−1

We θ

(
1

2
|∇ρ|2∇ · u +∇ρ⊗∇ρ : ∇u + ρ∇ρ · ∇ (∇ · u)

)
dVx. (135)

Combing all the terms in (130)-(132) including the Korteweg stress ς and the interstitial

working, we have

−
(
∇
(u

θ

)
, ς
)

Ω
+

(
∇
(

1

θ

)
, ςu

)
Ω

−
(
∇
(

1

θ

)
,Π

)
Ω

= −
(

1

θ
,∇u : ς

)
Ω

+

(
1

θ
,∇ ·Π

)
Ω

=

∫
Ω

1

We θ

(
1

2
|∇ρ|2∇ · u +∇ρ⊗∇ρ : ∇u + ρ∇ρ · ∇ (∇ · u)

)
dVx. (136)

Making use of (133)-(136), the summation of (130)-(132) gives∫
Ω

δH

δρ

[
∂ρ

∂t

]
+

δH

δ(ρu)

[
∂(ρu)

∂t

]
+

δH

δ(ρE)

[
∂(ρE)

∂t

]
dVx

= −
∫

Ω

∇ · (Hu) dVx −
(
∇
(u

θ

)
, τ
)

Ω
+

(
∇
(

1

θ

)
, τu

)
Ω

+

(
1

θ
, ρb · u

)
Ω

−
(

1

θ
, ρb · u

)
Ω

+

(
1

θ
,∇ · q

)
Ω

−
(

1

θ
, ρr

)
Ω

= −
∫

Ω

∇ · (Hu) dVx −
∫

Ω

1

θ
τ : ∇udVx +

(
1

θ
,∇ · q

)
Ω

−
(

1

θ
, ρr

)
Ω

= −
∫

Ω

∇ · (Hu) dVx −
∫

Ω

1

θ
τ : ∇udVx +

∫
Ω

∇ ·
(q

θ

)
+

q · ∇θ
θ2

− ρr

θ
dVx.

The above equation implies

∫
Ω

(
∂H

∂t
+∇ · (Hu)−∇ ·

(q

θ

)
+
ρr

θ

)
dVx = −

∫
Ω

1

θ
τ : ∇udVx −

∫
Ω

κ|∇θ|2

θ2
dVx,
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which completes the proof of this theorem.

Remark 11. In our discussion, we assumed periodic boundary conditions. For periodic

boundary conditions, the divergence terms in (129) are canceled out and the statement can

be simplified as

∫
Ω

(
∂H

∂t
+
ρr

θ

)
dVx = −

∫
Ω

1

θ
τ : ∇udVx −

∫
Ω

κ|∇θ|2

θ2
dVx.

Even though we proved the case with periodic boundary conditions, the proof of Theorem 4 can

proceed with other boundary conditions, such as no-slip boundary conditions for the velocity

field and the heat flux boundary condition for the temperature field. A difficulty emanates

from inhomogeneous essential boundary conditions. If there are non-zero functions built in

the trial solution spaces, the test functions cannot be chosen as the entropy variables and the

preceding proof is no longer valid. The same issue arises for the compressible Navier-Stokes

equations [63]. This suggests that the strong imposition of inhomogeneous Dirichlet boundary

conditions is not necessarily entropy-dissipative. The weak imposition methodology [5] may

provide a framework to more easily establish the entropy inequality.

3.6 Semi-discrete formulation

We perform spatial discretization of (120)-(123) by invoking the Galerkin method [32]. Let

Vh1 ⊂ V1, Vh2 ⊂ V2, and Vh3 ⊂ V3 be finite-dimensional function spaces, in which the super-

script h denotes a mesh parameter. Then the spatial discretization of (120)-(123) can be

stated as follows.

Find Y h
1 (t) = ρh(t) ∈ L2(0, T ;Vh1 ) ∩H1(0, T ;L2(Ω)), Y h

i+1(t) = uhi (t)/θ
h(t) ∈ L2(0, T ;Vh2 ) ∩

H1(0, T ;L2(Ω)) for i = 1, 2, 3, Y h
5 (t) = −1/θh(t) ∈ L2(0, T ;Vh3 ) ∩ H1(0, T ;L2(Ω)), and

Y h
6 = V h ∈ L2(0, T ;Vh1 ), such that(

wh1 ,
∂ρh

∂t

)
Ω

−
(
∇wh1 , ρuh

)
Ω

= 0, ∀wh1 ∈ Vh1 , (137)

(
wh,

∂(ρhuh)

∂t

)
Ω

−
(
∇wh, ρhuh ⊗ uh

)
Ω

−
(
∇ ·wh, ρhV hθh +

1

2
ρh|uh|2 +

1

We
ρhθh∇ ·

(
∇ρh

θh

))
Ω

−
(

wh,

(
V hθh +

|uh|2

2
+

1

We
θh∇ ·

(
∇ρh

θh

))
∇ρh

)
Ω

−
(
wh, Hh∇θh

)
Ω

+
(
∇wh, τ h

)
Ω

+
(
∇wh, ςh

)
Ω

=
(
wh, ρhb

)
Ω
, ∀wh = (wh2 ;wh3 ;wh4 )T ∈

(
Vh2
)3
, (138)
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(
wh5 ,

∂(ρhEh)

∂t

)
Ω

−
(
∇wh5 ,

(
ρhV hθh − θhHh +

1

2 We
|∇ρh|2 + ρh|uh|2

+
1

We
ρhθh∇ ·

(
∇ρh

θh

))
uh
)

Ω

+
(
∇wh5 , τ huh

)
Ω

+
(
∇wh5 , ςhuh

)
Ω

−
(
∇wh5 ,qh

)
Ω
−
(
∇wh5 ,Πh

)
Ω

=
(
wh5 , ρ

hb · uh
)

Ω
+
(
wh5 , ρ

hr
)

Ω
, ∀wh5 ∈ Vh3 , (139)

(
wh6 , V

h
)

Ω
=

(
wh6 ,

1

θh

(
νhloc −

|uh|2

2

))
Ω

+

(
∇wh6 ,

1

We θh
∇ρh

)
Ω

, ∀wh6 ∈ Vh1 , (140)

with ρh(0) = ρh0 , uh(0)/θh(0) = uh0/θ
h
0 , and −1/θh(0) = −1/θh0 in Ω.

In the above formulation, ρh0 , uh0/θ
h
0 , and −1/θh0 are L2-projections of ρ0(x), u0(x)/θ0(x),

and −1/θ0(x) onto Vh1 , Vh2 , and Vh3 respectively. Employing the same techniques used in

the proof of Theorem 4, we can obtain the following theorem, which implies that the spatial

discretization (137)-(140) is entropy dissipative.

Theorem 5. The solutions of the semi-discrete formulation (137)-(140) satisfy the second

law of thermodynamics in the following sense.

∫
Ω

(
∂H(ρh, θh)

∂t
+∇ ·

(
H(ρh, θh)uh

)
−∇ ·

(
qh

θh

)
+
ρhr

θh

)
dVx

= −
∫

Ω

1

θh
τ h : ∇uhdVx −

∫
Ω

κ|∇θh|2

(θh)2 dVx.

Remark 12. In our implementation, the same discrete space Vh, up to the prescription

of the boundary conditions, is used to approximate V1, V2, and V3. Specifically, the Non-

Uniform Rational B-Spline (NURBS) basis functions are used to define Vh as well as the

geometry of the computational domain. Consequently, this approach may be considered as

isogeometric analysis method [33].

3.7 The fully discrete formulation

In the preceding section, we have constructed an entropy-dissipative semi-discrete formula-

tion. It remains to design discretizations of the time derivatives such that the dissipation

property can be inherited in the time direction. In our previous work [44], we have suc-

cessfully developed a suite of temporal schemes for the isothermal Navier-Stokes-Korteweg

equations. For the thermal case, the difficulty comes from the term ∂(ρE)/∂t. If one uses

the traditional jump operator to approximate the time derivative, it is difficult to estimate

the dissipation of the resulting scheme. In this work, the total energy ρE is split into four
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parts:

ρE = ρΨloc − θH +
1

2
ρ|u|2 +

1

2 We
|∇ρ|2, (141)

and the time approximation for each of the four parts will be carefully designed to ensure

consistency and temporal dissipation. It is noteworthy that, in the design of the discrete

scheme, the special quadrature rules developed in [24, 44] will be used repeatedly as a key

technique. In the following, we will first state the fully discrete scheme in Section 3.7.1.

Following that, five preliminary lemmas will be given in Section 3.7.2. The main results

about the entropy-dissipation property and time accuracy are proven in Section 3.7.3.

3.7.1 The fully discrete scheme

To discretize the semi-discrete formulation, the time interval I = (0, T ) is divided into Nts

subintervals In = (tn, tn+1), n = 0, · · · , Nts− 1, of size ∆tn = tn+1− tn. We use the notation

Yh
n :=

[
ρhn;

uh1,n
θhn

;
uh2,n
θhn

;
uh3,n
θhn

;
−1

θhn
;V h

n

]T
(142)

to denote the fully discrete solutions at the time level n. The fully discrete primitive variables

at the same time level can be represented in terms of Yh
n as

ρhn = ρh(Yh
n) = Y h

1,n,

uhi,n = uhi (Y
h
n) = −Y h

i+1,n/Y
h

5,n, i = 1, 2, 3,

θhn = θh(Yh
n) = −1/Y h

5,n.

We define the jump of density, linear momentum, and total energy over each time step as

JρhnK :=ρhn+1 − ρhn, (143)

Jρhnu
h
nK :=ρhn+1u

h
n+1 − ρhnuhn, (144)
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[ρhnE(ρhn,u
h
n, θ

h
n)] :=(ρΨloc)(ρ

h
n+ 1

2
, θhn+1)− (ρΨloc)(ρ

h
n+ 1

2
, θhn)

+ (ρΨloc)(ρ
h
n+1, θ

h
n+ 1

2
)− (ρΨloc)(ρ

h
n, θ

h
n+ 1

2
)

− θh
n+ 1

2

(
H(ρhn+1, θ

h
n+1)−H(ρhn, θ

h
n)
)

−
θhn+1 − θhn

2

(
H(ρh

n+ 1
2
, θhn+1) +H(ρh

n+ 1
2
, θhn)

)
+

(θhn+1 − θhn)3

12

∂2H

∂θ2
(ρh
n+ 1

2
, θhn+1)

+
1

2

(
ρhn+1|uhn+1|2 − ρhn|uhn|2

)
+

1

2 We

(
|∇ρhn+1|2 − |∇ρhn|2

)
. (145)

Remark 13. According to the energy split (141), the definition (145) can be rewritten as a

summation of four jumps:

[ρhnE(ρhn,u
h
n, θ

h
n)] =[ρhnΨloc(ρ

h
n, θ

h
n)]− [θhnH(ρhn, θ

h
n)] + J

ρhn
2
|uhn|2K + J

1

2 We
|∇ρhn|2K, (146)

wherein,

[ρhnΨloc(ρ
h
n, θ

h
n)] :=(ρΨloc)(ρ

h
n+ 1

2
, θhn+1)− (ρΨloc)(ρ

h
n+ 1

2
, θhn)

+ (ρΨloc)(ρ
h
n+1, θ

h
n+ 1

2
)− (ρΨloc)(ρ

h
n, θ

h
n+ 1

2
), (147)

[θhnH(ρhn, θ
h
n)] :=θh

n+ 1
2

(
H(ρhn+1, θ

h
n+1)−H(ρhn, θ

h
n)
)

+
θhn+1 − θhn

2

(
H(ρh

n+ 1
2
, θhn+1) +H(ρh

n+ 1
2
, θhn)

)
−

(θhn+1 − θhn)3

12

∂2H

∂θ2
(ρh
n+ 1

2
, θhn+1), (148)

J
ρhn
2
|uhn|2K :=

1

2

(
ρhn+1|uhn+1|2 − ρhn|uhn|2

)
, (149)

J
1

2 We
|∇ρhn|2K :=

1

2 We

(
|∇ρhn+1|2 − |∇ρhn|2

)
. (150)

The definitions (147) and (148) are inspired by the fact that the summation of first-order

partial derivatives approximates the total derivative. In (148), there is an additional third-

order perturbation term, whose role will be described in Lemma 6. The jump operators for

the kinetic energy and the surface energy follow the classical definition. In the following text,

we define JθhnK := θhn+1 − θhn to simplify notations.

