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Abstract

In this paper, we focus on the dynamic multiaxial behaviors of shape memory alloy (SMA) rectangu-
lar prismatic nanowires. A strain-based order parameter 3D phase-field model is used to study the
microstructure evolution and its consequent thermo-mechanical behaviors in the cubic-to-tetragonal
martensitic phase transformations in SMA nanowires. The FePd nanowire is subjected to displace-
ment based axial-transverse and axial-torsion loadings paths. The numerical results demonstrate the
strong influence of multiaxial loadings on microstructures and thermo-mechanical response. The vari-
ation of thermo-mechanical response stems from the nucleation of energetically favorable martensitic
variants to the applied loading paths. The understanding of multiaxial thermo-mechanical response
of nanowires is essential in developing better SMA based devices.

Keywords: Phase-field model, Ginzburg-Landau theory, nonlinear thermo-elasticity, shape memory
alloys, nanostructures.

1 Introduction

Shape memory alloys (SMAs) exhibit structural phase transformations in a form of martensitic
transformations (MTs) that involve diffusionless affine deformation of atomic unit cell in a sense of
the point group theory. A crystallographic high symmetry austenite (A) phase can be transformed
into equivalent crystallographic lower symmetry martensite variants (Mi). These phase transforma-
tions yield two unique properties of SMAs namely; shape memory effect and pseudoelasticity [1].
These properties have been extensively studied under uniaxial response of SMA wires and exploited
successfully in commercial applications [2, 3].

In contrast to conventional applications of SMA wires in uniaxial loadings, modern engineering SMA
based 3D devices interact with their environment and are often subjected to complex multiaxial
loadings. The development of sophisticated SMA based devices, in bioengineering, micro- and nano-
technology fields [4, 5, 6, 7], reveals the necessity to investigate their material properties subjected
to complex loadings. The influence of multi-axial loading paths on microstructure evolution and its
consequent effects on thermo-mechanical behavior is essential for development of better SMA-based
devices.

Extensive experiments on SMA wires revealed their uniaxial loading behavior for stress induced
loadings in research and commercial applications. A comprehensive review of uniaxial SMA behaviors
can be found in [1, 2, 3, 8, 9]. There is limited experimental research on the multiaxial behavior of
SMAs. The strong influence of tension-torsion loadings on macroscopic SMA material behavior were
experimentally studied by Tokuda et al. [10], Sittner et al. [11], Lim and McDowell [12], Bouvet
et al. [13], McNaney et al. [14], Lavernhe-Taillard et al. [15] and Grabe and Bruhns [16] among
others. These experimental studies revealed that variations in SMA material response emerge from
nucleation of energetically favorable martensitic variants to the applied loadings. The majority of
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these multiaxial experimental studies focused on the macroscopic behavior of SMAs with a little
focus on underlying MTs and how MTs affect the thermo-mechanical response.

There is a plethora of modeling literature to describe uniaxial behavior of SMAs [2, 8, 9, 17, 18,
19]. In order to model the SMA material response for advanced engineering applications, different
multiaxial models have been proposed. The models based on the crystal plasticity, micromechanics
and phenomenological approaches [20, 21, 22, 23, 24, 25] have been developed to predict complex
loading path dependence due to reorientation of the constituent phases in SMAs. In this paper, we
focus on a phenomenological approach based on the phase-field (PF) theory, which has emerged as
a powerful computational material modeling approach for phase transforming materials [26]. PF
models have been increasingly used for solid-to-solid phase transformations in SMAs at different
length scales [27, 28, 29, 26, 30, 31, 32, 33, 34, 35]. The majority of the studies based on PF
models have focused on the microstucture evolution and uniaxial properties of SMA nanostructures
[31, 33, 36, 37]. However, as mentioned earlier, modern engineering applications may induce multi-
axial loadings on SMA structures during interactions with its environment. The investigation of
multiaxial behaviors of 2D SMA nanowires using the PF model was analyzed by Dhote et al. [38]. The
study revealed that detwinning is a prominent phase transformation mechanism during axial loading,
while the redistribution of martensitic variants based on the local axial stress sign is prominent during
the bending load. Though the study provided an insight into the phase transformations and their
consequent effect on the thermo-mechanical behavior, the 2D model suffers severe limitation, with
the effect of martesitic variant in the third dimension totally neglected. As the phase transformations
occur under preferential directions in 3D planes, there is an accommodation of strain in three spatial
directions. Hence, it is essential to incorporate the effect of martensitic variants in all the three
directions and study the properties of SMAs using the full 3D model.

