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Abstract

We introduce an isogeometric, immersed, and fully-implicit formulation for fluid-structure
interaction (FSI). The method focuses on viscous incompressible flows and nonlinear hy-
perelastic incompressible solids, which are a common case in various fields, such as, for
example, biomechanics. In our FSI method, we utilize an Eulerian mesh on the whole
domain and a Lagrangian mesh on the solid domain. The Lagrangian mesh is arbitrarily
located on top of the Eulerian mesh in a non-conforming fashion. Due to the formulation
of our problem, based on the Immersed Finite Element Method (IFEM), we do not need
mesh update or remeshing algorithms. The fluid-structure interface is the boundary of the
Lagrangian mesh, but cuts arbitrarily the Eulerian mesh. The generalized-α method is
used for time discretization and NURBS-based isogeometric analysis is employed for the
spatial discretization on both fluid and solid domains. The information transfer between
the two meshes is carried out using the NURBS functions, which avoids the use of the
so-called discretized delta functions. The higher order and especially the higher continuity
of NURBS functions allow us to deal with severe mesh distortion in the Lagrangian mesh
in comparison with classical C0 linear piecewise functions as we prove numerically. Our
numerical solutions attain good agreement with theoretical data for free-falling objects in
two and three dimensions, which confirms the feasibility of our methodology.
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1. Introduction

In the past few decades, numerous research efforts have been directed to the development
of modeling and simulation techniques for fluid-structure interaction (FSI) problems. See,
for example [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. An efficient, accurate, and robust computational
technique is essential in studying complicated FSI problems, which are ubiquitous in all
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fields of engineering. Body-fitted approaches [1] have been widely utilized in FSI problems
and are typically based upon the arbitrary Lagrangian Eulerian (ALE) description [11, 12,
13, 14]. The ALE description is used to track the fluid-solid interface properly, which is
one of the main challenges in a FSI technique. These approaches are usually very accurate,
but mesh update or remeshing algorithms are needed, which are time consuming and can
lead to inaccuracies in the variables that are projected onto the mesh in some cases.

A different type of FSI methodology was introduced by Peskin in the 1970’s [15]. Pe-
skin developed the immersed boundary (IB) method, which may be applied to solids that
take the form of a fiber network and are completely submerged into the fluid. In Peskin’s
method, a uniform, fixed Eulerian mesh spans the whole domain and the submerged solid
is represented by a fiber network which is arbitrarily located on top of the Eulerian mesh.
A discretized Dirac delta function with C1 continuity is employed to transfer information
between the solid and the Eulerian mesh. This information transfer represents the inter-
action between the fluid and the solid, which is accounted for by distributing interaction
forces in the fluid and interpolating the solid velocities from the fluid velocities. In this
way, the action of the solid on the fluid is represented by a forcing function. Thus, on
the Eulerian mesh only the forced Navier-Stokes equations need to be solved and no mesh-
update algorithms are necessary. The IB method has been applied to a large variety of
problems such as the design of prosthetic cardiac valves [16], wave propagation in cochlea
[17], biofilm processes [18], and swimming motions of marine worms [19].

In the 2000’s, the IB method was enhanced and extended by Liu and his coworkers
giving rise to a new algorithm called immersed finite element method (IFEM) [20]. One of
the major limitations of the IB method is that the solid carries mass, but does not occupy
volume. This limitation is circumvented in the IFEM. The IFEM uses finite elements for
both the fluid and the solid. In origin, the IFEM also employed a discretized delta function
for the information transfer between meshes, but it was removed later in [21] and the finite
element shape functions were used instead. The IFEM has been used to solve several
problems of biomechanics such as stent deployment [22], cell migration, and cell-substrate
adhesion [6] and hemodynamics [23, 24]. We note, however, that as far as we are aware, the
IFEM has not been applied to flows with very large Reynolds number and these problems
could be difficult to tackle by the IFEM because the boundary layer at the fluid-structure
interface must be resolved by the Eulerian mesh.

