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SUMMARY

We present a hybrid variational-collocation, immersed, and fully-implicit formulation for fluid-structure
interaction (FSI) using unstructured T-splines. In our immersed methodology, we define an Eulerian mesh
on the whole computational domain and a Lagrangian mesh on the solid domain which moves arbitrarily
on top of the Eulerian mesh. Mathematically, the problem reduces to solving three equations, namely, the
linear momentum balance, mass conservation, and a condition of kinematic compatibility between the
Lagrangian displacement and the Eulerian velocity. We use a weighted residual approach for the linear
momentum and mass conservation equations, but we discretize directly the strong form of the kinematic
relation, deriving a hybrid variational-collocation method. We use T-splines for both the spatial discretization
and the information transfer between the Eulerian mesh and the Lagrangian mesh. T-splines offer us two
main advantages against NURBS: They can be locally refined and they are unstructured. The generalized-α
method is used for the time discretization. We validate our formulation with a common FSI benchmark
problem achieving excellent agreement with the theoretical solution. An example involving a partially
immersed solid is also solved. The numerical examples show how the use of T-junctions and extraordinary
nodes results in an accurate, efficient, and flexible method.
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1. INTRODUCTION

Isogeometric analysis (IGA) was presented by Hughes et al. in [1] and explained in detail in [2].

IGA was invented to fill the gap between computer aided design (CAD) and finite element analysis

(FEA) in order to reduce the communication process between design and analysis. IGA’s key idea

is to utilize the blending functions of CAD in FEA to represent both the geometry and the solution

using the isoparametric concept. Different CAD functions may be used, including non-uniform

rational B-Splines (NURBS), T-splines and subdivision surfaces. NURBS-based IGA is completely

widespread nowadays. An important aftereffect of using NURBS as a basis in analysis is that we

can take advantage of their natural inter-element smoothness, which has positive consequences in

several application areas, such as, body-fitted fluid-structure interaction (FSI) [3, 4, 5, 6], immersed

FSI [7, 8, 9], fluid mechanics [10, 11, 12, 13, 14, 15], phase-filed models [16, 17, 18, 19, 20],

biomechanics [21, 22], structural mechanics [23, 24, 25, 26], shape memory alloys [27, 28, 29],

shell modeling [30, 31, 32, 33], contact problems [34, 35, 36], among others.
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1.1. Isogeometric analysis: From NURBS to T-splines

NURBS were the CAD technology of choice when isogeometric analysis was proposed. NURBS

are widely used in engineering design and have a number of appealing features, such as, for

example, higher-order global continuity, the convex hull property, the ability to represent exactly all

quadric curves and surfaces, affine covariance, pointwise nonnegativity, the variation diminishing

property, and capability for free-form surface modeling. Nevertheless, NURBS have some major

limitations such as the difficulty to represent watertight surfaces. Another shortcoming is their

tensor product structure, which avoids local refinement or unstructured meshing. In [37], Sederberg

et al. introduced T-spline surfaces in CAD as a generalization of NURBS. T-splines overcome the

aforementioned limitations of NURBS while maintaining all their good properties. In the last few

years, Zhang et al. proposed several procedures to create volumetric T-splines [38, 39, 40, 41, 42].

T-splines are a superset of NURBS. An appealing feature of T-splines is that they are forward

and backward compatible with NURBS. In particular, any T-spline surface can be converted into

one or more NURBS surfaces by perfoming repeated local refinement to eliminate all T-junctions.

In the commercial field, this is a significant advantage of T-splines over other candidates that are

unstructured and allow local refinement (such as subdivision surfaces), but are not compatible with

NURBS.

In [43], T-splines were introduced in the FEA field. In contrast with NURBS, T-spline blending

functions as introduced in [37] do not define a basis because they might be linearly dependent.

Linear independence is not necessary in CAD, but it is a requirement for successful analysis. This

problem was addressed defining a subset of T-splines where linear independence is guaranteed

[44, 45]. The newly-proposed subset of T-splines was called analysis-suitable T-splines (ASTS).

Also, to facilitate the direct inclusion of T-splines in a finite element code, the concept of Bézier

extraction was proposed [46, 47]. Significant developments have occurred since then: The local

refinement of ASTS was analyzed in [48], the conversion of an unstructured quadrilateral mesh to

a standard T-spline surface was detailed in [49], the conversion of a trimmed NURBS surface to

an untrimmed T-spline surface was explained in [50], the application of the hierarchical refinement

idea to ASTS was explored in [51], and the application of collocation methods [52, 53, 54, 55] to

ASTS was studied in [56]. ASTS have been applied to several problems in computational mechanics

such as dynamic brittle fracture [57], cohesive zone modeling [58], gradient damage models [59],

large deformation frictionless contact [60], and acoustics [61]. However, their use in FSI, which

is precisely the goal of this paper, has been limited to a body-fitted method where a bicubic T-

spline surface discretization of a rotation-free Kirchhoff-Love shell model was used for the solid

and volumetric quadratic NURBS were used for the fluid [62].

1.2. Fluid-structure interaction methods

FSI methods are typically divided into interface-tracking and interface-capturing techniques. In

interface-tracking methods, as the fluid domain changes its shape due to the fluid-solid interface

motion, the fluid mesh is updated to follow this movement. In interface-capturing methods, the fluid

mesh does not move to track the fluid-solid interface. Interface-tracking (i.e. moving-mesh) methods

are often based on the arbitrary Lagrangian-Eulerian (ALE) formulation [63]. The ALE description

is employed in the fluid domain, whereas the Lagrangian description is used in the solid. ALE-

based FSI methods have been used in various applications, such as, for example, hemodynamics

[5, 64, 65, 66, 67, 68], wind turbines [69, 70], or aeroelasticity [71]. As an alternative to ALE-

based methods, space-time body-fitted methods are becoming increasingly popular [72, 73]. For a

thorough discussion about body-fitted approaches the reader is referred to [74].

An important example of the interface-capturing approach is the immersed boundary method [75],

which was widely used in the simulation of biomechanical problems [76, 77, 78, 79, 80, 81]. In this

immersed technique, the solid is discretized using a Lagrangian mesh † that can move freely on top

†By Lagrangian mesh, we refer to a mesh whose nodes are attached to material (rather than physical) points. It does not
imply in any way the use of classical Lagrangian finite elements, which are not utilized in this work.
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of a background Eulerian mesh that spans the whole computational domain. An information transfer

algorithm is required to couple these two independent meshes and this was initially accomplished

by way of smoothed-out Dirac delta functions. In many cases of practical interest, the immersed

approach avoids the use of mesh-updating or remeshing procedures, which are needed in body-

fitted FSI methods. This is an advantage of the immersed method because changing the mesh,

either geometrically or topologically, increases the computational cost and may introduce some

issues. For example, when remeshing is not used for cases involving large translations or rotations

of the solid, the fluid mesh will become highly distorted, compromising the accuracy of the solution.

When remeshing is used, projections between different meshes are necessary, this also introduces

additional inaccuracies. Thus, for FSI applications which involve large deformations or topological

changes of the fluid domain, body-fitted methods may not be the best option, and this is precisely

the area where immersed algorithms shine. In the 2000’s an important development occurred in the

field of immersed FSI methods, namely, the introduction of the so-called immersed finite element

method (IFEM) [82]. The IFEM has been successfully applied to a number of problems [83, 84].

Notably, recent research endeavors have targeted the creation of new FSI immersed

methodologies using the IGA framework. This new developing type of computational techniques

was termed immersogeometric analysis. It aims to capture the solid geometry exactly and embed

it in a background mesh. This concept was proposed in [7, 9], where the authors used thin-

shell structures modeled geometrically as surfaces embedded in a fluid. In those articles, various

benchmark problems are considered. The results were compared with body-fitted methods and the

algorithm was applied to a cardiovascular problem involving tri-leaflet bioprosthetic heart valves. In

[8], we proposed a new method which falls in the same category. In contrast with that of [7, 9], our

method considers volumetric solids. The algorithm was applied to 2D and 3D benchmark problems

with theoretical solution achieving excellent agreement. In addition, we showed that the higher-

order continuity of IGA basis functions increases the robustness of immersed methodologies in

problems involving large deformations of the solid.