With the jump operators defined above, the fully discrete scheme is stated as follows.

In each time step, given Yh
n and the time step ∆tn, find Yh

n+1 such that for all wh1 ∈ Vh,
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wh = (wh2 ;wh3 ;wh4 )T ∈
(
Vh
)3

, wh5 ∈ Vh, and wh6 ∈ Vh,

BM(wh1 ; Yh
n+1) :=

(
wh1 ,

JρhnK
∆tn

)
Ω

−
(
∇wh1 , ρhn+ 1

2
uh
n+ 1

2

)
Ω

= 0, (151)

BU(wh; Yh
n+1) :=

(
wh,

JρhnuhnK
∆tn

)
Ω

−
(
∇wh, ρh

n+ 1
2
uh
n+ 1

2
⊗ uh

n+ 1
2

)
Ω

−

(
∇ ·wh, ρh

n+ 1
2
V h
n+ 1

2
θh
n+ 1

2
+

1

2
ρh
n+ 1

2
|uh
n+ 1

2
|2 +

1

We
ρh
n+ 1

2
θh
n+ 1

2
∇ ·

(∇ρh
n+ 1

2

θh
n+ 1

2

))
Ω

−

(
wh,

(
V h
n+ 1

2
θh
n+ 1

2
+
|uh
n+ 1

2

|2

2
+

1

We
θh
n+ 1

2
∇ ·

(∇ρh
n+ 1

2

θh
n+ 1

2

))
∇ρh

n+ 1
2

)
Ω

−
(
wh, Hh

n+ 1
2
∇θh

n+ 1
2

)
Ω

+
(
∇wh, τ h

n+ 1
2

)
Ω

+
(
∇wh, ςh

n+ 1
2

)
Ω
−
(
wh, ρh

n+ 1
2
b
)

Ω
= 0, (152)

BE(wh5 ; Yh
n+1) :=

(
wh5 ,

[ρhnE(ρhn,u
h
n, θ

h
n)]

∆tn

)
Ω

−

(
∇wh5 ,

(
ρh
n+ 1

2
V h
n+ 1

2
θh
n+ 1

2

− θh
n+ 1

2
Hh
n+ 1

2
+

1

2 We
|∇ρh

n+ 1
2
|2 +

1

We
ρh
n+ 1

2
θh
n+ 1

2
∇ ·

(∇ρh
n+ 1

2

θh
n+ 1

2

)
+ ρh

n+ 1
2
|uh
n+ 1

2
|2
)

uh
n+ 1

2

)
Ω

+
(
∇wh5 , τ hn+ 1

2
uh
n+ 1

2

)
Ω

+
(
∇wh5 , ςhn+ 1

2
uh
n+ 1

2

)
Ω
−
(
∇wh5 ,qhn+ 1

2

)
Ω
−
(
∇wh5 ,Πh

n+ 1
2

)
Ω

−
(
wh5 , ρ

h
n+ 1

2
b · uh

n+ 1
2

)
Ω
−
(
wh5 , ρ

h
n+ 1

2
r
)

Ω
= 0, (153)

BA(wh6 ; Yh
n+1) :=

(
wh6 , V

h
n+ 1

2

)
Ω
−

(
wh6 ,

1

θh
n+ 1

2

(
1

2

(
νloc(ρ

h
n, θ

h
n+ 1

2
) + νloc(ρ

h
n+1, θ

h
n+ 1

2
)
)

− JρhnK2

12

∂2νloc
∂ρ2

(ρhn, θ
h
n+ 1

2
)

))
Ω

+

(
wh6 ,

1

θh
n+ 1

2

uhn · uhn+1

2

)
Ω

−

(
∇wh6 ,

∇ρh
n+ 1

2

We θh
n+ 1

2

)
Ω

= 0, (154)

wherein

Yh
n+ 1

2
:=

1

2

(
Yh
n + Yh

n+1

)
, (155)

ρh
n+ 1

2
:= ρh(Yh

n+ 1
2
), (156)

uh
n+ 1

2
:= uh(Yh

n+ 1
2
), (157)

θh
n+ 1

2
:= θh(Yh

n+ 1
2
), (158)

τ h
n+ 1

2
:=

1

Re

(
∇uh

n+ 1
2

+
(
∇uh

n+ 1
2

)T
− 2

3
∇ · uh

n+ 1
2
I

)
, (159)

ςh
n+ 1

2
:=

1

We

((
ρh
n+ 1

2
∆ρh

n+ 1
2

+
1

2
|∇ρh

n+ 1
2
|2
)

I−∇ρh
n+ 1

2
⊗∇ρh

n+ 1
2

)
, (160)

qh
n+ 1

2
:= −κ∇θh

n+ 1
2
, (161)
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Π :=
1

We
ρh
n+ 1

2
∇ · uh

n+ 1
2
∇ρh

n+ 1
2
, (162)

Hh
n+ 1

2
:=

8

27
ρh
n+ 1

2

(
log

(
ρh
n+ 1

2

1− ρh
n+ 1

2

)
− 1

γ − 1
log(θh

n+ 1
2
)

)
. (163)

3.7.2 Preliminary lemmas

We state and prove five lemmas in this section, which will be applied to prove the final

results in Section 3.7.3.

Lemma 3. The mathematical entropy function H(ρ, θ) given by (103) satisfies

∂3H

∂θ3
< 0. (164)

Proof. Straightforward calculations lead to

∂3H

∂θ3
= − 16

27(γ − 1)

ρ

θ3
.

The dimensionless temperature θ is always positive and the heat capacity ratio γ is always

greater than 1. Hence,

∂3H

∂θ3
< 0.

Lemma 4. The local electrochemical potential νloc(ρ, θ) given by (101) satisfies

∂3νloc
∂ρ3

> 0. (165)

Proof. Direct calculations yield

∂3νloc
∂ρ3

=
16θ

27

6ρ2 − 4ρ+ 1

ρ3(1− ρ)4
.

It is known that θ > 0 and 6ρ2 − 4ρ+ 1 ≥ 1/3. Therefore, one has

∂3νloc
∂ρ3

> 0.
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Lemma 5. (Perturbed trapezoidal rules) For a function f ∈ C3([m,n]), where m,n ∈ R,

there exist ξ1, ξ2 ∈ (m,n) such that the following quadrature formulas hold true.∫ n

m

f(x)dx =
n−m

2
(f(m) + f(n))− (n−m)3

12
f

′′
(m)− (n−m)4

24
f

′′′
(ξ1), (166)∫ n

m

f(x)dx =
n−m

2
(f(m) + f(n))− (n−m)3

12
f

′′
(n) +

(n−m)4

24
f

′′′
(ξ2). (167)

The proof for this lemma can be found in the appendix of [24]. There are two other suites

of quadrature formulas – the rectangular quadrature rules and the perturbed mid-point rules.

Interested readers are referred to [44, 42] for details about these formulas and applications. A

common feature of these formulas is that each pair contains opposite signs in the asymptotic

residual terms. This allows one to perform a split of the target function and construct a

discrete scheme with a controllable residual. This technique will be demonstrated in the

following lemma.

Lemma 6. Given JρhnK, JρhnuhnK, and [ρhnE(ρhn,u
h
n, θ

h
n)] defined in (143)-(145), the following

relation holds for ξ1, ξ2 ∈ (0, 1).(
JρhnK
∆tn

,
1

θh
n+ 1

2

(
1

2

(
νloc(ρ

h
n, θ

h
n+ 1

2
) + νloc(ρ

h
n+1, θ

h
n+ 1

2
)
)
− JρhnK2

12

∂2νloc
∂ρ2

(ρhn, θ
h
n+ 1

2
)

))
Ω

−

(
JρhnK
∆tn

,
uhn+1 · uhn

2θh
n+ 1

2

)
Ω

+

(
∇JρhnK

∆tn
,

1

We θh
n+ 1

2

∇ρh
n+ 1

2

)
Ω

+

(
uh
n+ 1

2

θh
n+ 1

2

,
JρhnuhnK

∆tn

)
Ω

−

(
1

θh
n+ 1

2

,
[ρhnE(ρhn,u

h
n, θ

h
n)]

∆tn

)
Ω

=

∫
Ω

H(ρhn+1, θ
h
n+1)−H(ρhn, θ

h
n)

∆tn
dVx +

(
1

θh
n+ 1

2

∆tn
,
JρhnK4

24

∂3νloc
∂ρh3

(ρhn+ξ1
, θh
n+ 1

2
)

)
Ω

−

(
1

θh
n+ 1

2

∆tn
,
JθhnK4

24

∂3H

∂θh3
(ρh
n+ 1

2
, θhn+ξ2

)

)
Ω

. (168)

Proof. Direct calculations can shown that(
∇JρhnK

∆tn
,

1

We θh
n+ 1

2

∇ρh
n+ 1

2

)
Ω

=

∫
Ω

|∇ρhn+1|2 − |∇ρhn|2

2 We θh
n+ 1

2

∆tn
dVx,
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and (
uh
n+ 1

2
, Jρhnu

h
nK
)

Ω
−
(

JρhnK,
1

2
uhn+1 · uhn

)
Ω

=

∫
Ω

1

2

(
ρhn+1|uhn+1|2 − ρhn|uhn|2

)
dVx.