We believe that the IFEM was a very significant development which opened the door to
the solution of FSI problems that could not have been computed otherwise. Nevertheless,
the generality of the IFEM provides opportunities for different interpretations, and opens
the way to potential improvements. In particular, some of the limitations of the IFEM
seem to emanate from its underlying technology, namely the finite element method. For
instance, higher-order robustness and the possibility of handling severe mesh distortions
in the solid domain seem to be areas in which there is opportunity for improvement. Our
motivation here is to address theses points by extending the IFEM to the isogeometric
analysis (IGA) realm. Isogeometric analysis was created to fill the gap between computer
aided design (CAD) and simulation [25]. The main idea of IGA is to utilize the functions
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that are commonly used in CAD as shape functions in analysis. Up to now, non uniform
rational B-splines (NURBS) have been the functions most widely employed in IGA. If we
compare NURBS with Lagrange functions, which are typically used in the finite element
method, NURBS have several advantages due to their higher continuity between elements
and some of them are the following: First, spatial derivatives of second or higher order
may be computed easily, which permits straightforward solution to higher-order partial
differential equations [26, 27, 28, 29, 30, 31, 32, 33, 34]. Second, NURBS can handle
severe mesh distortion in discretizations of solid mechanics as shown in [35]. Also, NURBS
improve the accuracy on a per-degree-of-freedom basis as shown in several applications
[36, 37]. IGA has been successfully applied to a large number of fields including body-fitted
FSI problems [14, 38], fluid mechanics [39, 40], phase-filed models [26, 41, 42, 43, 44, 45],
structural vibrations [46, 47], quasi-incompressible elasticity [48], shell modeling [49, 50],
contact problems [51, 52, 53], shape optimization [54], and electromagnetics [55]. A book
about IGA has been written, detailing the methodology and its applications [56].

In this paper, we propose a new method to solve immersed FSI using isogeometric anal-
ysis both for the fluid and the solid. Therefore, we take advantage of all the aforementioned
benefits of NURBS. The NURBS functions are also used to transfer the information be-
tween meshes. It is important to notice that this information transfer always reduces the
efficiency and the accuracy of the overall algorithm, so we have designed our algorithms to
minimize the amount of information transferred between meshes.

Our method only uses the ab initio laws of fluid and solid mechanics. Due to the
applications we are interested in, the solids are treated as incompressible, nonlinear and
hyperelastic, but other material models could be considered (for example, in [21] a similar
algorithm is presented where compressible solids are considered, and in [57] the authors
propose an immersed method capable of dealing with rigid and deformable solids). The
fluid is governed by the Navier-Stokes equations of viscous incompressible flows. For the
space discretization, we use the variational multiscale (VMS) method developed by Hughes
et al. [58, 59, 60]. Previous studies on the IFEM employed explicit or semi-implicit first-
order accurate time integration schemes. Here, we propose a fully-implicit second-order
accurate time integration algorithm based on the generalized-α method [61, 62].

The outline of this paper is as follows. In Section 2 we present the mathematical
formulation of the immersed FSI problem at the continuous level. We start describing the
kinematics of the fluid-solid system. Then, we focus on the strong form and the weak
form of the problem. Section 3 describes the discretization process. We employ a semi-
discrete formulation and make use of the VMS method which includes additional terms
in comparison with classical stabilized methods [63]. The interaction between the fluid
and the solid is described in detail in this section. We also provide the main ideas to
implement the method. Section 4 displays several numerical examples in 2D and 3D. The
first example is a free-falling cylinder in 2D and our numerical results are checked against
an exact solution when it is available. The second example is a free falling sphere in 3D
and the numerical results are again compared with a theoretical solution. Our results show
good agreement with the theoretical data in both cases, which confirms the viability of the
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approach. In a third example, we consider a parallelogram submerged in a flow as a test
problem to show that higher-order and higher-continuity NURBS functions allow to deal
with larger deformations in the Lagrangian mesh in comparison with classical C0 linear
piecewise functions. Section 4 finishes with a simulation of six hollow cylinders submerged
in a flow in order to exhibit the capability of the method to handle problems with several
immersed solids. Finally, in Section 5, some concluding remarks will be drawn.

2. Formulation of the immersed problem at the continuous level

Let Ω ⊂ Rd be an open set, where d is the number of spatial dimensions. The spatial
domain Ω encloses the entirety of our fluid-solid system. Although using standard tech-
niques for problems on moving domains (e.g., ALE or space-time methods; see [1]), our
methodology can be applied to the case in which Ω depends upon time, all the numerical
examples presented in this paper are posed on a fixed domain Ω, so we will restrict our
presentation to this case from the outset. In what follows, Ωf

t ⊂ Ω denotes the open subset
of Ω occupied by the fluid at time t. For simplicity, we will call Ωf

t “fluid domain”. The
solid domain, which is also an open subset of Ω, will be denoted Ωs