We feel that IGA-based, immersed FSI methods would benefit from the use of unstructured

meshes and local refinement and this motivates our current work. Here, we bring the T-spline

technology to the immersed FSI realm, discretizing both the fluid and the solid with analysis-

suitable T-splines. We show that the local refinement capability of T-splines may be used to achieve

enhanced spatial resolution where it is needed and the unstructured nature of T-splines may help

avoid the presence of singular points in the parameterization, leading to more flexible immersed FSI

formulations. Additionally, we use a hybrid variational-collocation approach, namely, we discretize

the linear momentum balance and mass conservation equation using the variational multiscale

(VMS) method and the kinematic relation between the Eulerian velocity and the Lagrangian

displacement using collocation. Our hybrid variational-collocation approach enhances the efficiency

of the algorithm, particularly when higher orders are used.

1.3. Structure and content of the paper

This paper is organized as follows. In Section 2, we summarize the T-spline paraphernalia. Section

3 briefly describes the immersed FSI method. We start by defining important nomenclature and

describing the kinematics involved in the FSI methodology. We continue stating the main three

equations involved in our methodology, which are the linear momentum balance equation, the

mass conservation equation and the kinematic relation between the Lagrangian and the Eulerian

motions. Next, we discretize in space using a hybrid variational-collocation method based on T-

splines. Time discretization is performed using a fully-implicit, second-order accurate algorithm

based on the generalized-α method [85, 86]. Section 4 displays two numerical examples that show

the performance of the proposed method. The first example is a common FSI benchmark problem,

namely, a free-falling cylinder embedded in a channel. Our numerical result is checked against

the theoretical solution, showing good quantitative agreement. The second example involves a

deformable solid partially immersed in a water flow. The solid has its bottom part fixed, what

modifies the flow patterns creating a recirculation region downstream the solid. Finally, in Section

5, some concluding remarks will be drawn.
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(a) Unstructured T-mesh (b) Extended unstructured T-mesh

Figure 1. (Color online) (a) Unstructured T-mesh with one extraordinary node and four T-junctions. The
extraordinary node is marked with a red circle and the T-junctions are highlighted with blue squares. The
spoke edges of the extraordinary node are indicated by thick black lines. The one-ring neighborhood of
the extraordinary node is drawn with darkly shaded faces, while the two-ring neighborhood is the one-
ring and the lightly shaded faces. (b) Extended T-mesh. The extended T-mesh is obtained by adding the T-
junction extensions to the T-mesh. Face extensions are denoted by blue dashed arrows and edge extensions

are denoted by red dashed arrows. The inset represents a zoom in of the bottom left corner.

2. T-SPLINE OVERVIEW

In this section, we present a brief introduction to the T-spline technology and remit the reader to

other references for further details when it is needed. We assume that the reader is familiarized with

NURBS and use them as a starting point to describe T-splines. Although we will limit ourselves

to cubic T-spline surfaces, in some cases we will use the notation dp for the number of parametric

dimensions, d for the number of spatial dimensions, and p for the polynomial degree.

2.1. T-mesh, T-junctions, extraordinary nodes, and T-junction extensions

Here, we follow [45] and define the T-mesh as a polygonal mesh which encodes all the topological

information associated to the T-spline technology. The polygons that form the T-mesh will be

referred to as faces. The word element is used in the literature as a synonym of face, but we will

reserve it for something else. We define the T-mesh in such a way that its topology is identical

to that of the control mesh. Fig. 1(a) shows an example of a T-mesh similar to those used in the

computations presented in Sect. 4. Small circles and squares identify the vertices of the T-mesh,

while a line joining (exactly) two vertices defines an edge. Vertices will also be referred to as nodes.

We call valence the number of edges that touch a vertex. Note that our T-mesh is allowed to have T-

junctions and extraordinary nodes. L-junctions and I-junctions are not allowed [44]. T-junctions

are analogous to hanging nodes in classical finite elements [see the blue squares in Fig. 1(a)].

Extraordinary nodes are those interior vertices which not having valence four, do not qualify as

T-junctions [see the red circular vertex in Fig. 1(a)]. The presence of extraordinary nodes makes

the T-mesh unstructured. As we will see later, in cases of practical relevance, T-junctions will be

located far away from extraordinary nodes. Therefore, in the vicinity of T-junctions, we can define

a rectangular topology and a local index space [87, 88], which may be used to describe T-junction

extensions exactly as in [44, 87]. Without going into the details of the definitions of the extensions,

which can be found in the aforementioned papers, we just note that there are two types, namely,

face extensions and edge extensions. We will also use the concept of first-bay face extension (used

synonymously to one-bay face extension) as defined in [88, 45]. The extendend T-mesh is simply

the T-mesh augmented with the T-junction extensions. As an illustration, we present in Fig. 1(b)

the extended T-mesh associated to the T-mesh in Fig. 1(a). The blue dashed lines represent face

extensions, while the red dashed lines denote edge extensions. For future reference, we also define

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)
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(a) Knot interval configuration (b) Elemental T-mesh

Figure 2. (Color online) (a) Valid knot interval configuration associated to a particular T-mesh. The black,
blue and red edges have associated knot intervals of 1, 1/2, and 0, respectively. (b) Elemental T-mesh. The
polygons which are not shaded are not part of the elemental T-mesh. T-junction extensions become new

edges which may split faces into several elements of the elemental T-mesh.

the one-, two- and n-ring neighborhood of a T-mesh vertex. The one-ring neighborhood of a

vertex is the set of T-mesh faces that touch that particular vertex. The two-ring neighborhood of

a vertex is the set of faces that comprise its one-ring neighborhood and those that touch the one-ring

neighborhood. The n-ring neighborhood may be defined recursively in the obvious way. Fig. 1(a)

shows the one-ring neighborhood of the extraordinary node highlighted with darkly-shaded faces.

The two-ring neighborhood is composed by the darkly-shaded and the lightly-shaded faces. Finally,

we call spoke edges the T-mesh edges that end in an extraordinary node [see in Fig. 1(a) the edges

plotted with thick lines in the neighborhood of the extraordinary node].

2.2. Knot intervals and elemental T-mesh

We note that all the definitions given so far are purely topological and do not depend upon any

geometrical information. However, to construct T-spline blending functions and perform analysis,

we need to utilize geometrical information. The first step is to assign a non-negative real number to

each T-mesh edge. These non-negative real numbers will be referred to as knot intervals [37] and

they will be used to define the support of T-spline blending functions. There is significant freedom

to select knot intervals, but they have to satisfy some conditions in order to define a valid knot

interval configuration. A valid knot interval configuration requires that the knot intervals assigned

to opposite edges of a face add up to the same value. Due to our choice to have a T-mesh with the

same topology as the control mesh, we also define an outer ring of zero-length knot intervals in

the T-mesh. This choice is analogous to that of using open knot vectors in NURBS-based analysis,

which leads to repeated knots on the boundary and eases the imposition of Dirichlet boundary

conditions. Fig. 2(a) shows a possible valid knot interval configuration associated to the T-mesh

depicted in Fig. 1(a). The knot intervals assigned to red, blue and black edges take the value 0, 1/2

and 1, respectively. Note that edges associated to zero-length knot intervals are plotted with a finite

length to make simpler the interpretation of the figure.

Another important object in the T-spline technology is the elemental T-mesh. The elemental T-

mesh is a new set of polygons which might be obtained from the extended T-mesh and the knot

interval configuration. The polygons that form the elemental T-mesh will be called elements. T-

mesh faces of zero surface (i.e., zero measure) do not contribute elements to the elemental T-mesh

and all T-mesh faces of non-zero surface give rise to at least one element in the elemental T-mesh.

Those which are not crossed by a T-junction extension give rise to exactly one element, and those

crossed by T-junction extensions may give rise to more than one. Fig. 2(b) shows as shaded areas

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)
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(a) Sets ST
A

and ST
B

(b) Bézier mesh and Greville points

Figure 3. (Color online) (a) Sets ST
A (violet) and ST

B (green) associated to vertices A and B of the T-mesh.