Making use of the above two relations, one can get(
JρhnK
∆tn

,
1

θh
n+ 1

2

(
1

2

(
νloc(ρ

h
n, θ

h
n+ 1

2
) + νloc(ρ

h
n+1, θ

h
n+ 1

2
)
)
− JρhnK2

12

∂2νloc
∂ρh2

(ρhn, θ
h
n+ 1

2
)

))
Ω

−

(
JρhnK
∆tn

,
uhn+1 · uhn

2θh
n+ 1

2

)
Ω

+

(
∇JρhnK

∆tn
,

1

We θh
n+ 1

2

∇ρh
n+ 1

2

)
Ω

+

(
uh
n+ 1

2

θh
n+ 1

2

,
JρhnuhnK

∆tn

)
Ω

−

(
1

θh
n+ 1

2

,
[ρhnE(ρhn,u

h
n, θ

h
n)]

∆tn

)
Ω

=

(
JρhnK
∆tn

,
1

θh
n+ 1

2

(
1

2

(
νloc(ρ

h
n, θ

h
n+ 1

2
) + νloc(ρ

h
n+1, θ

h
n+ 1

2
)
)
− JρhnK2

12

∂2νloc
∂ρ2

(ρhn, θ
h
n+ 1

2
)

))
Ω

−

(
1

θh
n+ 1

2

∆tn
, (ρΨloc)(ρ

h
n+ 1

2
, θhn+1)− (ρΨloc)(ρ

h
n+ 1

2
, θhn) + (ρΨloc)(ρ

h
n+1, θ

h
n+ 1

2
)

− (ρΨloc)(ρ
h
n, θ

h
n+ 1

2
)− θh

n+ 1
2

(
H(ρhn+1, θ

h
n+1)−H(ρhn, θ

h
n)
)

− JθhnK
2

(
H(ρh

n+ 1
2
, θhn+1) +H(ρh

n+ 1
2
, θhn)

)
+

JθhnK3

12

∂2H

∂θ2
(ρh
n+ 1

2
, θhn+1)

)
Ω

. (169)

Applying the perturbed trapezoidal rule (166) to

νloc =
∂(ρΨloc)

∂ρ
,

one can get

(ρΨloc)(ρ
h
n+1, θ

h
n+ 1

2
)− (ρΨloc)(ρ

h
n, θ

h
n+ 1

2
) =

∫ ρh
n+1

ρh
n

∂(ρΨloc)

∂ρ
dρ =

∫ ρh
n+1

ρh
n

νlocdρ

=
JρhnK

2

(
νloc(ρ

h
n, θ

h
n+ 1

2
) + νloc(ρ

h
n+1, θ

h
n+ 1

2
)
)
− JρhnK3

12

∂2νloc
∂ρ2

(ρhn, θ
h
n+ 1

2
)− JρhnK4

24

∂3νloc
∂ρ3

(ρhn+ξ1
, θh
n+ 1

2
),
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for ξ1 ∈ (0, 1). Consequently, the relation (169) can be rewritten as(
JρhnK
∆tn

,
1

θh
n+ 1

2

(
1

2

(
νloc(ρ

h
n, θ

h
n+ 1

2
) + νloc(ρ

h
n+1, θ

h
n+ 1

2
)
)
− JρhnK2

12

∂2νloc
∂ρ2

(ρhn, θ
h
n+ 1

2
)

))
Ω

−

(
JρhnK
∆tn

,
uhn+1 · uhn

2θh
n+ 1

2

)
Ω

+

(
∇JρhnK

∆tn
,

1

We θh
n+ 1

2

∇ρh
n+ 1

2

)
Ω

+

(
uh
n+ 1

2

θh
n+ 1

2

,
JρhnuhnK

∆tn

)
Ω

−

(
1

θh
n+ 1

2

,
[ρhnE(ρhn,u

h
n, θ

h
n)]

∆tn

)
Ω

=

(
1

∆tnθhn+ 1
2

,
JρhnK4

24

∂3νloc
∂ρ3

(ρhn+ξ1
, θh
n+ 1

2
)

)
Ω

−

(
1

θh
n+ 1

2

∆tn
, (ρΨloc)(ρ

h
n+ 1

2
, θhn+1)

− (ρΨloc)(ρ
h
n+ 1

2
, θhn)− θh

n+ 1
2

(
H(ρhn+1, θ

h
n+1)−H(ρhn, θ

h
n)
)

− JθhnK
2

(
H(ρh

n+ 1
2
, θhn+1) +H(ρh

n+ 1
2
, θhn)

)
+

JθhnK3

12

∂2H

∂θ2
(ρh
n+ 1

2
, θhn+1)

)
Ω

. (170)

Next, applying the perturbed trapezoidal rule (167) to

H =
∂(ρΨloc)

∂θ

leads to

(ρΨloc)(ρ
h
n+ 1

2
, θhn+1)− (ρΨloc)(ρ

h
n+ 1

2
, θhn) =

∫ θh
n+1

θh
n

∂(ρΨloc)

∂θ
dθ =

∫ θh
n+1

θh
n

Hdθ

=
JθhnK

2

(
H(ρh

n+ 1
2
, θhn+1) +H(ρh

n+ 1
2
, θhn)

)
− JθhnK3

12

∂2H

∂θ2
(ρh
n+ 1

2
, θhn+1) +

JθhnK4

24

∂3H

∂θ3
(ρh
n+ 1

2
, θhn+ξ2

),

for ξ2 ∈ (0, 1). Using the above relation, relation (170) can be further rewritten as(
JρhnK
∆tn

,
1

θh
n+ 1

2

(
1

2

(
νloc(ρ

h
n, θ

h
n+ 1

2
) + νloc(ρ

h
n+1, θ

h
n+ 1

2
)
)
− JρhnK2

12

∂2νloc
∂ρ2

(ρhn, θ
h
n+ 1

2
)

))
Ω

−

(
JρhnK
∆tn

,
uhn+1 · uhn

2θh
n+ 1

2

)
Ω

+

(
∇JρhnK

∆tn
,

1

We θh
n+ 1

2

∇ρh
n+ 1

2

)
Ω

+

(
uh
n+ 1

2

θh
n+ 1

2

,
JρhnuhnK

∆tn

)
Ω

−

(
1

θh
n+ 1

2

,
[ρhnE(ρhn,u

h
n, θ

h
n)]

∆tn

)
Ω

=

(
1

∆tnθhn+ 1
2

,
JρhnK4

24

∂3νloc
∂ρ3

(ρhn+ξ1
, θh
n+ 1

2
)

)
Ω

+

(
1

∆tn
,
(
H(ρhn+1, θ

h
n+1)−H(ρhn, θ

h
n)
))

Ω
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−

(
1

θh
n+ 1

2

∆tn
,
JθhnK4

24

∂3H

∂θ3
(ρh
n+ 1

2
, θhn+ξ2

)

)
Ω

=

∫
Ω

H(ρhn+1, θ
h
n+1)−H(ρhn, θ

h
n)

∆tn
dVx +

(
1

θh
n+ 1

2

∆tn
,
JρhnK4

24

∂3νloc
∂ρ3

(ρhn+ξ1
, θh
n+ 1

2
)

)
Ω

−

(
1

θh
n+ 1

2

∆tn
,
JθhnK4

24

∂3H

∂θ3
(ρh
n+ 1

2
, θhn+ξ2

)

)
Ω

.

This completes the proof of Lemma 6.

Remark 14. Based on Lemmas 3 and 4, one can show that the last two terms in (168)

satisfy (
1

θh
n+ 1

2

∆tn
,
JρhnK4

24

∂3νloc
∂ρ3

(ρhn+ξ1
, θh
n+ 1

2
)

)
Ω

≥ 0,(
1

θh
n+ 1

2

∆tn
,
JθhnK4

24

∂3H

∂θ3
(ρh
n+ 1

2
, θhn+ξ2

)

)
Ω

≤ 0.

The two terms represent the numerical dissipation introduced by the approximation of time

derivatives.

Remark 15. In the proof of Lemma 6, it is clear that the novel jump operator (145) is

designed based on the perturbed trapezoidal formulas (166) and (167). It should be pointed out

that one may construct different discrete jump operators for ∂(ρE)/∂t by using the perturbed

mid-point rules or the rectangular quadrature rules proposed in [44]. The resulting schemes

can be shown to guarantee the dissipation property, but the amount of numerical dissipation

will be slightly different.

Lemma 7. Replacing ρhn, uhn, and θhn in the definition (145) with corresponding time con-

tinuous functions ρh(tn), uh(tn), and θh(tn) and assuming sufficient smoothness in the time

direction, one has

[ρh(tn)E(ρh(tn),uh(tn), θh(tn))]

=
(
ρh(tn+1)E(ρh(tn+1),uh(tn+1), θh(tn+1))− ρh(tn)E(ρh(tn),uh(tn), θh(tn))

)
+O(∆t3).

Proof. Recalling the relations (146)-(150), we only need to analyze the non-classical jump

operators (147) and (148). We consider the jump operator (147) first. Taylor expansions
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lead to

(ρΨloc)(ρ
h(tn+1),θh(tn+1)) = (ρΨloc)(ρ

h(tn+ 1
2
), θh(tn+ 1

2
))

+
∂(ρΨloc)

∂ρ
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
ρh(tn+1)− ρh(tn+ 1

2
)
)

+
∂(ρΨloc)

∂θ
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
θh(tn+1)− θh(tn+ 1

2
)
)

+
1

2

∂2(ρΨloc)

∂ρ2
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
ρh(tn+1)− ρh(tn+ 1

2
)
)2

+
1

2

∂2(ρΨloc)

∂θ2
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
θh(tn+1)− θh(tn+ 1

2
)
)2

+
∂2(ρΨloc)

∂ρ∂θ
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
ρh(tn+1)− ρh(tn+ 1

2
)
)

(
θh(tn+1)− θh(tn+ 1

2
)
)

+O(∆t3), (171)

(ρΨloc)(ρ
h(tn),θh(tn)) = (ρΨloc)(ρ

h(tn+ 1
2
), θh(tn+ 1

2
))

+
∂(ρΨloc)

∂ρ
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
ρh(tn)− ρh(tn+ 1

2
)
)

+
∂(ρΨloc)

∂θ
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
θh(tn)− θh(tn+ 1

2
)
)

+
1

2

∂2(ρΨloc)

∂ρ2
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
ρh(tn)− ρh(tn+ 1

2
)
)2

+
1

2

∂2(ρΨloc)

∂θ2
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
θh(tn)− θh(tn+ 1

2
)
)2

+
∂2(ρΨloc)

∂ρ∂θ
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
ρh(tn)− ρh(tn+ 1

2
)
)

(
θh(tn)− θh(tn+ 1

2
)
)

+O(∆t3), (172)

(ρΨloc)(ρ
h(tn+ 1

2
),θh(tn+1)) = (ρΨloc)(ρ

h(tn+ 1
2
), θh(tn+ 1

2
))

+
∂(ρΨloc)

∂θ
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
θh(tn+1)− θh(tn+ 1

2
)
)

+
1

2

∂2(ρΨloc)

∂θ2
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
θh(tn+1)− θh(tn+ 1

2
)
)2

+O(∆t3), (173)

(ρΨloc)(ρ
h(tn+ 1

2
),θh(tn)) = (ρΨloc)(ρ

h(tn+ 1
2
), θh(tn+ 1

2
))

+
∂(ρΨloc)

∂θ
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
θh(tn)− θh(tn+ 1

2
)
)
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+
1

2

∂2(ρΨloc)

∂θ2
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
θh(tn)− θh(tn+ 1

2
)
)2

+O(∆t3), (174)

(ρΨloc)(ρ
h(tn+1),θh(tn+ 1

2
)) = (ρΨloc)(ρ

h(tn+ 1
2
), θh(tn+ 1

2
))

+
∂(ρΨloc)

∂ρ
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
ρh(tn+1)− ρh(tn+ 1

2
)
)

+
1

2

∂2(ρΨloc)

∂ρ2
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
ρh(tn+1)− ρh(tn+ 1

2
)
)2

+O(∆t3), (175)

(ρΨloc)(ρ
h(tn),θh(tn+ 1

2
)) = (ρΨloc)(ρ

h(tn+ 1
2
), θh(tn+ 1

2
))

+
∂(ρΨloc)

∂ρ
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
ρh(tn)− ρh(tn+ 1

2
)
)

+
∂2(ρΨloc)

∂ρ2
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
ρh(tn)− ρh(tn+ 1

2
)
)2

+O(∆t3). (176)

Combining the above Taylor expansions leads to(
(ρΨloc)(ρ

h(tn+1), θh(tn+1))− (ρΨloc)(ρ
h(tn), θh(tn))

)
−
(

(ρΨloc)(ρ
h(tn+ 1

2
), θh(tn+1))− (ρΨloc)(ρ

h(tn+ 1
2
), θh(tn))

+ (ρΨloc)(ρ
h(tn+1), θh(tn+ 1

2
))− (ρΨloc)(ρ

h(tn), θh(tn+ 1
2
))
)

= O(∆t3).