t . The solid and fluid

domains define a partition of Ω, in such a way that Ω = Ωf
t ∪ Ωs

t . Note that although
both the fluid and solid domain depend on time, Ω has been assumed to be time indepen-
dent, as this is the relevant case for all the numerical examples in this paper which involve
free-falling objects and particulate flows. The fluid and solid domains are not allowed to
overlap (Ωf

t ∩ Ωs
t = ∅, where ∅ is the empty set), but they meet at the solid-fluid interface

that we call ΓIt (Ωf
t ∩Ωs

t = ΓIt ). The boundaries of Ω, Ωf
t and Ωs

t are denoted by Γ, Γft and
Γst , respectively, and are assumed to have a well-defined unit outward normal. For future
reference, we denote these normals by n, nf and ns, where the subscript t is omitted for
notational simplicity. Fig. 1 shows three possible configurations. Note that the set Ωs

t is
allowed to be non-connected [see Fig. 1(c)].

2.1. Kinematics

To introduce the basic notation about motions and configurations, let us define a refer-
ence configuration Ωs

0 for our solid body. In principle, a reference configuration for the fluid
domain could also be defined, but we will not make use of it. We consider the mapping
ϕ : Ωs

0 × (0, T ) 7→ Rd, where (0, T ) is the time interval of interest∗. We assume that ϕ is
sufficiently smooth, orientation preserving and invertible [64]. Points X in Ωs

0 are called
material points or particles, while points in Rd are denoted x and are called spatial points.
To define the mapping ϕ we make use of the displacement field us : Ωs

0 × (0, T ) 7→ Rd. In
particular,

ϕ(X, t) = X + us(X, t) (1)

∗In a situation like that represented in Fig. 1(c), in which we have several solids immersed into the
fluid, we would have to define one mapping ϕ associated to each of the solids.
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For convenience, we assume that Ωs
t = ϕ(Ωs

0, t) and, thus we associate Ωs
0 with the unde-

formed configuration of the solid. The deformation gradient F : Ωs
0 × (0, T ) 7→ Rd×d is

defined as
F = ∇Xϕ = I +∇Xu

s (2)

where the subscript X in ∇X emphasizes that the gradient applies to the variables X. In
(2), I denotes the identity tensor in Rd×d. Let us also define the Cauchy-Green deformation
tensor C : Ωs

0 × (0, T ) 7→ Rd×d
sym as

C = FF T ,

where Rd×d
sym denotes the space of symmetric tensors in Rd×d, and F T represents the trans-

pose of F . We will also make use of the Green-Lagrange strain tensor E : Ωs
0 × (0, T ) 7→

Rd×d
sym defined as

E =
1

2
(C − I) (3)

Finally, we define the velocity vs : Ωs
0×(0, T ) 7→ Rd, and the acceleration as : Ωs

0×(0, T ) 7→
Rd of a material point as

vs(X, t) =
∂us(X, t)

∂t
(4)

as(X, t) =
∂vs(X, t)

∂t
=
∂2us(X, t)

∂t2
(5)

Associated to the function vs, we define vs : Ωs
t × (0, T ) 7→ Rd as

vs(X, t) = vs(ϕ(X, t), t) for all X ∈ Ωs
0, t ∈ [0, T ] (6)

Note that although vs and vs represent the same physical quantity, namely the solid ve-
locity, they are different functions, and thus, we use different notation for them. In what
follows, we will call vs Lagrangian or material velocity and vs Eulerian or spatial veloc-
ity. In general, we will use a bar for Lagrangian functions whenever there is possibility of
confusion. Applying the chain rule to (6), we obtain

as(X, t) =
∂vs

∂t
(X, t) =

∂vs

∂t
(x, t) + vs(x, t) · ∇xv

s(x, t) if x = ϕ(X, t) (7)

In what follows, we will also make use of the standard notation

α̇ =
dα

dt
=
∂α

∂t
+ v · ∇xα (8)

for a generic Eulerian function α. For future reference, we also state the relation between
the gradient of α and the gradient of its Lagrangian counterpart α, which is given by

∇xα(x, t) = ∇Xα(X, t)F−1(X, t) if x = ϕ(X, t) (9)
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2.2. Strong form of the problem

To derive the strong form of the governing equations, we assume that both fluid and solid
densities are constant, which implies incompressibility of both fluid and solid phases. As
a consequence, the entire fluid-solid system is also incompressible, even if the density may
be non-homogeneous in space when fluid and solid densities are different (for a thorough
study of incompressible media with variable density, see [65]). Under these considerations,
and assuming that gravity is the only external force acting on the system, the governing
equations may be written in Eulerian coordinates as