For simplicity, we have omitted faces of zero surface in ST
B as they will not contribute elements in the Bézier

mesh. (b) Bézier mesh in physical space and support of the basis functions associated to vertices A (violet)
and B (green). Dark green squares denote Greville points in physical space.

delimited by black lines the polygons that compose the elemental T-mesh. See, in particular, how

the T-mesh faces in the bottom right area have been split into two elements in the elemental T-mesh.

Note also how the zero-surface faces do not form elements (see the outer ring and the area in the

bottom left corner). The elements of the elemental T-mesh are important objects for analysis because

they delimit areas in which all T-spline blending functions are C∞. In analysis, the elements of the

elemental T-mesh will be pushed forward to physical space using the isoparametric concept [89].

Each element of the elemental T-mesh gives rise to a so-called Bézier element in physical space.

Bézier elements are suitable regions to perform numerical integration because they are bounded by

lines across which at least one T-spline blending function fails to be C∞. Within a Bézier element,

however, all T-spline blending functions are C∞.

2.3. T-spline blending functions and Bézier extraction

As indicated before, we defined the T-mesh in such a way that it is topologically identical to the

control mesh. Thus, each vertex of the T-mesh has a control point associated and, therefore, a T-

spline blending function. To each vertex, we associate a capital index A ∈ {1, . . . , n}, where n
is the global number of control points. We proceed now to define the T-spline blending function

associated to the vertex A, which will be denoted by NA. Let us begin by defining the support of

NA, which can be inferred from the T-mesh and the knot interval configuration. To each vertex A
of the T-mesh, we will associate a set of T-mesh faces denoted by ST

A . Some of the faces in ST
A

will have a correspondence in the elemental T-mesh, giving rise to a new set that we call STe

A . The

region occupied by the elements in STe

A will be mapped to the physical space producing a set of

Bézier elements. The region defined by those Bézier elements is the support of NA in physical

space. Let us describe now ST
A for an arbitrary vertex A. If A is an extraordinary node or falls in

the one-ring of an extraordinary node, then ST
A is the two-ring neighborhood of A. Otherwise, ST

A is

constructed by marching through the T-mesh in each topological direction, starting at A, until p− 1
vertices or perpendicular edges are intersected or until the boundary of the T-mesh is encountered.

Fig. 3(a) shows the sets ST
A and ST

B for vertices A and B (marked with stars in the plot). ST
A is

composed of the violet faces, while ST
B is comprised by the green faces. Note that the faces of zero

surface in ST
B have been disregarded, as they will not contribute Bézier elements in physical space

[recall the knot interval configuration shown in Fig. 2(a)]. With the above information at hand, it is

possible to anticipate which basis functions will have support on a given Bézier element e, which

occupies a region Ωe in physical space. To simplify notation, we introduce a local numbering for

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)
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the basis functions as it is typically done in the finite element method. Here, we follow [90], and

use the array IEN to establish a correspondence between local and global numbering. In particular,

we use the formula A = IEN(a, e), where A is a global basis function index, a is a local-to-element

basis function counter, and e denotes the element number. Let us define the vector M e = {M e
a}

ne

a=1,

where the functions M e
a are progenitors of the basis functions with support on the element e. Note

that, as emphasized with the superscript e in ne, the length of the vector Me changes from one

element to another. This is a peculiar feature of T-splines analysis which does not hold true for

NURBS-based analysis.

The concept of Bézier extraction permits computing M e as a linear combination of the canonical

tensor product Bernstein polynomials defined on a fixed parent element, namely, � = [−1,+1]2.

This can be expressed mathematically as

M e (ξ) = CeB (ξ) , ξ ∈ � , (1)

where B = {Bp
i }

(p+1)dp

i=1 is a vector containing the two-dimensional Bernstein polynomials of

degree p in the domain � (see [45] for a precise description). The linear operator Ce can be

represented by a rectangular matrix and it is called element Bézier extraction operator. Although

we will not go into the details of the computation of Ce, which may be found in [46] and [45], we

point out that the Bézier extraction operator is always computed from the knot interval configuration

of the T-mesh. However, we need to distinguish two different types of elements. The elements in

the two-ring of an extraordinary node are called irregular elements while the remaining elements

are called regular elements. The Bézier extraction procedure for the regular elements is based on

knot insertion and was precisely described in [46]. However, the Bézier extraction procedure for

the irregular elements is based on imposing basic analysis-suitability properties and geometric

constraints and it was described in detail in [45]. In any case, Eq. (1) applies and can be used to

compute Me as a linear combination of Bernstein polynomials. Furthermore, in practical cases,

it may be useful to utilize rational functions, typically to reproduce exactly a particular geometry.

Given a set of weights {wA}nA=1 and their local counterparts for element e, namely, {we
a}, we can

rationalize the functions in M e as

Ne
a (ξ) =

we
aM

e
a (ξ)∑ne

b=1 w
e
bM

e
b (ξ)

, (2)

where Ne
a is the a-th rational T-spline blending function over the element e. This finalizes the process

to construct the basis functions in parameter space. We would like to point out that if all the weights

take the value one, then the rational T-spline blending functions become polynomials due to the

partition of unity property, that is,
ne∑

b=1

M e
b (ξ) = 1 . (3)

Finally, to perform computations on non-trivial geometries, we need to map the parent element to

physical space using a geometrical mapping xe : � 7→ Ωe. The basic information needed to produce

this mapping is a set of geometry control points {QB}
n
B=1 and the set of weights we just introduced,

namely, {wB}nB=1. A given geometry control point QA will have local indices associated, such that

QA = Qe
a, where A = IEN(a, e). The same argument applies to weights. Thus, the geometrical

mapping local to element e can be defined as

xe (ξ) =

ne∑

a=1

Qe
aN

e
a (ξ) ξ ∈ � . (4)

Using the T-spline geometrical mapping (4), we can get the basis functions in physical space.

In particular, the restriction of NA to the element e is just the push forward of Ne
a , where

A = IEN(a, e). Eq. (4) will also be used to map the elemental T-mesh to the Bézier physical mesh.

Fig. 3(b) shows a representative example of a Bézier mesh. In summary, as shown by Eqs. (1)–(4),

the use of Bézier extraction allows to use T-splines in a finite element code modifying just the shape

function subroutine.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)
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2.4. Continuity of T-spline blending functions

A T-spline blending function is at least Cp−1 across an element boundary shared by two regular

elements if the knot intervals associated to the edges in the other topological direction are not

zero. The number of continuous derivatives would be decreased by m if we introduce m zero-

length knot intervals. Now, we proceed to describe the continuity in the two-ring neighborhood of

an extraordinary node. A T-spline blending function is C2-continuous across an element boundary

shared by a regular and an irregular element. The continuity is reduced to C0 across an element

boundary shared by two irregular elements in the one-ring of an extraordinary node. The continuity

across element boundaries in the two-ring of an extraordinary node not described heretofore is C1.

2.5. Greville points

In our FSI algorithm presented in the following section, we will use a collocation approach that takes

inspiration from the emerging field of isogeometric collocation [52, 56]. Isogeometric collocation

is often carried out using the so-called Greville points. Greville points are easily defined for B-

Splines and NURBS [91], but their extension to unstructured T-splines is not trivial. Here, we utilize

the same generalization of classical Greville points that was used in [45]. We associate a Greville

point to each vertex of the T-mesh. Greville points associated to extraordinary nodes are located

right on top of extraordinary nodes. The location of Greville points associated to vertices which

are not extraordinary is defined by the knot intervals assigned to the edges that touch that vertex

(see the details in [45]). We can collect all Greville points defined this way in the set {τ̂ i}
n
i=1. For

each of these Greville points, we need to find the element in which it falls, and its corresponding

coordinates in the parent element, namely, ξei . The Greville points in physical space are computed

as τ̃ i = xe (ξei ). The set of all those Greville points in physical space is denoted by M̃h = {τ̃ i}ni=1.

The Greville points for the T-mesh shown in Fig. 1(a) are plotted in Fig. 3(b) using small green

squares.