Next, we analyze the term (148).(
θh(tn+1)H(ρh(tn+1), θh(tn+1))− θh(tn)H(ρh(tn), θh(tn))

)
−

(
θh(tn+ 1

2
)
(
H(ρh(tn+1), θh(tn+1))−H(ρh(tn), θh(tn))

)
+
θh(tn+1)− θh(tn)

2

(
H(ρh(tn+ 1

2
), θh(tn+1)) +H(ρh(tn+ 1

2
), θh(tn))

))

=
θh(tn+1)− θh(tn)

2

(
H(ρh(tn+1), θh(tn+1)) +H(ρh(tn), θh(tn))

−H(ρh(tn+ 1
2
), θh(tn+1))−H(ρh(tn+ 1

2
), θh(tn))

)
+O(∆t3)

=
(θh(tn+1)− θh(tn))

2

(
∂H

∂ρ
(ρh(tn+ 1

2
), θh(tn+1))

(
ρh(tn+1)− ρh(tn+ 1

2
)
)
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− ∂H

∂ρ
(ρh(tn+ 1

2
), θh(tn))

(
ρh(tn)− ρh(tn+ 1

2
)
))

+O(∆t3)

=O(∆t3). (177)

According to (171) and (177), it can be concluded that

[ρh(tn)E(ρh(tn),uh(tn), θh(tn))]

−
(
ρh(tn+1)E(ρh(tn+1),uh(tn+1), θh(tn+1))− ρh(tn)E(ρh(tn),uh(tn), θh(tn))

)
=O(∆t3) +

(θh(tn+1)− θh(tn))3

12

∂2H

∂θ2
(ρh(tn+ 1

2
), θh(tn+1))

=O(∆t3).

This completes the proof of the lemma.

This lemma reveals that the jump operator we defined in (145) is in fact a third-order

perturbation to the classical energy jump. Using this fact, we can prove the second-order

accuracy of our numerical scheme.

3.7.3 Numerical dissipation and accuracy

With the above five lemmas, we are ready to state and prove the main results of the fully

discrete scheme (151)-(154).

Theorem 6. The solutions of the fully discrete scheme (151)-(154) satisfy

∫
Ω

(
H(ρhn+1, θ

h
n+1)−H(ρhn, θ

h
n)

∆tn
+∇ ·

(
H(ρh

n+ 1
2
, θh
n+ 1

2
)uh

n+ 1
2

)
−∇ ·

(
qh
n+ 1

2

θh
n+ 1

2

)

+
ρh
n+ 1

2

r

θh
n+ 1

2

)
dVx

=−
∫

Ω

1

θh
n+ 1

2

τ h
n+ 1

2
: ∇uh

n+ 1
2
dVx −

∫
Ω

κ|∇θh
n+ 1

2

|2(
θh
n+ 1

2

)2 dVx

−
∫

Ω

1

θh
n+ 1

2

∆tn

JρhnK4

24

∂3νloc
∂ρ3

(ρhn+ξ1
, θh
n+ 1

2
)dVx +

∫
Ω

1

θh
n+ 1

2

∆tn

JθhnK4

24

∂3H

∂θ3
(ρh
n+ 1

2
, θhn+ξ2

)dVx

≤0. (178)

Proof. Taking wh1 = V h
n+ 1

2

in (151), wh = uh
n+ 1

2

/θh
n+ 1

2

in (152), wh5 = −1/θh
n+ 1

2

in (153),

wh6 = JρhnK/∆tn in (154), combing the three equations, and following the proof of Theorem
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4, one can show that

BM(V h
n+ 1

2
; Yh

n+1) + BU(
uh
n+ 1

2

θh
n+ 1

2

; Yh
n+1) + BE(− 1

θn+ 1
2

; Yh
n+1)−BA(

JρhnK
∆tn

; Yh
n+1)

=

(
JρhnK
∆tn

,
1

θh
n+ 1

2

(
1

2

(
νloc(ρ

h
n, θ

h
n+ 1

2
) + νloc(ρ

h
n+1, θ

h
n+ 1

2
)
)
− JρhnK2

12

∂2νloc
∂ρ2

(ρhn, θ
h
n+ 1

2
)

))
Ω

−

(
JρhnK
∆tn

,
uhn+1 · uhn

2θh
n+ 1

2

)
Ω

+

(
∇JρhnK

∆tn
,

1

We θh
n+ 1

2

∇ρh
n+ 1

2

)
Ω

+

(
uh
n+ 1

2

θh
n+ 1

2

,
JρhnuhnK

∆tn

)
Ω

−

(
1

θh
n+ 1

2

,
[ρhnE(ρhn,u

h
n, θ

h
n)]

∆tn

)
Ω

+

∫
Ω

∇ ·
(
H(ρh

n+ 1
2
, θh
n+ 1

2
)uh

n+ 1
2

)
dVx

+

∫
Ω

∇ ·

(
qh
n+ 1

2

θh
n+ 1

2

)
−
ρh
n+ 1

2

r

θn+ 1
2

dVx +

∫
Ω

1

θh
n+ 1

2

τ h
n+ 1

2
: ∇uh

n+ 1
2
dVx +

∫
Ω

κ|∇θh
n+ 1

2

|2(
θh
n+ 1

2

)2 dVx

= 0.

According to Lemma 6, the above relation can be reorganized as

∫
Ω

(
H(ρhn+1, θ

h
n+1)−H(ρhn, θ

h
n)

∆tn
+∇ ·

(
H(ρh

n+ 1
2
, θh
n+ 1

2
)uh

n+ 1
2

)
−∇ ·

(
qh
n+ 1

2

θh
n+ 1

2

)

+
ρh
n+ 1

2

r

θh
n+ 1

2

)
dVx

=−
∫

Ω

1

θh
n+ 1

2

τ h
n+ 1

2
: ∇uh

n+ 1
2
dVx −

∫
Ω

κ|∇θh
n+ 1

2

|2(
θh
n+ 1

2

)2 dVx

−
∫

Ω

1

θh
n+ 1

2

∆tn

JρhnK4

24

∂3νloc
∂ρ3

(ρhn+ξ1
, θh
n+ 1

2
)dVx +

∫
Ω

1

θh
n+ 1

2

∆tn

JθhnK4

24

∂3H

∂θ3
(ρh
n+ 1

2
, θhn+ξ2

)dVx

≤0.

The last inequality is due to Lemmas 3 and 4.

Remark 16. This theorem implies that the fully discrete solutions respect the second law

of thermodynamics. The amount of dissipation in (178) consists of two parts: the physi-

cal dissipation and the numerical dissipation. From our analysis, the numerical dissipation

exclusively comes from the temporal scheme, and it will vanish if the time step approaches

zero.
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Theorem 7. The local truncation error in time τ(t) can be bounded by |τ(t)| ≤ K∆t2n for

all tn ∈ [0, T ], where K is a constant independent of ∆tn.

Proof. We start by considering the mid-point rule applied to the semi-discrete formulation

(137)-(140). The fully discrete scheme reads

BM
mid(w

h
1 ; Yh

n+1) :=

(
wh1 ,

JρhnK
∆tn

)
Ω

−
(
∇wh1 , ρhn+ 1

2
uh
n+ 1

2

)
Ω

= 0,

BU
mid(w

h; Yh
n+1) :=

(
wh,

JρhnuhnK
∆tn

)
Ω

−
(
∇wh, ρh

n+ 1
2
uh
n+ 1

2
⊗ uh

n+ 1
2

)
Ω

−

(
∇ ·wh, ρh

n+ 1
2
V h
midθ

h
n+ 1

2
+

1

2
ρh
n+ 1

2
|uh
n+ 1

2
|2 +

1

We
ρh
n+ 1

2
θh
n+ 1

2
∇ ·

(∇ρh
n+ 1

2

θh
n+ 1

2

))
Ω

−

(
wh,

(
V h
midθ

h
n+ 1

2
+
|uh
n+ 1

2

|2

2
+

1

We
θh
n+ 1

2
∇ ·

(∇ρh
n+ 1

2

θh
n+ 1

2

))
∇ρh

n+ 1
2

)
Ω

−
(
wh, Hh

n+ 1
2
∇θh

n+ 1
2

)
Ω

+
(
∇wh, τ h

n+ 1
2

)
Ω

+
(
∇wh

n+ 1
2
, ςh

n+ 1
2

)
Ω
−
(
wh, ρh

n+ 1
2
b
)

Ω
= 0,

BE
mid(w

h
5 ; Yh

n+1) :=

(
wh5 ,

ρhn+1E(ρhn+1,u
h
n+1, θ

h
n+1)− ρhnE(ρhn,u

h
n, θ

h
n)

∆tn

)
Ω

−
(
∇wh5 ,

(
ρhV h

midθ
h
n+ 1

2
− θh

n+ 1
2
Hh
n+ 1

2
+

1

2 We
|∇ρh

n+ 1
2
|2 + ρh|uh

n+ 1
2
|2

+
1

We
ρh
n+ 1

2
θh
n+ 1

2
∇ ·

(∇ρh
n+ 1

2

θh
n+ 1

2

))
uh
n+ 1

2

)
Ω

+
(
∇wh5 , τ hn+ 1

2
uh
n+ 1

2

)
Ω

+
(
∇wh5 , ςhn+ 1

2
uh
n+ 1

2

)
Ω

−
(
∇wh5 ,qhn+ 1

2

)
Ω
−
(
∇wh5 ,Πh

n+ 1
2

)
Ω
−
(
wh5 , ρ

h
n+ 1

2
b · uh

n+ 1
2

)
Ω
−
(
wh5 , ρ

h
n+ 1

2
r
)

Ω
= 0,

BA
mid(w

h
6 ; Yh

n+1) :=
(
wh6 , V

h
mid

)
Ω
−

(
wh6 ,

1

θh
n+ 1

2

(
νloc(ρ

h
n+ 1

2
, θh
n+ 1

2
)−
|uh
n+ 1

2

|2

2

))
Ω

−

(
∇wh6 ,

1

We θh
n+ 1

2

∇ρh
n+ 1

2

)
Ω

= 0.

The local truncation errors associated with the mid-point rule can be obtained by replacing

the time discrete solutions with the corresponding exact time continuous solution:

BM
mid(w

h
1 ; Yh(t)) =

(
wh1 ,Θ

mid
ρ

)
Ω
,

BU
mid(w

h; Yh(t)) =
(
wh,Θmid

u

)
Ω
,

BE
mid(w

h
5 ; Yh(t)) =

(
wh5 ,Θ

mid
E

)
Ω
,

BA
mid(w

h
6 ; Yh(t)) =

(
wh6 ,Θ

mid
A

)
Ω
.
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Assuming sufficient smoothness for the time continuous solutions, one can show that

Θmid
ρ = O(∆t2n), Θmid

u = O(∆t2n)1,

Θmid
E = O(∆t2n), Θmid

A = O(∆t2n).

Now replacing the time discrete solutions with corresponding time continuous solutions in

the fully discrete formulation (151)-(154):

BM(wh1 ; Yh(t)) =
(
wh1 ,Θρ

)
Ω
,

BU(wh; Yh(t)) =
(
wh,Θu

)
Ω
,

BE(wh5 ; Yh(t)) =
(
wh5 ,ΘE

)
Ω
,

BA(wh6 ; Yh(t)) =
(
wh6 ,ΘA

)
Ω
.