This paper focuses on the microstructure evolution and thermo-mechanical behavior of 3D SMA
nanowires subjected to multiaxial loading paths. We use the 3D PF model and numerical framework
developed in Dhote et al. [39] to simulate the cubic-to-tetragonal phase transformations in SMAs.
This model has been used to study the stress-induced phase transformations in nanowires under uni-
axial ramp loading-unloading paths [40]. The main objective of this paper is to study the multiaxial
behavior of SMA nanowires under a combination of axial, transverse, and torsion loading-unloading
paths. To the best of our knowledge, here we present the first dynamic multiaxial behaviors of SMA
nanowires using the 3D PF model.

The paper is organized as follows: first, we briefly describe the governing equations of 3D dynamic
coupled thermo-mechanical PF model and its numerical formulation using isogeometric analysis in
section 2. In section 3, we conduct numerical simulations on SMA nanowires under multiaxial loading
paths and study the microstructure morphology evolution and how it affects the shape memory effect
and pseudoelastic behaviors. Finally, the conclusions are summarized in section 4.

2 3D Model and Numerical Formulation

The governing equations of the dynamic thermo-mechanical model for SMAs have been derived
using the Ginzburg-Landau energy and the phase-field (PF) theory. Here, we focus on the cubic-
to-tetragonal PT, where the cube represents the A phase, and the three tetragonal phases represent
Mi,i=1,2,3. The complete derivation of the model is described in Dhote et al. [39]. For consistency and
completeness, the highlights of the model and numerical implementation are summarized as follows.
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2.1 Dynamic Thermo-Mechanical Phase-Field Model

The cubic-to-tetragonal phase transformation can be described using the free-energy functional F
[41, 31] as

F [uuu, θ] =
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where ai are constants that define the mechanical properties of the material, kg is the gradient energy
coefficient, τ is the dimensionless temperature defined as τ = (θ − θm)/(θ0 − θm), where θ0 and θm
are the phase transformation temperatures, and | · | denotes the Euclidean norm of a vector.

In Eq. (1), e1 represents the hydrostatic strain, e2 and e3 represent the deviatoric strains, and e4, e5, e6

represent the shear strains. The deviatoric strains e2 and e3 are selected as an order parameters (OPs)
to distinguish different phases in the domain. The strain measures eee = {e1 e2 e3 e4 e5 e6}T are defined
in terms of the Cauchy-Lagrange infinitesimal strain tensor εεε = {ε11 ε22 ε33 ε23 ε13 ε12}T in Eq. (2).
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where the I3, and O3 are the 3× 3 identity and zeros matrices, respectively. The strain components
are defined as εij = (ui,j + uj,i) /2, i, j ∈ {1, 2, 3}, where subscripts after comma denote partial
differentiation. The unknowns are the displacement field uuu = {u1, u2, u3}T and the temperature
θ in the physical domain Ω ⊂ R3, which is an open set parameterized by Cartesian coordinates
xxx = {x1, x2, x3}T . The Raleigh dissipation is incorporated to dampen the motion of domain walls
during the phase transformation [31, 42]. The dissipation functional R, the dissipation stress tensor
σσσ′ = {σ′ij} and stress tensor σσσ = {σij} are defined as

R =

∫
Ω

η
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]
ėi, σij =
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, (3)

where ėee = {ėi}i=1,...,6 is the time derivative of strain.