2.6. Analysis-suitable T-splines

Without any restriction on the T-mesh topology, T-splines blending functions do not inherit all the

important mathematical properties of NURBS. In particular, some problems can appear with linear

independence and partition of unity. For T-meshes of rectangular topology, this issue was solved

in [44] by defining a subset of T-splines called analysis-suitable T-splines (ASTS) where all the

mathematical properties of NURBS are guaranteed including linear independence and partition of

unity. When the T-mesh is unstructured, assuring the linear independence and partition of unity

of blending functions is more difficult. In what follows we summarize the current understanding

concerning analysis suitability of T-splines with and without extraordinary nodes:

1. It was proven in [44] that a T-mesh with T-junctions and no extraordinary nodes gives rise to

ASTS if no horizontal and vertical T-junction extensions intersect with each other.

2. It was proposed in [45] that a T-mesh with extraordinary nodes and no T-junctions gives

rise to ASTS if no extraordinary node lies within the three-ring neighborhood of another

extraordinary node.

3. It was proposed in [45] that a T-mesh with T-junctions and extraordinary nodes gives rise to

ASTS if the conditions (1) and (2) hold true and no one-bay face extension spans a face in the

three-ring neighborhood of an extraordinary node.

Note that ASTS are defined using simple topological rules. Although it is possible to construct linear

independent T-spline blending functions violating the above conditions, in what follows, we restrict

ourselves to the set of ASTS.
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3. IMMERSED FLUID-STRUCTURE INTERACTION METHOD

In this Section, we describe the basics of our formulation at the continuous and discrete levels and

we focus on the main differences between working with T-splines and NURBS for this immersed

FSI methodology. The detailed derivations of the formulation at the continuous and discrete levels

can be found in our earlier paper [8].

3.1. Fluid-solid system

In what follows, Ω ⊂ R
d is a time-independent open set which encloses our fluid-solid system.

Ωf
t ⊂ Ω denotes the open subset of Ω occupied by the fluid at time t, which we call the fluid domain.

The solid domain at time t is Ωs
t ⊂ Ω. Note that, although we have assumed Ω to be fixed in time,

the fluid and solid domains do depend on time, as indicated by the subscript. The solid and fluid

domains define a partition of Ω such that Ω = Ωf
t ∪ Ωs

t . The fluid and solid domains are not allowed

to overlap (Ωf
t ∩ Ωs

t = ∅, where ∅ is the empty set), but they meet at the solid-fluid interface that

we call ΓI
t (Ωf

t ∩Ωs
t = ΓI

t ). The boundaries of Ω, Ωf
t and Ωs

t are denoted by Γ, Γf
t and Γs

t ,

respectively, and their unit outward normals by n, nf and ns, where the subscript t is omitted for

notational simplicity.

3.2. Kinematics

A Lagrangian description will be used for the solid domain, so let us define a reference configuration

Ωs
0 for our solid body. We consider the mapping ϕ : Ωs

0 × (0, T ) 7→ R
d, where (0, T ) is the time

interval of interest. We assume that ϕ is sufficiently smooth, orientation preserving and invertible

[92]. Points X in Ωs
0 are called material points or particles, while points in R

d are denoted x

and are called spatial points. To define the mapping ϕ we make use of the displacement field

us : Ωs
0 × (0, T ) 7→ R

d. In particular,

ϕ(X, t) = X + us(X , t) . (5)

We define the velocity vs : Ωs
0 × (0, T ) 7→ R

d, and the acceleration as : Ωs
0 × (0, T ) 7→ R

d of a

material point as

vs(X , t) =
∂us(X , t)

∂t
, (6)

as(X , t) =
∂vs(X, t)

∂t
=

∂2us(X, t)

∂t2
. (7)

Associated to the function vs, we define vs : Ωs
t × (0, T ) 7→ R

d as

vs(X , t) = vs(ϕ(X, t), t) for all X ∈ Ωs
0, t ∈ [0, T ] . (8)

Note that although vs and vs represent the same physical quantity, namely the solid velocity, they

are different functions, and thus, we use different notation for them. In what follows, we will call

vs Lagrangian or material velocity and vs Eulerian or spatial velocity. In general, we will use a bar

for Lagrangian functions whenever there is possibility of confusion. Applying the chain rule to (8),

we obtain

as(X, t) =
∂vs

∂t
(X, t) =

∂vs

∂t
(x, t) + vs(x, t) · ∇xv

s(x, t) if x = ϕ(X, t) . (9)

In the following, we will also use the notation

v̇s =
∂vs

∂t
+ vs · ∇xv

s , (10)

which is standard in computational mechanics. From the mapping ϕ, we may also define the

deformation gradient F : Ωs
0 × (0, T ) 7→ R

d×d as

F = ∇Xϕ = I +∇Xus . (11)

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)
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In (11), I denotes the identity tensor in R
d×d. We will also make use of the Green-Lagrange strain

tensor E : Ωs
0 × (0, T ) 7→ R

d×d
sym defined by

E =
1

2
(C − I) , (12)

where C : Ωs
0 × (0, T ) 7→ R

d×d
sym is called Cauchy-Green deformation tensor and takes on the form

C = FF T .

3.3. Governing equations in strong form

In this paper, we assume that both the fluid and the solid are incompressible ‡. Therefore, the main

unknowns of the problem will be a pressure field and the velocity. The main idea of the method is

to define global functions v : Ω× (0, T ) 7→ R
d, p : Ω× (0, T ) 7→ R, such that

v =

{
vf on Ωf

t × (0, T )

vs on Ωs
t × (0, T )

; p =

{
pf on Ωf

t × (0, T )

ps on Ωs
t × (0, T )

; (13)

where vf and pf are the fluid velocity and pressure in Eulerian coordinates, while vs and ps are

analogous quantities for the solid. The pressure field will be used as a Lagrange multiplier to

impose the incompressibility constraint which holds in both the solid and the fluid. The function

v is globally continuous due to the no-slip condition at the fluid-solid interface

vf = vs on ΓI
t × (0, T ) , (14)

but the global pressure could, in principle, be discontinuous. Using the functions v and p, taking

into account that both fluid and solid are considered to be incompressible, and assuming that gravity

is the only external force acting on the system, the linear momentum balance and mass conservation

equations of our FSI problem can be written as follows

ρf v̇ = ∇x · σf + ρfg +F in Ω× (0, T ) , (15)

∇x · v = 0 in Ω× (0, T ) , (16)

where F is defined as

F =

{
0, x ∈ Ωf

t(
ρf − ρs

)
(v̇ − g) +∇x ·

(
σs − σf

)
, x ∈ Ωs

t

. (17)

In Eqs. (15)–(17), ρf and σf denote the fluid density and Cauchy stress tensor, respectively, while ρs

and σs denote the same quantities for the solid. The vector g denotes the acceleration of gravity. To

guarantee correct transmission of forces at the fluid-solid interface, we need to impose the constraint

σfnf = −σsns on ΓI
t × (0, T ) . (18)

At this point, we need to introduce a constitutive theory to define the mechanical response of the

fluid and the solid. We will assume the fluid to be Newtonian. Therefore,

σf = −pI + 2µ∇sym
x v , (19)

where µ > 0 is the dynamic viscosity and ∇sym
x v = (∇xv +∇xv

T )/2. Note that we have extended

the definition of σf to the entire fluid-solid system, even if it does not have a clear physical meaning

on Ωs
t . We consider deformable solids in this paper §. The Cauchy stress tensor of the solid is given

‡The reader interested in the necessary modifications to account for a compressible solid embedded in an incompressible
fluid is remitted to [93].
§For the inclusion of rigid bodies in a immersed technique such as the one presented in this manuscript various changes
need to be performed. The interested reader is remitted to [94].
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by the expression

σs = −pI + FSF T /J , (20)

where J = det(F ) and S is the second Piola-Kirchhoff stress tensor. We will consider a hyperelastic

material, in particular, the Neo-Hookean model with dilatation penalty proposed in [95]. For this

particular material type, the second Piola-Kirchhoff stress tensor takes on the form

S = µsJ−2/d

(
I −

1

d
tr(C)C−1

)
+

1

2
κs

(
J2 − 1

)
C−1 , (21)

where µs is the shear modulus and κs is the bulk modulus. Note that the last term of the above

equation (called dilatational term) is zero if the solid is incompressible, but we maintain it in the

formulation for reasons that will be made clear in Section 4.1. To compute the stress tensor S we

need the Lagrangian displacement of the solid us(X, t), which in our immersed method will be

obtained using the equation

∂us(X, t)

∂t
= v(x, t) if x = ϕ(X , t) for all X ∈ Ωs

0 , (22)

which follows from the definition of the global velocity v.