Taylor expansions lead to

1

2

(
νloc(ρ

h(tn), θh(tn+ 1
2
)) + νloc(ρ

h(tn+1), θh(tn+ 1
2
)
)

= νloc(ρ
h(tn+ 1

2
), θh(tn+ 1

2
)) +O(∆t2n),

Jρh(tn)K2

12

∂2νloc
∂ρ2

(ρh(tn), θh(tn+ 1
2
)) = O(∆t2n),

2|uh(tn+ 1
2
)|2 − 1

2
(|uh(tn)|2 + |uh(tn+1)|2) = |uh(tn+ 1

2
)|2 +O(∆t2n).

Due to Lemma 7, one has

ρhn+1E(ρhn+1,u
h
n+1, θ

h
n+1)− ρhnE(ρhn,u

h
n, θ

h
n)

∆tn
− [ρhnE(ρhn,u

h
n, θ

h
n)]

∆tn
= O(∆t2n).

Combing the above results gives us

(
wh1 ,Θρ

)
Ω

=
(
wh1 ,Θ

mid
ρ

)
Ω

+O(∆t2n) = O(∆t2n),(
wh,Θu

)
Ω

=
(
wh,Θmid

u

)
Ω

+O(∆t2n)1 = O(∆t2n)1,(
wh5 ,ΘE

)
Ω

=
(
wh5 ,Θ

mid
E

)
Ω

+O(∆tn) = O(∆t2n),(
wh6 ,ΘA

)
Ω

=
(
wh6 ,Θ

mid
A

)
Ω

+O(∆t2n) = O(∆t2n).

This completes the proof.

Remark 17. According to the proof of Theorem 7, we can see that the fully discrete scheme

(151)-(154) is a second-order perturbation of the mid-point scheme. This perturbation guar-

antees the entropy dissipation (178).
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4 Benchmark problems

In this section, we use a suite of benchmark problems to verify the theoretical estimates we

made in Section 3.

Table 1: One-dimensional manufactured solution for the thermal Navier-Stokes-Korteweg
equations: Temporal convergence rates at t = 0.5.

Temporal errors in L2 norm with polynomial degree k = 2

∆t 1.0× 10−1 5.0× 10−2 1.0× 10−2 5.0× 10−3 1.0× 10−3

‖Y1 − Y h
1 ‖L2(Ω) 8.00× 10−4 1.99× 10−4 7.96× 10−6 1.99× 10−6 7.93× 10−8

order - 2.01 2.00 2.00 2.00
‖Y2 − Y h

2 ‖L2(Ω) 1.50× 10−2 3.77× 10−3 1.49× 10−4 3.72× 10−5 1.48× 10−6

order - 1.99 2.01 2.00 2.00
‖Y3 − Y h

3 ‖L2(Ω) 6.23× 10−3 1.52× 10−3 5.95× 10−5 1.49× 10−5 5.94× 10−7

order - 2.04 2.01 2.00 2.00

Temporal errors in H1 semi-norm with polynomial degree k = 3

∆t 1.0× 10−1 5.0× 10−2 1.0× 10−2 5.0× 10−3 1.0× 10−3

|Y1 − Y h
1 |H1(Ω) 5.03× 10−3 1.25× 10−3 5.00× 10−5 1.25× 10−5 5.00× 10−7

order - 2.01 2.00 2.00 2.00
|Y2 − Y h

2 |H1(Ω) 9.59× 10−2 2.58× 10−2 9.84× 10−4 2.46× 10−4 9.84× 10−6

order - 1.89 2.03 2.00 2.00
|Y3 − Y h

3 |H1(Ω) 3.04× 10−2 7.70× 10−3 2.78× 10−4 6.95× 10−5 2.78× 10−6

order - 1.98 2.06 2.00 2.00

4.1 Manufactured solutions

As first examples, we construct one-dimensional manufactured solutions for the Navier-

Stokes-Korteweg equations to corroborate the time accuracy estimate given in Theorem 7.

The computations are restricted to Ω = (0, 1); the exact density, velocity, and temperature

for this problem are chosen as

ρ(x, t) = 0.5 + 0.1 sin(πt) cos(2πx),

u(x, t) = sin(πt) cos(2πx),

θ(x, t) = 0.85 + 0.1 sin(πt) sin(4πx).
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The forcing terms for the balance equations are obtained by substituting the above exact

solutions into the original strong problem (87)-(89). The Y variables can be obtained as

Y1 = ρ = 0.5 + 0.1 sin(πt) cos(2πx),

Y2 =
u

θ
=

sin(πt) cos(2πx)

0.85 + 0.1 sin(πt) sin(4πx)
,

Y3 = −1

θ
= − 1

0.85 + 0.1 sin(πt) sin(4πx)
.

The dimensionless numbers for this verification problem are fixed to be Re = 1.0, We = 1.0,

and γ = 1.333. The dimensionless thermal conductivity is chosen as κ = 1.0. Periodic

boundary conditions are enforced for all variables. The problem is computed with spatial

mesh size ∆x = 1.0×10−3 for polynomial degrees k = 2 and 3. The time step sizes are taken

as 1.0 × 10−1, 5.0 × 10−2, 1.0 × 10−2, 5.0 × 10−3, and 5.0 × 10−4. In Table 1, the errors in

L2-norm for the quadratic NURBS solutions and the errors in H1 semi-norm for the cubic

NURBS solutions are summarized. It can be observed that the temporal errors converge like

O(∆t2) in both cases. This confirms the time accuracy estimate given in Theorem 7.

4.2 Coalescence of two vapor bubbles

In this example, we consider a one-dimensional problem with zero sources (i.e., b = 0 and

r = 0) to verify the entropy dissipation estimate given in Theorem 6. The computational

domain is set to be Ω = (0, 1). The initial conditions consist of two static vapor bubbles

with centers at points C1 = 0.39 and C2 = 0.61. The radii of the bubbles are set to be

R1 = R2 = 0.1. The initial density is given by the following hyperbolic tangent function.

ρ0(x) = 0.1 + 0.25

[
tanh

(
d1(x)−R1

2

√
We

)
+ tanh

(
d2(x)−R2

2

√
We

)]
,

di(x) = |x− Ci|, for i = 1, 2.

The initial velocity is zero and the initial temperature is θ0 = 0.95. Periodic boundary

conditions are applied for all variables. The dimensionless numbers are taken as Re =

4.0 × 102, We = 1.6 × 105, and γ = 1.333; the dimensionless thermal conductivity is taken

as κ = 1.0. The spatial mesh consists of 104 quadratic NURBS functions. The problem is

integrated up to T = 10.0 with time step sizes ∆t = 1.0× 10−2, 5.0× 10−3, 2.0× 10−3, and

1.0× 10−5.

The two vapor bubbles will merge together to minimize the surface energy. At the

temperature θ = 0.95, the energetically stable liquid and vapor densities are 0.487 and 0.193

60



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

ρl,0ρv,0 ρBρA

ρv,T ρ l,T

Density ρ

T
e
m
p
e
ra
tu
re

θ

Figure 6: Illustration of the thermal bubble dynamics. ρv,0 and ρl,0 are the initial vapor and
liquid densities; ρA and ρB are the Maxwell state at the initial temperature; ρv,T and ρl,T
are the vapor and liquid densities at time T = 10.0.
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Figure 7: Coalescence of two bubbles for the one-dimensional thermal Navier-Stokes-
Korteweg equations: density profiles at (a) t = 0.0, (b) t = 0.1, (c) t = 0.5, (d) t = 1.0, (e)
t = 2.0, and (f) t = 10.0.
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Figure 8: Coalescence of two bubbles for the one-dimensional thermal Navier-Stokes-
Korteweg equations: temperature profiles at (a) t = 0.0, (b) t = 0.1, (c) t = 0.5, (d)
t = 1.0, (e) t = 2.0, and (f) t = 10.0.
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Figure 9: Coalescence of two bubbles for the one-dimensional thermal Navier-Stokes-
Korteweg equations: Evolution of the discrete entropy. (a) Global view; (b) Detailed view
in the vicinity of t = 2.49.
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respectively; the initial vapor and liquid densities are ρv,0 = 0.1 and ρl,0 = 0.6. Hence,

the vapor phase will become denser and the liquid phase will become lighter to minimize

the free energy. In the meantime, the phase transition is accompanied with latent heat

release and absorption, which will change the local temperature distribution. Consequently,

the shape of the free energy and the Maxwell states are changed. This coupled process

will eventually reach an equilibrium state. This dynamic process is illustrated in a density-

temperature phase diagram in Figure 6. In Figures 7 and 8, snapshots of the density and the

temperature are depicted at times t = 0.0, 0.1, 0.5, 1.0, 2.0 and 10.0. It is observed that the

initial interface between the two vapor bubbles gradually vanishes, and the vapor and liquid

densities are adjusted to achieve the energy-stable states. The temperature of the system

fluctuates in time. The temperature first drops to about 0.876 at time t = 1.0, then it raises

to 0.898 uniformly at time t = 10.0. The Maxwell states at θ = 0.898 are ρv = 0.1403 and

ρl = 0.5546. Figure 7 (f) shows that the density at t = 10.0 is very close to the Maxwell

states. Since we applied periodic boundary conditions, the dissipation relation is∫
Ω

H(ρhn+1, θ
h
n+1)−H(ρhn, θ

h
n)

∆tn
dx

=−
∫

Ω

1

θh
n+ 1

2

τ h
n+ 1

2
: ∇uh

n+ 1
2
dx−

∫
Ω

κ|∇θh
n+ 1

2

|2(
θh
n+ 1

2

)2 dx

−
∫

Ω

1

θh
n+ 1

2

∆tn

JρhnK4

24

∂3νloc
∂ρ3

(ρhn+ξ1
, θh
n+ 1

2
)dx +

∫
Ω

1

θh
n+ 1

2

∆tn

JθhnK4

24

∂3H

∂θ3
(ρh
n+ 1

2
, θhn+ξ2

)dx

≤0. (179)

The discrete mathematical entropy is plotted against time in Figure 9 (a). It can be observed

that H(ρhn, θ
h
n) monotonically decreases with respect to time, which confirms the theoretical

estimate given in Theorem 6. In Figure 9 (b), a detailed view of the discrete mathematical

entropy in the vicinity of t = 2.49 is provided. It can be observed that the differences

between the numerical solutions and the overkill solution decrease with reductions of time

step sizes. To verify the time accuracy estimate, overkill solutions were first computed with

∆t = 1.0×10−5. Then the computations were repeated with larger time steps ∆t = 5.0×10−2,

1.0 × 10−2, 5.0 × 10−3, 1.0 × 10−3 and 5.0 × 10−4. The errors at time t = 1.0 are listed in

Table 2. It can be seen that the numerical solutions converge optimally in time to the overkill

solutions. This again corroborates the theoretical estimates given in Theorem 7.
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Table 2: Coalescence of two bubbles for the one-dimensional thermal Navier-Stokes-Korteweg
equations: Temporal errors in L2-norm at time t = 1.0.

∆t 5.0× 10−2 1.0× 10−2 5.0× 10−3 1.0× 10−3 5.0× 10−4

‖Y1 − Y h
1 ‖L2(Ω) 8.40× 10−5 4.02× 10−6 1.02× 10−6 4.14× 10−8 1.04× 10−8

order - 1.94 1.98 1.99 1.99
‖Y2 − Y h

2 ‖L2(Ω) 2.69× 10−4 6.57× 10−6 1.64× 10−6 6.54× 10−8 1.64× 10−8

order - 2.02 2.00 2.00 2.00
‖Y3 − Y h

3 ‖L2(Ω) 2.70× 10−5 1.50× 10−6 3.83× 10−7 1.56× 10−8 3.93× 10−9

order - 1.92 1.97 1.99 1.99

5 Applications

In this section, we investigate the van der Waals fluid model by performing simulations with

the numerical algorithm developed in Section 3.