Using Hamiltonian mechanics and conservation of energy, the system of governing equations can be
derived. Adding suitable boundary and initial conditions, we get the problem as follows:

ρüi = σij,j + ησ′ij,j + µij,kkj + fi, in Ω× (0, T ), (4.1)

cvθ̇ = κθ,ii + Ξθ (ui,iu̇j,j − 3ui,iu̇i,i) + g, in Ω× (0, T ), (4.2)

µij,knk = 0, on Γ× (0, T ), (4.3)(
σij + ησ′ij + ∆µij

)
nj = 0, on ΓSi × (0, T ), (4.4)

ui = uDi , on ΓDi × (0, T ), (4.5)

θ,ini = 0, on Γ× (0, T ), (4.6)

ui(xxx, 0) = u0
i (xxx), in Ω, (4.7)

θ(xxx, 0) = θ0(xxx), in Ω, (4.8)

where fi is the external mechanical load, g is the external thermal load, ρ is the density, η is the
viscous dissipation, cv is the specific heat, κ is the thermal conductance coefficient, and Ξ is the
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strength of the thermo-mechanical coupling. Γ is the boundary of Ω with Γ = ΓDi ∪ ΓSi, nnn is
the outward normal, u0

i and θ0 are given functions, which represent the initial displacements, and
temperature in the closed domain Ω.

The model described in Eqs. (4.1)–(4.2) consists of the bidirectional coupling between structural and
thermal fields via θ, ui and u̇i,j. The constitutive equations σij that describe the cubic-to-tetragonal
PT are highly non-linear to account for the shape memory effect and pseudoelastic hysteretic prop-
erties (see [39]). The thermo-mechanical coupling, non-linear hysteresis properties and fourth-order
spatial differential terms in the 3D model impose several numerical challenges. An isogeometric anal-
ysis (IGA) has been successfully used to obtain the numerical solutions to a number of important
problems [43]. We have used an IGA framework for the numerical solution of the developed 3D PF
model.

2.2 Numerical Formulation

To implement the 3D PF model in an IGA framework, the weak formulation of Eqs. (4.1)–(4.2) is
derived by multiplying the equations with weighing functions {www, q}, integrating them over Ω and
transforming them by using the integration by parts. Let X denote both the trial solution and
weighting function spaces, which are assumed to be identical. Let (·, ·)Ω denote the L2 inner product
with respect to the domain Ω. The variational formulation is stated as follows:
Find solution S = {u, θ} ∈ X such that ∀W = {w, q} ∈ X : B(SSS,WWW ) = 0, with

B(SSS,WWW) = (wi, (ρüi − fi)) +
(
wi,j, σij + ησ′ij

)
− (wi,jk, µij,k)

+
(
q,
(
cvθ̇ − Ξθ(ui,iu̇j,j − 3ui,iu̇i,i)− g

))
+ (κq,i, θ,i). (5)

The semi-discrete formulation is used for solving Eq. (5). We use the Galerkin method to discretize
the space and treat the time as continuous. The variational problem over the finite-dimensional
spaces may be stated as follows: B(ShShSh,WWWh) = 0, where

WWWh = {wwwh, qh}, whi (xxx, t) =

nb∑
A=1

wiA(t)NA(xxx), qh(xxx, t) =

nb∑
A=1

qA(t)NA(xxx), (6)

where the NA’s are the basis functions, and nb is the dimension of the discrete space. In the context
of the IGA, the NA are non-rational B-spline (NURBS) functions. IGA offers unique advantages in
solving problems involving higher-order PDEs such as higher-order accuracy, robustness, geometric
flexibility, compact support, and C 1– or higher-order inter-element continuity. Time discritization
is performed by the generalized–α method. The readers are referred to Dhote et al. [39] for details
about the geometric flexibility, higher-order continuity and mesh convergence studies for the model
in section 2.1. In this manuscript, we have modified the IGA framework to incorporate multiaxial
loading paths to study the dynamic thermo-mechanical behaviors of SMA nanowires.