To complete the definition of a well-posed initial/boundary-value problem, we need to impose

suitable initial and boundary conditions. To define adequate boundary conditions, we split the

boundary Γ into non-overlapping sets associated to the fluid boundary and the solid boundary.

Thus, we define Bs = Γ ∩ Γs
t and Bf = Γ ∩ Γf

t such that Γ = Bs ∪ Bf and ∅ = Bs ∩ Bf . Note, that

in general Bs 6= Γs
t , because part of Γs

t may be immersed into Ω due to the nature of the method.

Now, we specify standard boundary conditions for a fluid- and solid-mechanics problem on Bs

and Bf , respectively. For consistency with our hypothesis about the time independence of Ω, we

only consider homogeneous displacement boundary conditions on Bs. On the fluid boundary Bf ,

we assume the typical split between Dirichlet and Neumann boundary conditions, which can be

expressed as Bf = Bf
D ∪ Bf

N , with Bf
D ∩ Bf

N = ∅. Mathematically, our boundary conditions may be

expressed as

v = vB on Bf
D , (23)

σfnf = h on Bf
N , (24)

us = 0 on Bs , (25)

where vB is a given velocity and h is a prescribed traction vector. As initial conditions, we set

an initial velocity for the entire fluid-solid system. In the solid domain, we also need to solve for

displacements, so we have to set initial displacements on Ωs
0 . Therefore, our initial conditions are

given by

v(x, 0) = vI(x), x ∈ Ω , (26)

us(X, 0) = 0, X ∈ Ωs
0 . (27)

In summary, the main three equations to be solved in our immersed strategy are the linear

momentum balance equation (15), the mass conservation equation (16) and the kinematic relation

between the Lagrangian displacement and the Eulerian velocity given by Eq. (22).

3.4. Linear momentum balance and mass conservation equations in weak form

As mentioned before, Eq. (22) will be directly discretized in strong form, but the linear momentum

balance equation (15), and the mass conservation equation (16) will be solved using a weighted

residual formulation. Thus, before discretization, we need to derive a weak form of Eqs. (15) and

(16). To do so, we follow a variational multiscale (VMS) approach proposed in [8]. We will omit

the details here, but the main idea is to split the velocity and pressure fields into coarse-scale and

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)
Prepared using nmeauth.cls DOI: 10.1002/nme



12 H. CASQUERO ET AL.

fine-scale components as v = ṽ + v′ and p = p̃+ p′. Then, we multiply Eqs. (15) and (16) with

weight functions w = w̃ +w′ and q = q̃ + q′, integrate over the relevant domain, and perform basic

manipulations (see [8] for a detailed derivation). Proceeding as indicated, we obtain the following

variational problem: Find v and p such that for all w̃ and p̃

BED ({w̃, q̃}, {ṽ + v′, p̃+ p′})− LED (w̃) +BLD (w̃, ṽ)− LLD (w̃) = 0 , (28)

with

BED ({w̃, q̃}, {ṽ + v′, p̃+ p′}) =

(
w̃,

∂ṽ

∂t
+ ṽ · ∇xṽ

)

Ω

− (∇x · w̃, p̃)Ω + (∇sym
x w̃, 2ν∇sym

x ṽ)Ω

+(q̃,∇x · ṽ)Ω + (w̃,v′ · ∇ṽ)Ω

− (∇xw̃, (ṽ + v′)⊗ v′)Ω − (∇x · w̃, p′)Ω

− (∇xq̃,v
′)Ω , (29)

LED (w̃) = (w̃(x), g)Ω +
(
w̃(x),h(x)/ρf

)
B

f

N

, (30)

BLD (w̃, ṽ) =−

(
w̃(ϕ(X, t)),

(
1−

ρs

ρf

)
∂ṽ(ϕ(X , t), t)

∂t
J(X, t)

)

Ωs
0

−

(
w̃(ϕ(X, t)),

(
1−

ρs

ρf

)
ṽ(ϕ(X, t), t) · ∇xṽ(ϕ(X, t), t)J(X , t)

)

Ωs
0

− (∇sym
x w̃(ϕ(X , t)), 2ν∇sym

x ṽ(ϕ(X , t), t)J(X, t))Ωs
0

+

(
∇sym

x w̃(ϕ(X, t)),
1

ρf
F (X, t)S(X , t)F T (X, t)

)

Ωs
0

, (31)

LLD (w̃) = −

(
w̃(ϕ(X, t)),

(
1−

ρs

ρf

)
gJ(X , t)

)

Ωs
0

. (32)

Here, (·, ·) denotes the L2 inner product over the domain indicated with the corresponding subscript,

⊗ denotes the outer product, and ν = µf/ρf is the kinematic viscosity. The superscript ED
emphasizes that the equation is defined in the Eulerian description whereas the superscript LD
indicates the use of the Lagrangian description.

3.5. Space discretization

We apply a semi-discrete formulation to our FSI problem. Therefore, we first discretize in space,

reducing Eq. (28) to a system of ordinary differential equations that will be eventually integrated

in time. To perform space discretization, we need to introduce two discrete spaces associated to the

Eulerian and Lagrangian unknowns. In both cases, our discrete spaces will be spanned by linearly

independent T-spline basis functions constructed as indicated in Sect. 2. Let us introduce the set of T-

spline basis functions {NA(x)}
nED

A=1 , which is defined over the physical space Ω and is employed to

discretize Eulerian unknowns. Similarly, we define the set of T-spline basis functions {NB(X)}nLD

B=1

over the reference configuration of the solid Ωs
0. Assuming that Dirichlet boundary conditions will

be strongly enforced on the discrete space at a later stage, we can write

vh(x, t) =

nED∑

A=1

vA(t)NA(x); ph(x, t) =

nED∑

A=1

pA(t)NA(x); (33)

wh(x) =

nED∑

A=1

wANA(x); qh(x) =

nED∑

A=1

qANA(x); (34)
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uh(X, t) =

nLD∑

B=1

uB(t)NB(X); (35)

where vh, ph, wh, qh, and uh are the discrete counterparts of ṽ, p̃, w̃, q̃, and us, respectively. A

discrete mapping is also defined ϕh(X, t), which will be used to push forward the Lagrangian mesh

to physical space. We will now use the isoparametric concept, that is, we will use the same shape

functions to represent the geometry. Thus, the basis functions {NA(x)}
nED

A=1 are used to define a

computational mesh on the whole domain Ω. We will refer to this mesh as the Eulerian mesh and

it will be utilized to compute the integrals of the weak form (28) on Ω and Bf
N . Analogously, the

integrals of the weak form (28) on Ωs
0 will be computed on the mesh defined by the basis functions

{NB(X)}nLD

B=1. This second mesh, since it is defined in the material description, will be referred to

as the Lagrangian mesh. Note that the Lagrangian mesh is arbitrarily located on top of the Eulerian

mesh.