Figure 10: Velocity streamlines near a single bubble at time t = 15.0: θbc = 0.85.

5.1 Evaporation and condensation

In this example, we numerically investigate the dynamics of a single vapor bubble in the pres-

ence of temperature increase or decrease on the boundary. In this study, the computational

domain is restricted to a unit square Ω = (0, 1)2. The center of the vapor bubble is located

at the center of the domain, i.e., C1 = (0.5, 0.5); the radius of the bubble is R1 = 0.25. A
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hyperbolic tangent function is utilized to give the initial density profile:

ρ0(x) = 0.3545 + 0.2479 tanh

(
d1(x)−R1

2

√
We

)
, (180)

d1(x) = |x− C1|. (181)

The initial velocity is set to be zero. The initial temperature is given by

θ0(x) = 0.85, if x ∈ Ω,

θ0(x) = θbc, if x ∈ ∂Ω.

The boundary conditions for this problem are

∇ρ · n = 0, on ∂Ω× (0, T ),

u = 0, on ∂Ω× (0, T ),

θ = θbc, on ∂Ω× (0, T ).

It is known that the hyperbolic tangent function is only an approximation of the steady

state solution. In the function (180), the liquid density is 0.6024 and the vapor density is

0.1066, which are very close to the Maxwell states at temperature θ = 0.85. Hence, there will

be a low-intensity velocity field generated near the interfacial region to adjust the interface

profile. The phenomenon occurring near the interface is commonly referred to as the parasitic

currents [36], and a snapshot of the parasitic currents at time t = 15.0 is depicted in Figure

10. If θbc 6= 0.85, as time evolves, thermal diffusion will drive the temperature inside Ω to

θbc. This change of temperature directly leads to the change of the Maxwell states, which

is observed as condensation or evaporation of the bubble. If θbc > 0.85, the liquid-vapor

density ratio will become smaller; if θbc < 0.85, the liquid-vapor density ratio will become

larger.

In Table 3, the Maxwell states at different temperatures are listed. With these values,

the radius of the vapor bubble at the new stable configuration can be estimated by using

the mass conservation relation. Assuming the interfacial region has measure zero, then the

total mass in Ω is

0.1066× 0.252π + 0.6024× (1.0− 0.252π) = 0.6024− 0.031π. (182)

If the Maxwell-state liquid and vapor densities at the temperature θ are denoted as ρθl and

ρθv, the new radius of the vapor bubble Rst can be determined by the mass conservation
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relation

ρθv ×R2
stπ + ρθl × (1.0−R2

stπ) = 0.6024− 0.031π, (183)

if ρθl and ρθv satisfy ρθv ≤ 0.6024− 0.031π ≤ ρθl . If ρθl < 0.6024− 0.031π, the steady state will

be a uniform liquid state with density 0.6024− 0.031π; if 0.6024− 0.031π ≤ ρθv, the steady

state will be a uniform vapor state with density 0.6024 − 0.031π. The solutions of Rst for

θ = 0.95, 0.90, 0.85, 0.80, and 0.75 are listed in Table 3.

θ 0.95 0.90 0.85 0.80 0.75

ρv 0.1930 0.1419 0.1066 0.0799 0.0591

ρl 0.4872 0.5524 0.6024 0.6442 0.6808

Rst - 0.1916 0.2500 0.2802 0.3000

Table 3: The liquid and vapor densities at the Maxwell states of the van der Waals fluid model
at different temperatures. The values are rounded to four decimal places. Rst represents
the steady-state vapor bubble radius with the given initial density profile (180)-(181) in the
sharp interface limit. When θ = 0.95, a uniform liquid state with density ρ = 0.5050 will
form at the steady state.

In the numerical simulations, the dimensionless numbers are taken as Re = 1.451× 103,

We = 5.263×105, and γ = 1.333; the dimensionless thermal conductivity is κ = 1.378×10−3.

The external body force b and the heat source r are fixed to be zero. The spatial mesh is

comprised of 5122 quadratic NURBS elements. The simulation is integrated up to T =

2.0 × 102 with time step size ∆t = 1.0 × 10−3. In Figure 11, the density profiles at time

t = 200.0 are depicted for θbc = 0.75, 0.80, 0.85, 0.90, and 0.95. The solution for θbc = 0.95

at t = 200.0 forms a uniform liquid state. In Figure 12, the density fields are sampled over

a straight line y = 0.5 and plotted as a single variable function of x. Given the density

data over the straight line, we may introduce two points 0 ≤ x̂1 ≤ x̂2 ≤ 1, such that

ρ(x̂1) = ρ(x̂2) = (ρv + ρl)/2. In other words, x̂1 and x̂2 are located at the centers of the

diffuse interfaces over the line y = 0.5. Then the bubble radius of the numerical solution can

be defined as R̂st := |x̂1 − x̂2|/2. In Table 4, the values of Rst and R̂st are listed. It can be

observed that the numerical results and the theoretical estimates of the radii matched well.

From θbc = 0.90 to θbc = 0.75, the radius of the bubble increases with the decrease of the

boundary temperature.

To quantify the width of the diffuse interface at a specific temperature, we introduce two

more points 0 ≤ x̃1 ≤ x̃2 ≤ 0.5, such that ρ(x̃1) = ρl−5%(ρl−ρv) and ρ(x̃2) = ρv+5%(ρl−ρv).
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(a) (b)

(c) (d)

(e) (f)

Figure 11: Density profiles of a single bubble under different temperature boundary condi-
tions: (a) Initial condition, (b) θbc = 0.75, (c) θbc = 0.80, (d) θbc = 0.85, (e) θbc = 0.90, (f)
θbc = 0.95.
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Figure 12: Plots of the density fields sampled over the straight line y = 0.5 for different
temperature boundary conditions. The colored squares delimits the region (x̃1, x̃2).

θ 0.90 0.85 0.80 0.75

Rst 0.1916 0.2500 0.2802 0.3000

R̂st 0.1902 0.2492 0.2798 0.2998

Table 4: The theoretical estimates of the bubble radius Rst and the numerical results of the
bubble radius R̂st.

θbc 0.90 0.85 0.80 0.75

W̃ 0.0123 0.0100 0.0083 0.0070

Table 5: The interface width W̃ of the numerical solutions at different temperatures. The
values are rounded to four decimal places.
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Within the region (x̃1, x̃2), the density field varies 90% of the total variation between the

liquid state and the vapor state. With those two points given, we may define the interface

width as W̃ := x̃2 − x̃1. The widths W̃ are listed in Table 5. The interface width increases

with the increase of the temperature. So far, there has been few results on the estimate of the

interface width for the van der Waals fluid. Invoking the least square method, we can obtain

polynomial functions that best fit the given data, which may serve as empirical formulas for

the diffuse-interface width estimate. The linear polynomial that best fits the data in the

least square sense is W̃ = 0.0354θbc − 0.0198. The corresponding quadratic polynomial is

W̃ = 0.1010θ2
bc − 0.1313θbc + 0.0487. Both polynomials are plotted in Figure 13.

0.7 0.75 0.8 0.85 0.9 0.95
0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

θbc

W̃

 

 

W̃

linear approximation

quadratic approximation

Figure 13: The values of the interface width W̃ at different temperatures are plotted as
red hexagrams. These values are fitted by linear and quadratic polynomials. The linear
polynomial is plotted as a black solid line; the quadratic polynomial is plotted as a blue solid
line.

5.2 Interface motion induced by a temperature gradient

It has long been observed that an externally imposed temperature gradient may induce the

motion of fluid interfaces. For multicomponent flows, this phenomenon is ascribed to the

imbalance of surface tension, which is in turn caused by differences in temperature [61]. This

effect is referred to as the thermocapillarity and is critical in understanding many complicated
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physical phenomena, such as boiling [48] and welding [49]. In the seminal paper of Young

et al. [73], the surface tension is modeled as a function of the temperature. This theory was

coupled with multiphase flow solvers to simulate the thermocapillary motion [1, 30, 37, 68].

However, the interface motion for a single-component fluid under a temperature gradient has

rarely been studied. Recently, a mathematical model for the interface motion was constructed

based on the van der Waals theory [51, 53]. In these works, the Korteweg stress includes an

extra term involving temperature gradient and the interstitial working flux Π was ignored.

Hence the models they considered are totally different from the model we derived. In this

section, we investigate the interface motion of a single vapor bubble under a temperature

gradient in two- and three-dimensions with zero gravity. It is worth emphasizing that, in our

simulations, the capillarity coefficient λ remains a constant independent of the temperature.

5.2.1 Two-dimensional bubble motion in a temperature gradient

In this example, the computational domain is a two-dimensional square Ω = (0, 1)2. The

boundary of Ω is partitioned into three non-overlapping subdivisions:

∂Ω = Γv ∪ Γt ∪ Γb,

Γv := ∂Ω ∩
{{

x ∈ R2|x = 0
}
∪
{
x ∈ R2|x = 1

}}
,

Γb := ∂Ω ∩
{
x ∈ R2|y = 0

}
,

Γt := ∂Ω ∩
{
x ∈ R2|y = 1

}
.

The initial density is given by

ρ0(x) = 0.35 + 0.25 tanh

(
d1(x)− 0.2

2

√
We

)
,

d1(x) = |x− C1|,

wherein the center of the static vapor bubble is C1 = (0.5, 0.5). The initial velocity is fixed

to be zero and the initial temperature is

θ0(x) = 0.85 x ∈ Ω ∪ Γv ∪ Γb,

θ0(x) = 0.87 x ∈ Γt.

The boundary conditions for this problem are

∇ρ · n = 0, on ∂Ω× (0, T ),
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u = 0, on ∂Ω× (0, T ),

θ = 0.85, on Γb × (0, T ),

θ = 0.87, on Γt × (0, T ),

− q · n = 0, on Γv × (0, T ).

The dimensionless numbers and the dimensionless thermal conductivity are chosen as

Re = 1.738× 104,

We = 3.277× 106,

γ = 1.333,

κ = 3.453× 10−3.

(a) (b)

Figure 14: The motion of a single bubble in a two-dimensional square: Initial conditions for
density (a) and temperature (b).

The spatial discretization is comprised of 10242 quadratic NURBS. The time integration is

performed with a fixed step size ∆t = 5.0× 10−4 up to the final time T = 500.0. In Figure

14, the initial density and temperature profiles are illustrated. In Figures 15-16, the density,

temperature, and velocity fields are depicted at various time steps. It is noted that there

is a velocity field generated immediately after the simulation starts. The velocity drives

the vapor bubble toward the positive thermal gradient direction. Eventually, the vapor

bubble attaches to the heated wall boundary and forms a hemispheric shape, as is shown in

Figure 16 (b). It can be observed that, in the liquid phase, there is a temperature gradient

generated between the heated top boundary and the cooled bottom boundary. Inside the

vapor bubble, the temperature distribution remains homogeneous throughout the whole
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(a) (b)

(c) (d)

(e) (f)

Figure 15: The motion of a single bubble in a two-dimensional square: Solutions at t = 50.0
(left column) and t = 200.0 (right column). The first row depicts the density profiles; the
second row depicts the temperature profiles; the third row visualizes the velocity streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 16: The motion of a single bubble in a two-dimensional square: Solutions at t = 300.0
(left column) and t = 500.0 (right column). The first row depicts the density profiles; the
second row depicts the temperature profiles; the third row visualizes the velocity streamlines.
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process. The homogeneous temperature inside the vapor bubble was analyzed in [51] and

was attributed to the latent heat diffusion.