ρf
dvf

dt
= ∇x · σf + ρfg in Ωf

t × (0, T ) (10.1)

∇x · vf = 0 in Ωf
t × (0, T ) (10.2)

ρs
dvs

dt
= ∇x · σs + ρsg in Ωs

t × (0, T ) (10.3)

∇x · vs = 0 in Ωs
t × (0, T ) (10.4)

vf = vs on ΓIt × (0, T ) (10.5)

σfnf = −σsns on ΓIt × (0, T ) (10.6)

where ρf , vf and σf denote the fluid density, velocity and Cauchy stress tensor, respectively,
while ρs, vs and σs denote the same quantities for the solid. Eq. (10.5) represents a
kinematic constraint that equates the fluid velocity with that of the solid at the interface,
while (10.6) ensures correct transmission of forces at the interface. Eqs. (10.1) and (10.3)
are associated to the unknowns vf and vs, while constraints (10.2) and (10.4) are associated
to Lagrange multipliers represented by pressure fields pf and ps in the stress tensors σf

and σs. We also note that in order to get a well-posed initial/boundary-value problem, we
will need to impose initial conditions on Ωf

t and boundary conditions on Γ ∩ Γft for a fluid
mechanics problem along with initial conditions on Ωs

t and boundary conditions on Γ ∩ Γst
for a solid mechanics problem.

2.2.1. Global velocity and pressure fields

The key idea of the method is to define global functions v : Ω × (0, T ) 7→ Rd, p :
Ω× (0, T ) 7→ R, such that

v =

{
vf on Ωf

t × (0, T )

vs on Ωs
t × (0, T )

; p =

{
pf on Ωf

t × (0, T )

ps on Ωs
t × (0, T )

(11)

The function v is globally continuous due to the kinematic constraint (10.5), but the
pressure field could be discontinuous in the limit case of a solid body with zero measure
(see [66, 67]). Using the function v, the strong form of the governing equations in Eulerian
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coordinates (10) may be rewritten as

ρf
dv

dt
= ∇x · σf + ρfg + F in Ω× (0, T ) (12.1)

∇x · v = 0 in Ω× (0, T ) (12.2)

σfnf = −σsns on ΓIt × (0, T ) (12.3)

where F will be, in principle, a discontinuous function and it is defined in such a way that
Eq. (12.1) is equivalent to Eqs. (10.1) and (10.3)

F =

{
0, x ∈ Ωf

t(
ρf − ρs

)
(v̇ − g) +∇x ·

(
σs − σf

)
, x ∈ Ωs

t

(13)

Note that Eq. (10.5) is automatically satisfied due to the continuity of v across the fluid-
solid interface, and thus, it is no longer necessary. In principle, Eq. (12.3) requires tracking
the fluid-solid interface, but as we will show later, our variational formulation imposes this
constraint naturally, and no algorithmical treatment will be needed.

2.2.2. Constitutive equations

To completely define Eqs. (12) and (13) we need to determine the stress tensors σf

ans σs. We will assume the fluid to be Newtonian and incompressible. Therefore, σf :
Ω× (0, T ) 7→ Rd×d

σf = −pI + 2µ∇sym
x v (14)

where µ > 0 is the dynamic viscosity and ∇sym
x v = (∇xv +∇xv

T )/2. Note that we have
extended the definition of σf to the entire fluid-solid system, even if it does not have a
clear physical meaning on Ωs

t .
The Cauchy stress tensor of the solid is given by the expression

σs = −pI + FSF T/J (15)

where J = det(F ) and S is the second Piola-Kirchhoff stress tensor. We will consider
hyperelastic materials, assuming the existence of a stored elastic-energy function per unit
volume of the undeformed configuration ψ. Following the standard additive decomposition
of ψ (see, e.g., [68]) into a volumetric part depending only on J and an isochoric part, we
obtain

ψ(J,C) = ψdil(J) + ψiso(C) (16)

Here, we will use the Neo-Hookean materials with dilatation penalty proposed in [68], which
are defined as,

ψdil(J) =
1

2
κs
(

1

2
(J2 − 1)− ln J

)
(17)

ψiso(J−2/dC) =
1

2
µs
(
J−2/dtr(C)− d

)
(18)
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where tr(·) denotes the trace operator, κs is the bulk modulus and µs is the shear modulus.
For an incompressible material ψdil(J) = 0, and the second stress tensor is computed as

S =
∂ψiso

∂E
(19)

To compute the stress tensor S we need the Lagrangian displacement of the solid us(X, t),
which will be obtained from Eq. (4), repeated here for completeness

∂us

∂t
(X, t) = v(x, t) if x = ϕ(X, t), (20)

Eq. (20) holds for all X ∈ Ωs
0 and for all t ∈ [0, T ].