Finally, to compute Eq. (28), we need a model for the fine-scale velocity v′ and fine-scale pressure

p′. Here, we use the standard approach

v′ =− τMrM

(
vh, ph

)
, (36)

p′ =− τCrC
(
vh

)
, (37)

where τM and τC are the stabilization parameters defined in [10], and

rM

(
vh, ph

)
=

∂vh

∂t
+ vh · ∇xv

h +∇xp
h − ν∆xv

h − g , (38)

rC
(
vh

)
= ∇x · vh . (39)

Replacing continuous with discrete variables in Eq. (28) and using (36)–(37), we obtain the final

form of our semi-discrete weak formulation, which may be expressed as: Find vh and ph such that,

for all wh and qh defined as in Eq. (34),

BED
MS

(
{wh, qh}, {vh, ph}

)
− LED

(
wh

)
+BLD

(
wh,vh

)
− LLD

(
wh

)
= 0 , (40)

with

BED
MS

(
{wh, qh}, {vh, ph}

)
=

(
wh(x),

∂vh(x, t)

∂t
+ vh(x, t) · ∇xv

h(x, t)

)

Ω

−
(
∇x ·wh(x), ph(x)

)
Ω
+
(
∇sym

x wh(x), 2ν∇sym
x vh(x, t)

)
Ω

+
(
qh(x),∇x · vh(x, t)

)
Ω
−
(
wh(x), τMrM (uh, ph) · ∇vh

)
Ω

+
(
∇xw

h(x), (vh − τMrM (vh, ph))⊗ τMrM (vh, ph)
)
Ω

+
(
∇x ·wh(x), τCrC(u

h)
)
Ω
+
(
∇xq

h, τMrM (uh, ph)
)
Ω

. (41)

This completes the space discretization of the linear momentum balance and the mass conservation

equations. To finalize the space discretization we also need to discretize Eq. (22). As mentioned

before, we will discretize Eq. (22) directly in strong form using a collocation approach. Thus, we

replace Eq. (22) with a set of discrete equations given by

∂uh

∂t
(τ̃ i, t) = vh(ϕh(τ̃ i, t), t) for all τ̃ i ∈ M̃h , (42)

where M̃h is the set of Greville points in physical space as defined in Sect. 2. Note that Eqs. (40) and

(42) are fully coupled and will be solved simultaneously using a monolithic approach. Associated

to Eqs. (40) and (42), we define the following residual vectors

RM =
{
RM

A,i

}
; RC =

{
RC

A

}
; RP =

{
RP

B,i

}
; (43)
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where A ∈ {1, . . . , nED} is a control-variable index of the Eulerian mesh, B ∈ {1, . . . , nLD} is a

control-variable index of the Lagrangian mesh and i is a dimension index which goes from 1 to d.

The components of the residual vectors have the following expressions

RM
A,i = BED

MS

(
{NAei, 0}, {v

h, ph}
)
− LED (NAei) +BLD

(
NAei,v

h
)
− LLD (NAei) ,(44)

RC
A = BED

MS

(
{0, NA}, {v

h, ph}
)

, (45)

RP
B,i = ei ·

[
∂uh

∂t
(τ̃B, t)− vh

(
ϕh(τ̃B, t), t

)]
, (46)

where ei is the ith vector of the Cartesian basis.

3.6. Information transfer between the Eulerian and the Lagrangian meshes

Eq. (46) connects the Lagrangian displacement and the Eulerian velocity at locations given by

the Greville points {τ̃B}
nLD

B=1, which live in the solid’s reference configuration. These points have

been computed from their parametric counterparts {τ̂B}
nLD

B=1, which are known and given by the

parametric configuration of the Lagrangian mesh. Thus, the term involving uh in Eq. (46) can be

readily evaluated using typical procedures of the finite element method. The same argument does not

apply to the term involving vh because it is defined in the Eulerian mesh. According to Eq. (46), vh

has to be evaluated in the physical point xB = ϕh(τ̃B, t). We know the parametric origin of xB in

the Lagrangian mesh, that is τ̂B , but what we need to compute vh(ϕh(τ̃B, t), t) in a standard finite

element fashion is its parametric origin in the Eulerian mesh, which is not known a priori. Thus, to

evaluate vh(ϕh(τ̃B, t), t) in Eq. (46), we need to invert the push forward to the physical space of

the Eulerian mesh. Note that a similar issue arises when computing the operators BLD and LLD in

Eq. (44). These operators involve integrals over the Lagrangian domain which require evaluations

of Eulerian functions on quadrature points of the Lagrangian mesh. The parametric origin of these

points in the Eulerian mesh is not known either.

Our computations are based on Bézier extraction. Therefore, the mapping from parametric to

physical space is local to elements as shown in Eq. (4). As a consequence, if we want to compute

the parametric point associated to xB in the Eulerian mesh, we first need to find the Bézier element

in which xB is located. Bézier elements, in general, will have curvilinear shape, which makes it

difficult to locate the element without inverting the mapping. Thus, the most general way to state

the problem mathematically is: Find e ∈ {1, . . . , Nel} and ξB ∈ � such that

xB =

ne∑

a=1

Qe
aN

e
a(ξB) , (47)

where Nel is the global number of Bézier elements. Solving Eq. (47) for all Bézier elements would

be computationally very intensive. Therefore, in practical dynamic computations we proceed as

follows: For a given point τ̃B , we store the Bézier element in which its physical counterpart fell

at the previous time step. When we have to find the Bézier element in which it falls in the current

time step, we only solve Eq. (47) for a very small set of elements. That reduced set of elements is

composed by that which hosted the point in the previous time step and their neighbors.

Remarks:

1. The local geometrical mapping is inverted solving a d× d nonlinear system using the Newton-

Raphson algorithm.

2. When inverting the local geometrical mapping, it is important to check that the solution ξB
actually satisfies ξB ∈ �. As a matter of fact, Eq. (47) usually has roots outside the parent

element and they need to be disregarded.

3. The strategy to transfer information between the Eulerian and the Lagrangian meshes is

simpler when using NURBS rather than T-splines. In NURBS-based analysis, the geometrical
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mapping is local to patches rather than elements. Therefore, the first step in the process is to

find the patch that hosts the physical point. Since the number of patches is typically much

lower than the number of elements, the process is simplified. In addition, in many cases

of practical interest, NURBS geometrical mappings can be inverted analytically. Within this

latter category we can include computations on boxes, cylinders or spheres, for example.

3.7. Time integration

Once space discretization has been sorted, we must now proceed with time discretization. A

monolithic and fully-implicit algorithm based on the generalized-α method was proposed by some

of the authors in [8] and will be used here. The generalized-α algorithm dates back to 1993, when it

was first proposed to solve the structural mechanics equations [85]. The method was later extended

to first-order systems in the fluid dynamics domain [86]. As usual, we divide the time interval of

interest [0, T ] into a sequence of subintervals (tn, tn+1) with fixed time-step size ∆t = tn+1 − tn.

In the following, the time-discrete approximation at tn of the global vectors of control variables of

vh, ph, and ∂vh

∂t , will be referred to as V n, P n and An, respectively. Analogously, the time-discrete

approximation at tn of the global vectors of control variables of uh and ∂uh

∂t will be Un and V n.

We will also introduce U
G

n as the global vector that collects the time-discrete approximation of the

solid displacements at the Greville points, that is, U
G

n ≈ {uh
i (τ̃A, tn)}

nLD

A=1 for all i = 1, . . . , d. In

a similar manner, we define V
G

n ≈ {∂uh
i

∂t (τ̃A, tn)}
nLD

A=1 for all i = 1, . . . , d. Following this notation,

our time-integration algorithm may be defined as follows: Given V n, An, Un, and V n, find V n+1,

An+1, V n+αf
, An+αm

, P n+1, Un+1, V n+1, Un+αf
, and V n+αm

such that

RM (V n+αf
,An+αm

,P n+1,Un+αf
) = 0 , (48)

RC(V n+αf
,An+αm

,P n+1) = 0 , (49)

RP (U
G

n+αf
,V

G

n+αm
,V n+αf

) = 0 , (50)

V n+αf
= V n + αf (V n+1 − V n) , (51)

An+αm
= An + αm(An+1 −An) , (52)

U
G

n+αf
= U

G

n + αf (U
G

n+1 −U
G

n ) , (53)

V
G

n+αm
= V

G

n + αm(V
G

n+1 − V
G

n ) , (54)

V n+1 = V n +∆t((1 − γ)An + γAn+1) , (55)

U
G

n+1 = U
G

n +∆t((1− γ)V
G

n + γV
G

n+1) , (56)

where αm, αf and γ are real-valued parameters that control the accuracy and stability of the

algorithm. We will choose here the values proposed by Jansen et al. [86] for first order ordinary

differential equations. Note also that the vectors Un+αf
and U

G

n+αf
are related through a linear

equation. In fact, to obtain the vector of control variables from the values at Greville points, we just

need to collocate Eq. (35) at Greville points as

uh(τ̃ i, tn+αf
) =

nLD∑

B=1

uB(tn+αf
)NB(τ̃ i) for all τ̃ i ∈ M̃h . (57)

Eq. (57) represents a linear system that establishes a correspondence between Un+αf
and U

G

n+αf
.