3 Numerical Simulations

Here, we conduct multiaxial loading-unloading simulations on rectangular prismatic nanowires un-
der dynamic loading conditions. The nanowires of dimension 150×37.5×37.5 nm are meshed with
80×20×20 C 1-continuous B-spline basis functions. We remark that the system of governing Eqs.
(4.1)–(4.2) is first rescaled and implemented in the IGA framework, and the results are calculated
back in the dimensional form. The Fe70Pd30 material properties [31, 44] used for the SMA nanowires
are summarized as: a1= 192.3 GPa, a2= 280 GPa, a3= 19.7 GPa, a4= 2.59× 103 GPa, a5= 8.52×
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104 GPa, kg = 3.15 × 10−8 N, θm = 270 K, θ0 = 295 K, cv = 350 Jkg−1K−1, κ = 78 Wm−1K−1, and
ρ = 10000 kg m−3.

The nanowire is constrained at one end, and the other end is displaced by χi in xi directions and/or
rotated by χθ about x1 in the counterclockwise direction (see inset diagrams in Fig. 1). We assume
the nanowire in a thermally insulated environment. The multiaxial responses of the SMA nanowire
are investigated for the shape memory effect and pseduoelastic behavior as described below.

3.1 Shape Memory Effect (SME)

SMAs manifest the SME behavior below the transition temperature. To define the initial state of the
nanowire, we use small random displacement uuu with normally constrained surfaces and quench it to
temperature corresponding to τ = −1.2. The specimen was allowed to evolve until the microstructure
and energy get stabilized. The self-accommodated twinned martensitic variants M1, M2, and M3

shown in red, blue, and green colors, respectively, are evolved in approximately equal proportions as
shown in Fig. 2(a). The evolved twinned microstructure in nanowire is taken as an initial condition
and subjected to the following three loading paths:

• type I - axial loading (χ1 6= 0, χ2 = χ3 = χθ = 0)

• type II - combination of axial and transverse loadings (χ1 6= 0, χ2 6= 0, χ3 6= 0, χθ = 0)

• type III - combination of axial and torsion loadings (χ1 6= 0, χ2 = χ3 = 0, χθ 6= 0).

In all the SME simulations, we load the SMA nanowire to χ1 = 3%. The loading of SMA nanowire
for type I, type II, and type III paths is presented in Fig. 1.

In the type I loading path, the M1 martensitic variant is favorable to the axial loading. Under the
influence of axial loading, the M2 and M3 variants are energetically unfavorable and get converted
into the M1 variant via the detwinning phase transformations (M2→M1 and M3→M1) as observed
in microstructure morphology evolution in Fig. 2. The average axial stress–strain σ11-ε11 and di-
mensionless temperature τ over the volume of nanowire are presented in the solid blue color line in
Fig. 5. The SME mechanical hysteresis loop consists of the elastic loading of martensitic variants,
and phase transformations is presented in Fig. 5(a). The remnant strain exists at the end of the
unloading cycle. The τ evolution, as shown in Fig. 5(b), is qualitatively observed in the experiments
[45, 46].

In the type II loading path, the specimen is loaded in the x2 and x3 transverse directions with
χ2 = χ3 = 2% strains in the corresponding direction. The transverse displacements are applied once
the axial strain in the nanowire reaches 0.5% to study the effect of multiaxial loadings on the phase
transformation plateau. The microstructure morphology evolution in nanowire is presented in Fig.
3. The detwinning phase transformations are predominant prior to the application of the χ2 and χ3

loads. On the application of these loadings, the M2 and M3 variants become favorable, in addition
to the M1 variant, to the applied loading paths. The microstructure morphology evolution presented
in Fig. 3 indicates the generation of the pockets of the M2 and M3 variants in the nanowire. The
loading of the nanowire in the x2 and x3 directions yield in the axial stiffening of the nanowire at
higher strains as shown with dashed-dot red color line in Fig. 5(a). Further loading causes formation
of the neck region (as shown in the inset) due to the presence of the M2 and M3 variants. The
complete conversion of M2→M1 and M3→M1 takes place at higher stress as seen in the inset in Fig.
5(a) . At the end of unloading, it is observed that the axial remnant strain in type II loading is
smaller than the type I loading due to the evolution of M2 and M3 variants due to the redistribution
of martensites as observed experimentally [47]. The microstructure morphology evolution in the 3D
model is qualitatively similar to the 2D PF model in Dhote et al. [38], however, the evolution of all
three martensitic variants in the model gives a better understanding of the strain accommodation
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in the 3D domain. The effect of transverse load can be observed in Fig. 5(b) as a deviation in τ
evolution from type I loading on the application of the transverse loads.