2.2.3. Initial and boundary conditions

As initial conditions, we set an initial velocity for the entire fluid-solid system. Since
the solid displacements are also necessary to evaluate the solid stress tensor, we need to
specify also initial displacements on Ωs

0 . Thus, our initial conditions are given by

v(x, 0) = vI(x), x ∈ Ω (21)

us(X, 0) = 0, X ∈ Ωs
0 (22)

Note that Eq. (22) associates the reference configuration Ωs
0 with the undeformed config-

uration.
To define suitable boundary conditions we note that the boundary Γ can be subdivided

into non-overlapping sets Bs = Γ ∩ Γst and Bf = Γ ∩ Γft such that Γ = Bs ∪ Bf and
∅ = Bs ∩ Bf . Note, that in general Bs 6= Γst , because part of Γst may not belong to Γ [see
an example in Fig. 1(b)]. To define a well-posed problem we need to specify standard
boundary conditions for a fluid- and solid-mechanics problem on Bs and Bf , respectively.
Since we have limited ourselves to the case in which Ω is fixed in time, we only consider
homogeneous displacement boundary conditions on Bs. On Bf , however, we allow for more

general boundary conditions and we actually split Bf as Bf = BfD ∪ BfN , with BfD∩BfN = ∅.
On BfD we impose a given velocity vB whereas on BfN we prescribe a traction vector h.
Thus, our boundary conditions are defined as

v = vB on BfD (23.1)

σfnf = h on BfN (23.2)

us = 0 on Bs (23.3)

2.3. Weak form

Let Sv and Sp denote trial solution spaces for velocity and pressure, defined as follows

Sv =
{
v | v(·, t) ∈

(
H1 (Ω)

)d
, v = vB on BfD, v = 0 on Bs

}
(24.1)

Sp =

{
p | p(·, t) ∈ L2 (Ω),

∫
Ω

p dΩ = 0 if BfN = ∅
}

(24.2)
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Here, L2 (Ω) denotes the space of scalar-valued functions that are square-integrable on Ω,

while (H1 (Ω))
d

denotes the space of square-integrable Rd-valued functions with square-
integrable derivatives on Ω. Analogously, we define weighting function spaces Vv, Vp for
the momentum and continuity equations as follows

Vv =
{
w |w(·) ∈

(
H1 (Ω)

)d
, w = 0 on BfD ∪ Bs

}
(25.1)

Vp =
{
q | q(·) ∈ L2 (Ω)

}
(25.2)

To derive a weak form of our FSI problem, we begin by multiplying Eq. (12.1) with a
weight function w ∈ Vv. Then, we integrate over the domain Ω, and use integration by
parts to obtain (

w, ρf (v̇ − g)
)

Ω
+
(
∇xw,σ

f
)

Ω
− (w,h)BfN

− (w,F)Ωs
t

= 0 (26)

where (·, ·)Ω denotes the L2 inner product over the domain Ω. To derive (26) we have used
the fact that w = 0 on BfD ∪ Bs and we have replaced σfnf with h on the third term of
the left hand side. Let us focus now on the last term of the left hand side of (26)

(w,F)Ωs
t

=
(
w, (ρf − ρs)(v̇ − g)

)
Ωs

t
+
(
w,∇x · (σs − σf )

)
Ωs

t

=
(
w, (ρf − ρs)(v̇ − g)

)
Ωs

t
+
(
∇xw,σ

f − σs
)

Ωs
t

+
(
w, (σs − σf )ns

)
ΓI
t

+
(
w, (σs − σf )ns

)
Bs

=
(
w, (ρf − ρs)(v̇ − g)

)
Ωs

t
+
(
∇xw,σ

f − σs
)

Ωs
t

(27)

where we have used the fact that Γst = ΓIt ∪ Bs. We have also used Eqs. (10.6), ns = −nf ,
and (25.1) to annihilate the boundary integrals. If we now pull back the integrals in Eq.
(27) to the reference configuration Ωs

0 making use of the mapping ϕ, and we use expression
(7), we obtain

(w(x),F(x, t))Ωs
t

=

(
w(ϕ(X, t)), (ρf − ρs)

(
∂v

∂t
(ϕ(X, t), t)− g

)
J(X, t)