The matrix associated to (57) depends on the parametric configuration of the Lagrangian mesh only,

making it time independent. Therefore, we just need to compute this matrix once and store it, then

we will use it in each Newton-Rapshon of each time step.

Note that (50) is solved for each Greville point independently, that is, we do not need to assemble

any matrix for the kinematic equation at each Newton-Raphson iteration of every time step. This is

one of the consequences of using our hybrid variational-collocation method. It increases the global

efficiency of the methodology by saving computational time especially for higher orders.
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4. NUMERICAL EXAMPLES

In this section we present two numerical examples that illustrate the accuracy, stability and

robustness of our algorithm. The examples also compare global refinement (NURBS) against local

refinement (T-splines) showing the enhanced efficiency of ASTS. The code used to perform these

simulations has been developed on top of the scientific library PETSc [96].

4.1. Free-falling cylinder in a channel

Let us consider a channel of infinite length, infinite height, and width 2L, which contains a viscous

fluid. We assume that there is a solid cylinder of infinite length, and radius a immersed in the fluid.

The solid is denser than the surrounding fluid, and it is initially at rest. Then, it is allowed to fall

freely under the action of gravity. When the solid is released, it will accelerate until the effect of

the drag force, which becomes more prominent with velocity, added to buoyancy counterbalance

the downward pull of gravity. At that point, the net force acting on the solid will be zero, and the

object will move with constant velocity. This velocity is known as the terminal or settling velocity

vT . If we consider the cylinder diameter to be the characteristic length-scale of the problem and the

aforementioned terminal speed to be the characteristic velocity, then the relevant Reynolds number

is

Re =
2ρfvT a

µ
. (58)

It may be shown that, under the assumption of creeping flow (Re << 1), the terminal velocity may

be approximated by the expression

vT =

(
ρs − ρf

)
ga2

4µ

[
ln

(
L

a

)
− 0.9157 + 1.7244

( a

L

)2

− 1.7302
( a

L

)4
]

, (59)

where g is the Euclidean norm of g. In this numerical example, we perform a full-scale FSI

simulation to compute the solid motion and compare the numerical approximation to the terminal

velocity with its theoretical value as given by Eq. (59). The infinite length of the cylinder and

the channel allows us to solve this problem in a two-dimensional domain of width 2L. In the

direction of gravity, we take a computational domain which is large enough to produce negligible

errors due to its finite size. Our data indicates that the computational domain Ω = [0, 2L]× [0, 4L]
is sufficiently large to reproduce accurately the results of the free-falling cylinder. In the bottom

and lateral boundaries of the box, we impose no-slip conditions, while on the top boundary we

prescribe stress-free conditions. In our formulation, the cylinder is modeled as a deformable solid,

but we use sufficiently large stiffness moduli in the constitutive theory [Eq. (21)] so that strains are

negligible, that is, the solid will just translate in vertical direction as a rigid body. Note that, even if

we enforce incompressibility in the formulation, the dilatational term has also been included in (21).

Consistent with previous findings by other authors [82], we have noticed that non-negligible errors

in the incompressibility constraint arise if the dilatational term is dropped. We have followed [82]

in order to fix this issue, that is, we have used relatively small values of κs for our computations

(of the order of µs/10) in order to maintain J close enough to one. The values of the physical

parameters used in the computations are indicated in Table I. Introducing these parameters in Eq.

(59), we obtain vT = 0.9122 cm/s and the Reynolds number becomes Re = 0.09122, which falls

well within the creeping-flow regime.

The time step used in the simulations is ∆t = 10−3 s. We have discretized the problem in

space using cubic T-spline shape functions. T-splines, unlike Lagrange piecewise polynomials,

can represent the axial section of the cylinder exactly. Additionally, the unstructured nature of T-

splines allows such an exact representation without the need to introduce singular points in the

parameterization. We note that this is not possible using single-patch NURBS. We use the same

Lagrangian mesh in all the simulations of this Section, it is plotted in Fig. 4 along with its T-mesh.

The shape functions of the Lagrangian mesh are at least C2-continuous everywhere except in some

Bézier-element boundaries of reduced continuity which are indicated in Fig. 4 (see the caption of
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(a) Unstructured T-mesh (b) Detail of the T-mesh (c) Bézier mesh

Figure 4. (Color online) Solid’s T-mesh and Bézier mesh for the free-falling cylinder example. (a) T-mesh
with four extraordinary nodes which allow us to avoid degenerated points in the parameterization. (b) Zoom-
in of the T-mesh close to one of the extraordinary nodes. The color code in the edges of the T-mesh defines
the knot interval configuration. All edges have a knot interval of 1 associated, except those colored in red
which have associated a zero-length knot interval. (c) Bézier mesh in physical space. The basis functions
are C∞ everywhere, except at the boundaries of the Bézier elements, where the continuity is reduced.

The continuity across black Bézier-element boundaries is at least C2. Dark blue lines represent element

boundaries of C1 continuity due to the presence of extraordinary nodes. Green and light-blue lines represent

element boundaries of C0 continuity due to the presence of extraordinary nodes and our choice to use exact
geometry, respectively.

Table I. Values of the relevant physical parameters for the free falling cylinder benchmark problem.

Physical parameter Value and units

g 981 cm/s2

ρf 1.0 g/cm3

µ 5 dyn/cm2

ρs 1.25 g/cm3

µs 40000 g/(cm s2)
L 2 cm
a 0.25 cm

Table II. Different Eulerian meshes considered for the free falling cylinder benchmark problem.

Eulerian mesh Refinement Smallest element size Total number of Bézier elements

ASTS1 Three levels of refinement 0.1 1162
NURBS1 Uniform 0.1 3200
ASTS2 Four levels of refinement 0.05 3868

NURBS2 Uniform 0.05 12800
ASTS3 Five levels of refinement 0.025 14428

NURBS3 Uniform 0.025 51200

Fig. 4 for details). We consider three ASTS Eulerian meshes and three NURBS Eulerian meshes.

These meshes are depicted in Table II. Note that the size of the elements in each uniform NURBS

mesh is always picked equal to the size of the smallest elements in its corresponding ASTS mesh.

This is done in order to make a fair comparison between local and global refinement. The shape

functions of all Eulerian meshes are C2-continuous globally.

The entirety of the ASTS Eulerian mesh with five levels of refinement is shown in Fig. 5 (left

panel) superimposed with a color plot of the vertical velocity and the Lagrangian mesh. The area

marked with a dashed white line (left panel) has been zoomed in for a clearer observation of the

mesh and the solution (middle and right panels). The color code in Fig. 5 indicates the vertical

velocity (left and middle panels), and the velocity magnitude (right panel) at time t = 0.75 s. In the

right panel we have also plotted velocity vectors superimposed on the color plot. It is apparent that

there is a large vortex close to the solid.
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(a) Vertical velocity (b) Vertical velocity (zoomed in) (c) Velocity magnitude (zoomed in)

Figure 5. (Color online) (a) Eulerian and Lagrangian meshes along with a color plot of the vertical velocity.
The Eulerian mesh is locally refined where the flow is most complex. Local refinement permitted us to reduce
by 68% the number of Bézier elements with respect to a uniform mesh that achieves the same accuracy.
(b) Zoom in of the inset area in the left panel. (c) Velocity magnitude in the inset area. The color plot is

superimposed with velocity vectors, which show the formation of a large vortex close to the solid.