5.2.2 Three-dimensional bubble motion in a temperature gradient

As a second example, a three-dimensional numerical simulation is performed. The compu-

tation domain is Ω = (0, 0.5)× (0, 0.5)× (0, 1). The boundary of Ω is partitioned into three

non-overlapping subdivisions:

∂Ω = Γt ∪ Γb ∪ Γv,

Γb := ∂Ω ∩
{
x ∈ R2|z = 0

}
,

Γt := ∂Ω ∩
{
x ∈ R2|z = 1

}
,

Γv := ∂Ω ∩
{{

x ∈ R2|x = 0
}
∪
{
x ∈ R2|x = 0.5

}
∪
{
x ∈ R2|y = 0

}
∪
{
x ∈ R2|y = 0.5

}}
.

The center of the vapor bubble is initially located at C1 = (0.25, 0.25, 0.3), and the bubble

radius is 0.2. The initial density and velocity are

ρ0(x) = 0.35 + 0.25 tanh

(
d1(x)− 0.2

2

√
We

)
,

d1(x) = |x− C1|,

u0(x) = 0.

The initial temperature is

θ0(x) = 0.85, x ∈ Ω ∪ Γv ∪ Γb,

θ0(x) = 0.87, x ∈ Γt.

The boundary conditions for this problem are

∇ρ · n = 0, on ∂Ω× (0, T ),

u = 0, on ∂Ω× (0, T ),

θ = 0.85, on Γb × (0, T ),

θ = 0.87, on Γt × (0, T ),

− q · n = 0, on Γv × (0, T ).
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The dimensionless numbers and the dimensionless thermal conductivity are taken as

Re = 3.570× 103,

We = 1.383× 105,

γ = 1.333,

κ = 1.681× 10−2.

The spatial mesh for this problem is comprised of 128×128×256 quadratic NURBS elements.

The time integration is performed up to the final time T = 200 with a fixed time step

size of ∆t = 1.0 × 10−3. Figures 17-19 present snapshots of density isosurfaces, velocity

streamlines, and temperature contours at various slices. As soon as the simulation starts,

there is a temperature gradient generated in the liquid phase; the temperature field inside the

vapor bubble remains nearly homogeneous. Similarly to the two-dimensional case, there is a

velocity field generated instantaneously after the top boundary is heated. The initial vapor

bubble is then driven by the velocity toward the heated boundary. At about t = 160, the

vapor bubble touches the top heated boundary. At t = 200, a vapor layer is formed, which

separates the heated wall boundary from the bulk liquid phase. The velocity magnitude at

t = 200 is uniformly small. The solutions shown in Figure 19 (c) and (d) can be regarded to

be very close to the steady state solutions.

5.3 Boiling

Boiling is a thermally induced phase transition process in which new liquid-vapor interfaces

are generated in a bulk liquid region [15, 55]. The new interfaces may form from discrete

cavities on heated surfaces, which is called nucleate boiling, or from a stable superheated

vapor layer, which is referred to as film boiling. Nucleate boiling is characterized by isolated

bubble generation and is the most efficient mode in heat transfer. If the surface temperature

increases, bubbles on the surface tend to move horizontally and merge together to form a

vapor layer. Beyond a certain critical surface temperature, a stable vapor film may even-

tually form between the heated solid surface and the bulk liquid phase, and vapor bubbles

detach from the layer periodically. Film boiling is quite dangerous and should be avoided

in most industrial facilities because of the heat accumulated in the vapor film. Boiling has

been extensively employed in energy conversion facilities, such as power generators, cooling

systems for electronic devices, and petroleum refineries. Despite its importance in industry,

the fundamental mechanism of boiling is still not well understood, as was acknowledged by

physicists [2, 52] and engineers [16, 38]. To date, knowledge about boiling is mainly obtained
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(a) (b)

(c) (d)

Figure 17: Three-dimensional motion of a single bubble: (a) density isosurface at t = 0.0, (b)
temperature on various slices at t = 0.0, (c) density isosurface and streamlines at t = 40.0,
(b) temperature on various slices at t = 40.0.
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(a) (b)

(c) (d)

Figure 18: Three-dimensional motion of a single bubble: (a) density isosurface and stream-
lines at t = 80.0, (b) temperature on various slices at t = 80.0, (c) density isosurface and
streamlines at t = 120.0, (b) temperature on various slices at t = 120.0.
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(a) (b)

(c) (d)

Figure 19: Three-dimensional motion of a single bubble: (a) density isosurface and stream-
lines at t = 160.0, (b) temperature on various slices at t = 160.0, (c) density and streamlines
isosurface at t = 200.0, (b) temperature on various slices at t = 200.0.
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by correlating experimental data to empirical formulas. In view of its disparity of spatiotem-

poral scales and the elusive nature of many subprocesses, a predictive model for boiling is

highly important for engineering designs.

There have been a few but growing numerical studies of boiling in the past years. Film

boiling is regarded as most amenable to modeling, since its governing mechanism is princi-

pally the Rayleigh-Taylor instability. A multiphase solver that can simulate the Rayleigh-

Taylor instability should be capable of simulating film boiling. Existing numerical simula-

tions have been carried out by the level set method [64], the front tracking method [38], and

the volume-of-fluid method [71]. Those simulations all started with a preexisting perturbed

flat interface as the initial condition. In other words, none of those methods captured the

film generation process. On the other side, very few simulations of nucleate boiling have been

performed because more physical mechanisms are involved in this phenomenon. A credible

nucleate boiling solver is expected to be capable of describing the creation of new interfaces

near the nucleation sites, handling the Rayleigh-Taylor instability and the Rayleigh-Bénard

instability, and tracking the moving interfaces of bubbles and free surfaces. In [65], the au-

thors have studied the nucleate boiling by specifically designing a model for the region near

the nucleate cavities. This approach destroys the conservation structure and relies on em-

pirical data, including the bubble release rate, the nucleation site density, etc. In this work,

we simulate boiling flows in two and three dimensions, using the Navier-Stokes-Korteweg

equations. To obtain successful boiling simulations, there are several additional modeling

considerations. First, the transport parameters are chosen to be density dependent in order

to differentiate the properties of the liquid and vapor phases. Specifically, the dimensionless

viscosity µ̄ and the thermal conductivity κ are larger in the liquid region than in the vapor

region. In our simulations, these two parameters are taken as

µ̄ = Cboil
µ ρ,

κ = Cboil
κ ρ,

with Cboil
µ and Cboil

κ being constants independent of ρ. Second, the gravity effect should be

taken into account to generate the buoyant effect. The dimensionless body force b is chosen

as

b = (0; 0;−0.025)T ,
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for the three-dimensional case and

b = (0;−0.025)T ,

for the two-dimensional case. Third, the ninety-degree contact angle boundary condition is

used for the density variable and the slip boundary condition is applied to the velocity. To

specify the boundary condition for the temperature, the boundary ∂Ω is divided into three

non-overlapping parts:

∂Ω = Γt ∪ Γb ∪ Γv,

Γt = {x ∈ ∂Ω|n(x) · b < 0} ,

Γb = {x ∈ ∂Ω|n(x) · b > 0} ,

Γv = {x ∈ ∂Ω|n(x) · b = 0} .

With the above partition, the boundary condition for θ is

θ = θh, on Γb × (0, T ),

θ = θc, on Γt × (0, T ),

−q · n = 0, on Γv × (0, T ).

In the numerical calculations, the Dirichlet boundary conditions for θ on Γb and Γt should

be transformed to the Dirichlet boundary conditions for the entropy variable Y5 as

Y5 = Y5,h = − 1

θh
, on Γb × (0, T ),

Y5 = Y5,c = − 1

θc
, on Γt × (0, T ).

Throughout, the Dirichlet data are chosen as θh = 0.950 and θc = 0.775. In real situations,

the temperature on the solid surface cannot be evenly distributed due to surface unevenness.

This effect is modeled by adding perturbations to the Dirichlet data:

Y5,h = − 1

0.950
+ δY5,h

(x),

Y5,c = − 1

0.775
+ δY5,c(x),

wherein δY5,h
(x) and δY5,c(x) are scalar perturbation functions that mimic the uneven tem-

perature distribution on the solid surface. As for the initial conditions, the initial density
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and temperature are given by hyperbolic tangent functions; the initial velocity is zero. The

detailed formulations of the initial conditions are given in subsequent sections. These con-

ditions represent a static free surface, with liquid in the bottom region and vapor in the top

region. It is worth emphasizing that the initial liquid and vapor densities are uniform with

no perturbations. In contrast to existing boiling models, there is no artificial manipulation

used to serve as boiling onset in this model. The following results will show that the vapor

bubble or the vapor film may form automatically without preexisting nuclei simply due to

local temperature variations. Another appealing property of this model is that nucleate

boiling and film boiling can be simulated within a unified framework by proper selection of

dimensionless parameters. These features may be credited to the thermodynamically consis-

tent nature of the model and the algorithm. It is expected that this new methodology may

lead to a predictive tool for boiling.

The rest of this section is organized as follows. In Section 5.3.1, we perform a mesh sensi-

tivity test. In Sections 5.3.2 and 5.3.3, two-dimensional nucleate boiling and two-dimensional

film boiling are numerically studied. A three-dimensional boiling simulation is investigated

in Section 5.3.4.

5.3.1 Two-dimensional mesh sensitivity test

Before we start simulating practical examples, a mesh sensitivity test is performed to examine

the mesh independence of the solution. The simulation domain is Ω = (0, 1)× (0, 0.5). The

material parameters are chosen as

We = 2.103× 106,

γ = 1.333,

Cboil
µ = 2.298× 10−4,

Cboil
κ = 3.448× 10−5.

The initial conditions for this problem are

ρ0(x) = 0.3660− 0.2971 tanh

(
x2 − 0.35

2

√
We

)
,

u0(x) = 0,

θ0(x) = 0.775.
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(a) 800× 400 quadratic NURBS elements (b) 1024× 512 quadratic NURBS elements

(c) 2048× 1024 quadratic NURBS elements (d) 4096× 2048 quadratic NURBS elements

Figure 20: Density profiles of the mesh sensitivity test at t = 35.0.

The perturbation for the temperature on the boundary δY5,h
(x) and δY5,c(x) are

δY5,h
(x) = 5.0× 10−2 sin(10πx),

δY5,c(x) = 5.0× 10−3 sin(10πx).

The problem is integrated up to T = 35.0 with time step size ∆t = 1.0× 10−4. We use four

different spatial meshes: 800×400, 1024×512, 2048×1024, and 4096×2048 quadratic NURBS

elements. The density profiles at t = 35 are depicted in Figure 20. As can be seen, the

density profiles are similar for all four meshes. In the coarsest mesh, the shape of the second

bubble attached to the bottom (from left to right) is significantly different from those in the

finer meshes. The solutions shown in Figure 20 (c) and (d) are almost indistinguishable.

Therefore, in the following two-dimensional calculations, we used 2048 × 1024 quadratic

NURBS elements to save computation time.
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(a)

(b)

Figure 21: Initial conditions of the two-dimensional boiling simulation: (a) density, (b)
temperature.