)
Ωs

0

+
(
w(ϕ(X, t)), (ρf − ρs)v(ϕ(X, t), t) · ∇xv(ϕ(X, t), t)J(X, t)

)
Ωs

0

+
(
∇xw(ϕ(X, t),

[
σf (ϕ(X, t), t)− σs(ϕ(X, t), t))

]
J(X, t)

)
Ωs

0
(28)

Note that we may call the right hand side of (28) a mixed Lagrangian-Eulerian form
because we are integrating over the reference configuration, but all derivatives are taken
with respect to physical space variables. As we will see next, this is an important aspect of
our algorithm and one that will permit us significant computational savings, and perhaps
also increased accuracy (see Remark 2 in Section 3.1 and Section 4.1). Eq. (28) completes
the derivation of the weak form of (12.1). The weak form of Eq. (12.2) can be derived by
multiplying the equation with a function q ∈ Vp, and integrating over Ω to obtain

(q,∇x · v)Ω = 0 (29)
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Now, we combine Eqs. (26), (28) and (29), dividing everywhere through the fluid density
and renaming the p as the pressure divided by ρf . We also use the classical notation
ν = µ/ρf . Under these circumstances, our weak form may be written as

BED ({w, q}, {v, p})− LED (w) +BLD (w,v)− LLD (w) = 0 (30)

where

BED ({w, q}, {v, p}) =

(
w(x),

∂v

∂t
(x, t) + v(x, t) · ∇xv(x, t)

)
Ω

− (∇x ·w(x), p(x))Ω

+ (∇sym
x w(x), 2ν∇sym

x v(x, t))Ω + (q(x),∇x · v(x, t))Ω (31)

LED (w) = (w(x), g)Ω +
(
w(x),h(x)/ρf

)
BfN

(32)

BLD (w,v) =−
(
w(ϕ(X, t)),

(
1− ρs

ρf

)
∂v(ϕ(X, t), t)

∂t
J(X, t)

)
Ωs

0

−
(
w(ϕ(X, t)),

(
1− ρs

ρf

)
v(ϕ(X, t), t) · ∇xv(ϕ(X, t), t)J(X, t)

)
Ωs

0

− (∇sym
x w(ϕ(X, t)), 2ν∇sym

x v(ϕ(X, t), t)J(X, t))Ωs
0

+

(
∇sym

x w(ϕ(X, t)),
1

ρf
F (X, t)S(X, t)F T (X, t)

)
Ωs

0

(33)

LLD (w) = −
(
w(ϕ(X, t)),

(
1− ρs

ρf

)
gJ(X, t)

)
Ωs

0

(34)

Note that J(X, t) = 1 due to the incompressibility constraint, but we have carried it in
our derivations for generality reasons. Clearly, to evaluate the operators BLD and LLD we
need the displacement field on the solid us, which will be computed using (20). In an IGA
or finite-element context, perhaps the most natural approach would be to derive a weak
form of (20) to eventually approximate us by a member of a finite element space. This is
of course a viable approach, but we find more appealing (and, very likely, more efficient)
the possibility of approximating directly the strong form of (20) using an isogeometric
collocation-like approach [69, 70, 71, 72]. Thus, we do not proceed further with Eq. (20)
at this point.

2.4. Scale separation and variational multiscale method

We wish to propose an algorithm that is stable and accurate for arbitrary combinations
of the velocity and pressure spaces, as well as for problems with low and high Reynolds
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numbers. Thus, we derive a variational multiscale formulation of our weak form (30),
following [39]. To do so, a direct sum decomposition of the solution spaces Sv and Sp is

established into coarse-scale (S̃v and S̃p) and fine-scale subspaces (S ′v and S ′p). Thus,

Sv = S̃v ⊕ S ′v (35)

Sp = S̃p ⊕ S ′p (36)

Therefore, for all v ∈ Sv and for all p ∈ Sp there exists a unique decomposition

v = ṽ + v′, ṽ ∈ S̃v and v′ ∈ S ′v (37)

p = p̃+ p′, p̃ ∈ S̃p and p′ ∈ S ′p (38)

This decomposition is also applied to the weighting functions w and q. If we substitute
the splitting (37)–(38) into our weak form (30), and neglect the effect of the velocity fine
scales on the operator BLD, that is, BLD(w̃, ṽ + v′) = BLD(w̃, ṽ), we obtain

BED ({w̃, q̃}, {ṽ + v′, p̃+ p′})− LED (w̃) +BLD (w̃, ṽ)− LLD (w̃) = 0 (39)

Following [39], we make the following assumptions

1. The velocity fine scales vanish on the boundary, that is, v′ = 0 on Γ.

2. (w̃, ∂v
′

∂t
) = 0. More sophisticated approaches using dynamic velocity fine scales have

been devised [73], leading to enhanced accuracy. However, we decided to favor sim-
plicity and neglected the dynamics of the velocity fine scales.