We have also computed the time evolution of the average vertical velocity of the cylinder for

each Eulerian mesh. In Fig. 6, it can be seen how the numerical terminal velocity gets closer to

its theoretical value as we increase the spatial resolution for both ASTS and NURBS meshes. The

globally and locally refined meshes with the same element size give essentially the same solution

which shows the potential of ASTS in order to enhance the algorithm’s efficiency. The relative error

for the meshes ASTS3 and NURBS3 is below 0.2%, which seems to be similar to the error in the

theoretical solution given the number of digits employed in the constants in Eq. (59). Note that the

mesh ASTS3 has 72% less Bézier elements than the mesh NURBS3 which exhibits the importance

of local refinement. Additionally, we would like to point out that only twenty Bézier elements are

behind the solid for the meshes ASTS1 and NURBS1 which is clearly not enough to give a good

solution.

A peculiar feature of immersed FSI methods that use Lagrangian meshes arbitrarily embedded

into a background Eulerian mesh is that the finite element spaces ensued from the meshes might

have to comply with an inf-sup type condition to achieve stability [97, 98]. In the early stages of the

IFEM, which is a particular case of our method for classical C0 finite elements, it was reported that

the elements of the Lagrangian mesh had to be at least two times smaller than those of the Eulerian

mesh. In our earlier work using globally C1-continuous basis functions we showed that could get

stable and accurate results working with the same element size in both meshes [8]. Here, we show

that the adoption of globally C2-continuous basis functions permits the use of solid elements two

times larger than those of the background Eulerian mesh (see the meshes in the middle panel of Fig.

5). These data suggest that increasing the global continuity may alleviate the inf-sup-type condition

that the solid and fluid spaces have to satisfy. Although we acknowledge that we do not have a

mathematical proof of this statement at this point, we do believe that this observation warrants

further investigation.
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Figure 6. (Color online) Time evolution of the average cylinder velocity for each Eulerian mesh compared
against the theoretical terminal velocity (red line). The Lagrangian mesh is the same in all simulations
and it is composed of 156 Bézier elements and 209 control points. The ASTS Eulerian meshes have been
locally refined where the physics is more interesting without perceptible lost of accuracy from their globally
refined NURBS meshes counterparts. Excellent agreement is obtained with respect to the theoretical terminal
velocity when we use enough spatial resolution. Cubic basis functions have been used for all the meshes.

Another important aspect is that the computation of the residual requires integrating on the

Lagrangian mesh fields which live in the space defined by the Eulerian mesh. This leads to

suboptimal quadrature because we are integrating on the elements of the Lagragian mesh, but some

of the fields we integrate have lines of reduced continuity in those integration regions [99]. In

classical finite elements, those lines have C0 continuity. However, the continuity of those lines is

increased to C2 using cubic T-splines in the Eulerian mesh. It seems obvious that increasing the

regularity of those lines of reduced continuity will lead to more accurate integration and better

results.

In all, this example shows that, for this particular type of algorithms, it is important to be able

to use local refinement and higher order global continuity simultaneously, which is very difficult to

achieve without the use of T-spline-based isogeometric analysis.

4.2. Flow past a deformable solid with one end fixed

Re =
ρfb vif

µ
, (60)

where vif is the inflow velocity and b is the length of the inflow boundary of the channel. As shown

in Fig. 7 and Table III, b = 2 cm. Using the remaining data in Table III, we find that Re = 800.

Let us consider the two-dimensional fluid-solid system depicted in Fig. 7, where lengths are

expressed in centimeters. The green rectangle in the plot represents a deformable solid of size

0.8 cm× 0.2 cm. The bottom of the solid is fixed to the channel wall. The system is driven by

a uniform inflow velocity at the left boundary of the domain. The outlet on the right hand side is

subjected to a zero-traction boundary condition, and the top and bottom boundaries are assumed to

satisfy no-slip boundary conditions. The values of the relevant physical parameters are indicated in

Table III. We assume that the relevant Reynolds number for this problem is

As in the above example, three cubic ASTS and NURBS Eulerian meshes are considered in order

to do comparisons. The ASTS Eulerian meshes are locally refined where the flow is supposed to
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Table III. Values of the relevant physical parameters for the flow past a solid example.

Physical parameter Value and units

g 0 cm/s2

ρf 1.0 g/cm3

µ 0.02 dyn/cm2

ρs 1.5 g/cm3

µs 8000 g/(cm s2)
vif 8 cm/s
b 2 cm

Table IV. Different Eulerian meshes considered for the flow past a solid example.

Eulerian mesh Refinement Smallest element size Total number of Bézier elements

ASTS1 Three levels of refinement 0.05 2154
NURBS1 Uniform 0.05 6400
ASTS2 Three levels of refinement 0.025 7675

NURBS2 Uniform 0.025 25600
ASTS3 Three levels of refinement 0.0125 29549

NURBS3 Uniform 0.0125 102400

Figure 7. (Color online) Flow past a solid. Geometry, boundary conditions, initial position of the solid,
and Eulerian mesh. The introduction of T-junctions allows us to locally refine the Eulerian mesh at the
boundary layers and downstream the solid. There are three levels of refinement. The solid is a rectangle of
size 0.2 cm× 0.8 cm and its bottom end is fixed. The solid mesh is uniform. The lengths marked in the plot

are expressed in centimeters and the velocities in centimeters per second.

be more complex due to the presence of the solid. Three levels of refinement are introduced in

all ASTS meshes with different spatial resolutions. The main features of the ASTS and NURBS

Eulerian meshes are described in Table IV. The mesh ASTS3 is shown in Fig. 7. The Lagrangian

mesh used in our simulation is uniform, with 25× 100 Bézier elements and 2884 control points.

The basis functions associated to both meshes are C2-continuous globally. The time step used in the

simulation is ∆t = 2 · 10−4 s.
Fig. 8 shows the solution at time t = 0.193 s using the mesh ASTS3. The deformation of the

solid is apparent. The color scale on the fluid represents the pressure and the superimposed arrows

correspond to the velocity field. As expected, there is a large vortex downstream the solid, located in

the low-pressure area. Fig. 9 shows the time evolution of the horizontal and vertical displacements

of the top left corner of the solid for different Eulerian meshes. The displacement curves barely vary

from NURBS2 to NURBS3, which suggests that NURBS3 is a converged result. The mesh ASTS3

gives essentially the same solution than the mesh NURBS3, but it has 71% less Bézier elements

which evidences the advantages of the local refinement capability of T-splines. Finally, the results

of Fig. 9 suggest that a steady configuration has been reached.
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Figure 8. (Color online) Flow past a solid. Pressure field color plot superimposed with arrows that represent
the velocity at time t = 0.193 s. The plot clearly shows a vortex downstream the solid which coincides with

the lowest-pressure area.
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Figure 9. (Color online) Flow past a solid. Time evolution of the displacement in the x and y directions of
the left top corner of the solid for the different Eulerian meshes considered. The Lagrangian mesh is the
same in all simulations and it is composed of 2500 Bézier elements and 2884 control points. The ASTS
Eulerian meshes have been locally refined close and after the solid. The meshes NURBS2 and NURBS3
give very similar results despite of the much higher spatial resolution used in NURBS3, which indicates
that enough spatial resolution has been used in the mesh NURBS3. The mesh ASTS3 provides basically
the same displacement curves than NURBS3, however, it has 71% less Bézier elements thanks to the use of

local refinement.

5. CONCLUSIONS

We proposed a hybrid variational-collocation immersed fluid-structure interaction method which

uses T-spline-based isogeometric analysis for both the fluid and the solid. The information transfer

between the Eulerian and the Lagrangian mesh is carried out using the T-splines shape functions

as well. T-splines bring a number of possibilities to the fluid-structure interaction field thanks to

their local refinement capability and their unstructured nature which allows to represent complex

geometries. At the same time, T-splines maintain all the advantages that NURBS have against other

types of shape functions such as high inter-element continuity. Higher-order global continuity was

shown to increase the accuracy per degree of freedom in solid and fluid mechanics and we showed

that it is also beneficial for immersed FSI. Indeed, increasing the inter-element continuity of the
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discrete spaces alleviates previously-reported constraints on the element size of the Lagrangian

and Eulerian meshes. We have validated our computational framework solving a common FSI

benchmark problem with theoretical solution. We took advantage of T-junctions to perform local

refinement and extraordinary nodes to avoid singular points. Our results were in very good

agreement with theoretical solutions, which confirms the feasibility of our methodology.
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