In the type III loading path, the nanowire is subjected to torsion load χθ= 5/6π radian, once the
axial strain in the nanowire reaches 0.5%. The microstructure morphology evolution presented in
Fig. 4. The shear strains due to the torsion loading do not contribute to the definition of OPs e2 and
e3, however, their effect can be observed as evolution of different microstructure morphology in Fig.
4 (as compared to Fig. 2). The loading path causes the axial stiffening response as seen in Fig. 5(a)
presented as the black dotted line. The shear stresses introduced due to the torsion loading cause
the evolution of different microstructure and lead to higher axial stress. The average τ over time is
presented in Fig. 5(b).
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Figure 1: SME loading: (a) type I, (b) type II, and (c) type III paths.

(a) (b) (c)

(d) (e) (f)

Figure 2: (Color online) SME: microstructure morphology evolution in the nanowire under type I
path at time instants t (ns) (a) 0, (b) 0.0415, (c) 0.0833, (d) 0.1, (e) 0.146, (f) 0.208 (red, blue, and
green colors represent M1, M2, and M3 variants, respectively).

3.2 Pseudoelastic Behavior (PE)

SMAs manifest the PE behavior above the transition temperature. We follow the two-step procedure
described in Sec. 3.1. The nanowire is allowed to evolve to an austenite phase with temperature
corresponding to τ = 1.12, starting with a random initial condition of displacement uuu. The austenite
phase is taken as an initial condition to the three loading conditions described in Sec. 3.1. In all
the PE simulations, the SMA nanowires are loaded to χ1 = 1.25%. The loading paths for type
I, type II, and type III paths are depicted in Fig. 6. In the microstructure morphology evolution
Figs. 7–9, the A, M1, M2, and M3 are shown in yellow, red, blue, and green colors, respectively.
The microstructures are purposefully presented in transparent colors to investigate the evolution of
different variants inside a domain during the loading-unloading path.
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(a) (b) (c)

(d) (e) (f)

Figure 3: (Color online) SME: microstructure morphology evolution in the nanowire under type II
path at time instants t (ns) (a) 0, (b) 0.0415, (c) 0.0833, (d) 0.1, (e) 0.146, (f) 0.208 (red, blue, and
green colors represent M1, M2, and M3 variants, respectively).

(a) (b) (c)

(d) (e) (f)

Figure 4: (Color online) SME: microstructure morphology evolution in the nanowire under type III
path at time instants t (ns) (a) 0, (b) 0.0415, (c) 0.0833, (d) 0.1, (e) 0.146, (f) 0.208 (red, blue, and
green colors represent M1, M2, and M3 variants, respectively).
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Figure 5: (Color online) SME: average σ11–ε11 (a), and time evolution of τ (b) for the type I, II and
III multiaxial loading paths.

The time snapshots of microstructure evolution for the type I loading path are presented in Fig. 7.
The M1 variant favors the axial loading and leads to the forward phase transformations A→M1 during
loading stage. The reverse phase transformations M1→A is active during the unloading stage. At
the end of unloading, the nanowire returns to the A phase. The average σ11-ε11 and τ are presented
in Fig. 10 (refer to the solid blue color line). The axial stress-strain curve reproduces hysteretic loop
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Figure 6: PE loading: (a) type I, (b) type II, and (c) type III paths.

(shown in solid blue color) with a complete recovery of strain at the end of unloading as observed
experimentally [45, 2].