3. (∇sym
x w̃, 2ν∇sym

x v′) = 0. Note that this term can be omitted selecting a projector
that enforces the orthogonality of the coarse and fine scales in the semi-norm induced
by this term as demonstrated in [60].

4. The flow is incompressible, that is, ∇x · (ṽ + v′) = 0.

Under the above hypotheses, the operator BED in Eq. (39) can be expressed as

BED ({w̃, q̃}, {ṽ + v′, p̃+ p′}) =

(
w̃,

∂ṽ

∂t
+ ṽ · ∇xṽ

)
Ω

− (∇x · w̃, p̃)Ω + (∇sym
x w̃, 2ν∇sym

x ṽ)Ω

+ (q̃,∇x · ṽ)Ω + (w̃,v′ · ∇ṽ)Ω

− (∇xw̃, (ṽ + v′)⊗ v′)Ω − (∇x · w̃, p′)Ω

− (∇xq̃,v
′)Ω (40)

3. Formulation of the immersed problem at the discrete level

Here, we apply a semi-discrete formulation to the problem defined in Eqs. (39)–(40).
Our space discretization is based on IGA. We also make use of an isogeometric collocation-
like process to transmit information from the fluid to the solid. We discretize in time using
a second-order accurate, and fully-implicit method based on generalized-α.

11



3.1. Space discretization

To discretize the weak form (39) we need to define conforming finite-dimensional trial

solution spaces Shv ⊂ S̃v and Shp ⊂ S̃p, where h is a mesh parameter. We also define

finite-dimensional weighting function spaces Vhv ⊂ Ṽv and Vhp ⊂ Ṽp. Following standard
arguments, we will replace ṽ and p̃ in Eq. (39) with vh ∈ Shv and ph ∈ Shp . The weighting
functions w̃ and q̃ will also be replaced with wh ∈ Vhv and qh ∈ Vhp . If we ignore boundary
conditions at this stage, our discrete spaces verify Shv = Vhv and Shp = Vhp . In our algo-
rithm, all the discrete spaces are spanned by NURBS, using the concept of IGA (for an
introduction to IGA, see [56] or [25]). Let us denote by {NA(x)}nED

A=1 a set of NURBS basis
functions defined in physical space. These functions define the discrete spaces we intro-
duced above, which have dimension nED, where the subscript ED emphasizes that these
spaces are defined in Eulerian coordinates. In what follows, we will suppose that p denotes
the degree of the NURBS basis functions. Assuming that Dirichlet boundary conditions
will be strongly enforced on the discrete space at a later stage, we can write

vh(x, t) =

nED∑
A=1

vA(t)NA(x); ph(x, t) =

nED∑
A=1

pA(t)NA(x) (41)

wh(x) =

nED∑
A=1

wANA(x); qh(x) =

nED∑
A=1

qANA(x) (42)

Invoking the isoparametric concept, the basis functions {NA(x)}nED
A=1 are also used to define

a computational mesh on Ω. This computational mesh is used to compute the integrals
on Ω that appear on the weak form (39) and will be called Eulerian mesh. Under these
considerations, the semi-discrete form of our problem may be obtained by replacing w̃ ←
wh, ṽ ← vh, p̃← ph, q̃ ← qh, and computing v′ and p′ as

v′ =− τMrM
(
vh, ph

)
(43.1)

p′ =− τCrC
(
vh
)

(43.2)

where τM and τC are defined as in [39], and

rM
(
vh, ph

)
=
∂vh

∂t
+ vh · ∇xv

h +∇xp
h − ν∆xv

h − g (44.1)

rC
(
vh
)

= ∇x · vh (44.2)

Proceeding this way, we obtain

BED
MS

(
{wh, qh}, {vh, ph}

)
− LED

(
wh
)

+BLD
(
wh,vh

)
− LLD

(
wh
)

= 0 (45)
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where

BED
MS

(
{wh, qh}, {vh, ph}

)
=

(
wh(x),

∂vh(x, t)

∂t
+ vh(x, t) · ∇xv

h(x, t)

)
Ω

−
(
∇x ·wh(x), ph(x)

)
Ω

+
(
∇sym

x wh(x), 2ν∇sym
x vh(x, t)