85



(a)

(b)

(c)

Figure 22: Solutions of the two-dimensional nucleate boiling simulation at t = 1.25: (a)
density, (b) temperature, (c) velocity streamlines.
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(a)

(b)

(c)

Figure 23: Solutions of the two-dimensional nucleate boiling simulation at t = 18.75: (a)
density, (b) temperature, (c) velocity streamlines.
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(a)

(b)

(c)

Figure 24: Solutions of the two-dimensional nucleate boiling simulation at t = 31.25: (a)
density, (b) temperature, (c) velocity streamlines.
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(a)

(b)

(c)

Figure 25: Solutions of the two-dimensional nucleate boiling simulation at t = 62.5: (a)
density, (b) temperature, (c) velocity streamlines.
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(a)

(b)

(c)

Figure 26: Solutions of the two-dimensional nucleate boiling simulation at t = 100.0: (a)
density, (b) temperature, (c) velocity streamlines.
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5.3.2 Two-dimensional nucleate boiling

In this example, we simulate boiling flows in a two-dimensional rectangular domain Ω =

(0, 1)× (0, 0.5). The material parameters are chosen as

We = 8.401× 106,

γ = 1.333,

Cboil
µ = 1.150× 10−4,

Cboil
κ = 1.725× 10−5.

The initial conditions for this problem are

ρ0(x) = 0.3660− 0.2971 tanh

(
x2 − 0.35

2

√
We

)
, (184)

u0(x) = 0, (185)

θ0(x) = 0.775. (186)

In Figure 21, the initial conditions for density and temperature have been illustrated. The

perturbation for the temperature on the boundary δY5,h
(x) and δY5,c(x) are uniform random

distributions and satisfy

δY5,h
(x) ∈ [−5.0× 10−2, 5.0× 10−2],

δY5,c(x) ∈ [−5.0× 10−3, 5.0× 10−3].

The spatial mesh consists of 2048 × 1024 quadratic NURBS elements. The problem is

integrated up to the final time T = 1.0× 102 with time step fixed as ∆t = 5.0× 10−4.

In Figures 22-26, snapshots of the density, temperature, and velocity streamlines are

depicted. In Figure 22, it can be observed that tiny vapor bubbles are generated at discrete

sites of the heated wall surface during the initial times. These small bubbles grow in size,

and some bubbles merge together to form larger bubbles, as is shown in Figure 23. The

increase of bubble size leads to the increase of buoyancy. Beyond a certain critical point,

the bubbles get detached from the bottom boundary and rise upward. At about t = 18.75,

the first three bubbles get detached from the bottom. More bubbles are generated on the

bottom surface in the mean time. Figures 24 and 25 show the moments when two bubbles

are about to reach the free surface. Interestingly, from Figures 25 and 26, small droplets can

be observed as a result of the breakage of the liquid film when the vapor bubbles reach the

free surface. There are 30 bubbles formed in the time interval of 0 < t < 100.
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5.3.3 Two-dimensional film boiling

(a)

(b)

(c)

Figure 27: Solutions of the two-dimensional film boiling simulation at t = 100.0: (a) density,
(b) temperature, (c) velocity streamlines.

In the third example, the same two-dimensional problem considered in the preceding

section is simulated again with a different parameter Cboil
µ . Here, the parameter Cboil

µ is

chosen to be 4.600 × 10−4, which is four times larger than that of the previous example.

Since the fluid motion in this example is slower, the simulation is integrated in time up
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(a)

(b)

(c)

Figure 28: Solutions of the two-dimensional film boiling simulation at t = 175.0: (a) density,
(b) temperature, (c) velocity streamlines.
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(a)

(b)

(c)

Figure 29: Solutions of the two-dimensional film boiling simulation at t = 200.0: (a) density,
(b) temperature, (c) velocity streamlines.

94



(a)

(b)

(c)

Figure 30: Solutions of the two-dimensional film boiling simulation at t = 225.0: (a) density,
(b) temperature, (c) velocity streamlines.
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(a)

(b)

(c)

Figure 31: Solutions of the two-dimensional film boiling simulation at t = 500.0: (a) density,
(b) temperature, (c) velocity streamlines.
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to T = 5.0 × 102. All the other conditions are identical to those of the previous case. In

Figures 27-31, snapshots of the density, temperature, and velocity streamlines at different

time steps are presented. Once the simulation starts, a thin vapor film is gradually generated

at the bottom during the early stage of the simulation (see Figure 27). As time evolves, the

interface becomes unstable and there are mushroom-shaped vapor bubbles formed, as are

shown in Figures 28 and 29. From t = 200.0 to t = 225.0, the first two vapor bubbles pinch

off from the vapor film and rise upward in ellipsoidal shapes. As the bubbles get released

from the vapor film, two stems are left on the vapor film, which serve as onsets of new

bubbles. This process repeats itself periodically. Till the final time t = 500.0, there are

totally seven bubbles detached from the vapor film. The average bubble release rate for this

film boiling problem is much less than that of the nucleate boiling counterpart.

5.3.4 Three-dimensional boiling

As the last example, we simulate the Navier-Stokes-Korteweg equations in a three-dimensional

domain Ω = (0, 1)× (0, 0.5)× (0, 0.25). The material properties are chosen as

We = 6.533× 105,

γ = 1.333,

Cboil
µ = 1.289× 10−4,

Cboil
κ = 7.732× 10−5.

The initial conditions for this three-dimensional problem are similar to those of the two-

dimensional problem, except the free surface is defined by x3 = 0.15:

ρ0(x) = 0.33565− 0.26675 tanh

(
x3 − 0.15

2

√
We

)
,

u0(x) = 0,

Y5,0(x) = −1.2334− 0.0569 tanh

(
x3 − 0.15

2

√
We

)
.

The perturbation for the temperature on the boundary δY5,h
(x) and δY5,c(x) are uniform

random distributions and satisfy

δY5,h
(x) ∈ [−5.0× 10−2, 5.0× 10−2],

δY5,c(x) ∈ [−5.0× 10−3, 5.0× 10−3].
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The spatial mesh consists of 600 × 300 × 150 quadratic NURBS elements. The problem is

integrated in time up to T = 20.0 with a fixed time step size ∆t = 2.0× 10−3.

Remark 18. The initial condition for Y5 is in fact a hyperbolic tangent interpolation of

θ = 0.85 for x2 < 0.15 and θ = 0.775 for x2 > 0.15.

(a)

(b)

Figure 32: Initial conditions of the three-dimensional boiling: (a) density isosurfaces, (b)
temperature isosurfaces.

98



(a)

(b)

Figure 33: Solutions of the three-dimensional boiling at time t = 0.6: (a) density isosurfaces
and velocity streamlines, (b) temperature isosurfaces.
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(a)

(b)

Figure 34: Solutions of the three-dimensional boiling at time t = 5.0: (a) density isosurfaces
and velocity streamlines, (b) temperature isosurfaces.
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(a)

(b)

Figure 35: Solutions of the three-dimensional boiling at time t = 11.0: (a) density isosurfaces
and velocity streamlines, (b) temperature isosurfaces.
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(a)

(b)

Figure 36: Solutions of the three-dimensional boiling at time t = 14.0: (a) density isosurfaces
and velocity streamlines, (b) temperature isosurfaces.
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(a)

(b)

Figure 37: Solutions of the three-dimensional boiling at time t = 20.0: (a) density isosurfaces
and velocity streamlines, (b) temperature isosurfaces.
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In Figures 32-37, snapshots of density isosurfaces, velocity streamlines, and temperature

isosurfaces are presented at times t = 0.0, 0.6, 5.0, 11.0, 14.0 and 20.0. At the initial

stage, there is an unstable vapor film formed over the heated wall surface (see Figure 33).

This film soon separates into isolated vapor bubbles located at random sites on the bottom

surface (see Figures 34 and 35). With the growth of the bubbles, the thermal energy is

conducted through the vapor region. Since the simulation domain is very shallow in the

vertical direction, these bubbles reach the free surface before they get fully detached from

the bottom. When these high-temperature vapor bubbles reach the cooled top surface, they

condense into liquid droplets instantaneously (see Figure 36). At t = 20.0, a second round

of vapor bubbles is clearly generated on the bottom and the liquid droplets on the top

surface get merged together. There is a complex Rayleigh-Bénard mixing structure for the

temperature field, as is shown in Figure 37.

6 Conclusions and future work

In this work, we presented a comprehensive suite of theoretical and numerical methodologies

for the study of liquid-vapor two-phase flows. The contributions are elaborated as follows.

A continuum mechanic modeling framework for multiphase flows has been constructed.

In its derivation, the microforce theory [27] is adopted with the objective of accommodating

non-local effects. This modeling framework enjoys several appealing properties. First, all

constitutive relations are represented in terms of a thermodynamic potential. Therefore, the

modeling work is reduced to the design of a proper form of the thermodynamic potential.

Second, the framework automatically satisfies the second law of thermodynamics. Third,

some previously mysterious modeling terms find rational mechanics explanations as a result

of the Coleman-Noll procedure. For example, the “interstitial working flux” [17] is the

power expenditure of the microstress. Within this framework, the Navier-Stokes-Korteweg

equations and the compressible Navier-Stokes equations are recovered by proper choices of

the Helmholtz free energy functional.

A thermodynamically consistent numerical scheme for the Navier-Stokes-Korteweg equa-

tions is constructed. For the van der Waals fluid model, the definition of entropy variables is

generalized to the functional setting to overcome the difficulty induced by the non-convexity

of the entropy function. Interestingly, the functional entropy variables for the van der Waals

fluid are formally identical to those of the perfect gas model. The difference is that the

entropy variables are not obtainable by merely an algebraic change-of-variables, but rather

they are mappings from the conservation variables to their dual spaces. In the strong form, in

order to obtain conservation variables from the entropy variables, one need to solve a partial
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differential equation. An alternative statement of the strong form problem is devised such

that the equation for the entropy variable conjugate to density is weakly enforced. In doing

so, the weak problem is guaranteed to be entropy dissipative, as is shown in Theorem 4. In

addition to the spatial discretization, new time integration schemes are developed based on a

family of new quadrature rules [44]. In contrast to the traditional temporal schemes [63], the

new time integration schemes do not require convexity of the entropy function. Essentially,

the new schemes can be viewed as second-order modifications to the mid-point rule. The

modifications are designed so that the temporal approximation is provably entropy dissi-

pative. The theoretical convergence estimates have been numerically verified by comparing

solutions with manufactured solutions and overkill solutions.

The new model and the new algorithm have been applied to investigate a variety of prob-

lems, including evaporation, condensation, bubble motion under a temperature gradient, and

nucleate and film boiling. The advantage of the diffuse-interface method is demonstrated by

the two and three-dimensional boiling simulations. Our approach enjoys several desirable

properties. First, the dependency on empirical knowledge and assumptions are significantly

reduced. In contrast, existing boiling models rely heavily on empirical data and sometimes

introduce artificial modeling terms. Second, our approach provides a unified modeling frame-

work for both nucleate boiling and film boiling. We believe our methodology may provide a

predictive tool for a wide spectrum of the boiling phenomena.

There are several promising research directions for future work. The Navier-Stokes-

Korteweg equations are believed to be applicable to simulating cavitating flows, the liquid-

vapor phase transition induced by pressure variations. A potential challenge for such a

simulation is a proper design of open boundary conditions. The van der Waals model can

be further improved to give more accurate material descriptions. Recently, new models have

been introduced [62], and we anticipate that applying these new equation-of-state may lead

to better results in comparison with the van der Waals model. On the computation side, the

anisotropic structure of the solutions makes mesh-adaptive isogeometric analysis techniques

[57, 60] highly desirable.
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[13] L. Dedè, M.J. Borden, and T.J.R. Hughes. Isogeometric analysis for topology opti-

mization with a phase field model. Archives of Computational Methods in Engineering,

19:1–39, 2012.
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