In the type II loading path, the nanowire is subjected to displacements in the x2 and x3 directions
with χ2 = χ3 = 1.25% strains in the corresponding directions. The χ2 and χ3 displacements are
applied when the axial strain in the nanowire reaches 0.3% to study the effect of multiaxial loading
on the phase transformation plateau. The time snapshots of microstructure morphology evolution
are presented in Fig. 8. The A→M1 is the primary phase transformation before the application
of the transverse direction displacement loads. On the χ2 and χ3 displacements, the M2 and M3

variants become favorable to the applied loading paths. The pockets of M2 and M3 variants are
revealed on the longitudinal edges of the nanowire. These pockets of variants travel from the loading
surface to the constrained surface on the diagonally opposite edges. The evolution of the M2 and
M3 variants cause relaxation in the axial stress as observed from the Fig. 10(a) (refer to the red
dash-dot line). On further loading, the M2 and M3 variants diminish, and the M1 variant becomes
the primary variant. This causes the nanowire to attain a particular stress at a lower strain value.
The evolution of average τ over time is presented in Fig. 10(b).

In the type III loading path, the torsion χθ = π/3 radians is applied to the nanowire, once the axial
strain reaches the 0.3%. On the application of the torsion load, the shear stresses are introduced on
the torsion loading. As the shear stress (or strain) does not contribute to the evolution of M2 and M3

variants, the M1 variant is still a predominant variant. However, the effect of the torsion is observed
on the average σ11-ε11 curve, with an axial relaxation of the nanowire. The shear bands can be seen
on the loading surface edges. On further loading, the nanowire attains a particular stress at a lower
strain value. The evolution of average τ over time is presented in Fig. 10(b)

4 Conclusions

The numerical experiments on the SMA nanowire have demonstrated the influence of multiaxial
loading paths on microstructure and thermo-mechanical response. The pure axial loading is domi-
nated by the detwinning phase transformations (M2→M1 and M3→M1) in SME or A→M1 in PE.
The multiaxial loading energetically activates the other variants and the energetic interaction of
Mi-Mj variant leads to a significant variation of the thermo-mechanical behavior. Particularly, we
observed that a nanowire shows axial stiffening in shape memory effect and axial relaxation during
the pseudoelastic behavior. The multiaxial behavior gives important insights to the response of SMA
nanostructures, which can be used in the development of better SMA-based devices.
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of Canada (NSERC), Canada is greatly acknowledged. This work was made possible with the facilities
of the Shared Hierarchical Academic Research Computing Network (SHARCNET: www.sharcnet.ca)
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(a) (b) (c)

(d) (e) (f)

Figure 7: (Color online) PE: microstructure morphology evolution in the nanowire under type I
loading path at time instants t (ns) (a) 0,(b) 0.067, (c) 0.083, (d) 0.1, (e) 0.1167, (f) 0.416 (red and
yellow colors represent M1 and A variants, respectively). Transparent colors are used to investigate
evolution of different variants.

(a) (b) (c)

(d) (e) (f)

Figure 8: (Color online) PE: microstructure morphology evolution in the nanowire under type II
loading path at time instants t (ns) (a) 0, (b) 0.033, (c) 0.1167, (d) 0.133, (e) 0.167, (f) 0.416 (red,
blue, green, and yellow colors represent M1, M2, M3, and A variants, respectively). Transparent
colors are used to investigate evolution of different variants.

(a) (b) (c)

(d) (e) (f)

Figure 9: (Color online) PE: microstructure morphology evolution in the nanowire under type III
loading path at time instants t (ns) (a) 0, (b) 0.033, (c) 0.1167, (d) 0.133, (e) 0.183, (f) 0.416 (red,
blue, green, and yellow colors represent M1, M2, M3, and A variants, respectively). Transparent
colors are used to investigate evolution of different variants.

and Compute/Calcul Canada.
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Figure 10: (Color online) PE: average σ11–ε11 (a) and time evolution of τ (b) for the type I, II and
III multiaxial loading paths.
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