)
Ω

+
(
qh(x),∇x · vh(x, t)

)
Ω
−
(
wh(x), τMrM(uh, ph) · ∇vh

)
Ω

+
(
∇xw

h(x), (vh − τMrM(vh, ph))⊗ τMrM(vh, ph)
)

Ω

+
(
∇x ·wh(x), τCrC(uh)

)
Ω

+
(
∇xq

h, τMrM(uh, ph)
)

Ω
(46)

To compute the operator BLD in Eq. (45) we need a discrete Lagrangian displacement
that we define next. The discrete Lagrangian displacement lives in another discrete space
Shus = span{NB(X)}nLD

B=1, which is defined on the material description. Therefore, the
discrete displacement can be written as

uh(X, t) =

nLD∑
B=1

uB(t)NB(X) (47)

Note that we have dropped the superscript s on the displacement, as all variables defined in
material description refer to the solid, and thus, there is no possibility of confusion. Using
Eq. (47) we can define a discrete mapping ϕh(X, t) that will be used to push forward
the solid mesh to physical space. Note that when pushed forward, the solid mesh will be
located on top of the Eulerian mesh defined on Ω in an arbitrary, non-conforming fashion.
All integrals on Ωs

0 [see the weak form (45)] will be computed on the mesh defined by the
NB’s. Henceforth, this mesh will be called Lagrangian mesh because it is defined in the
material description†.

Let us assume that the NB’s are defined from the tensor product of open knot vectors.
Associated to those knot vectors, we define the set M̂h, which contains the Greville points
in parametric coordinates. Greville points can be obtained by averaging knots, and a precise
definition may be found in [74]. We will use the notation M̂h = {τ̂ i}nLD

i=1 , where the τ̂ i’s are

the Greville points in parametric space. For open knot vectors, #M̂h = dim(Shus) = nLD,

where #M̂h denotes the cardinal of M̂h. Assuming that the initial solid geometry is
mapped from the parametric space using a NURBS geometrical mapping φ, the Greville
points in parametric space are mapped to the solid initial geometry as τ̃ i = φ(τ̂ i), defining

the set M̃h = {τ̃ i}nLD
i=1 . Then, at each time t, they are pushed forward to physical space

using the mapping ϕh(·, t). Let us callMh = {τ i}nLD
i=1 the set of Greville points in physical

space at time t, where τ i = ϕh(τ̃ i, t). Using these ideas, we compute the Lagrangian
displacement from the Eulerian velocity by collocating Eq. (20) at the Greville points as,

∂uh

∂t
(τ̃ i, t) = vh(ϕh(τ̃ i, t), t) for all τ̃ i ∈ M̃h (48)

†Note that we always use NURBS elements and the nomenclature Lagrangian mesh should not induce
the reader to think that we are using classical Lagrangian elements.
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Isogeometric collocation approaches have been recently introduced as a highly efficient
alternative to Galerkin methods with higher-order convergence rates [69, 70]. Within the
realm of isogeometric collocation, there are several possibilities to select the collocation
points [69]. Here, we use Greville points which have shown good accuracy and stability for
all cases of practical importance. Note that expression (48) represents a system of dnLD
equations that we use to determine the dnLD control variables of the discrete displacement
uh.

Remarks:

1. Eq. (44.1) contains second derivatives of vh. If the Eulerian mesh is C0-continuous
across element interfaces, a special procedure is needed for reconstructing second
derivatives in order to avoid Dirac layers between elements [75]. However, we are
able to evaluate second derivatives of vh directly since all our Eulerian meshes are
C1-continuous, that is, we do not need any special procedure for reconstructing second
derivatives.

2. Note that our space discretization is substantially different from those employed in [21]
and [76]. In our formulation, the only variable that is defined on the Lagrangian space
Shus is the displacement field uh. For example, the term vh(ϕh(X, t)) of the operator
BLD is not projected onto Shus , but it is directly evaluated as a function of the space
Shv . A similar argument applies, for example, to the term wh(ϕh(X, t)). In contrast,
in the above-mentioned works [21, 76], all the shape functions of the fluid Eulerian
mesh need to be projected onto the solid mesh, and expressed as a linear combination
of the NB’s. The computational cost of this projection is probably negligible using
classical Lagrange finite elements, but represents a significant computational overhead
for NURBS functions with degree p ≥ 2. In this case, the basis functions are not
interpolatory and we need to solve a linear system of size nLD to project each of
the Eulerian basis functions onto the Lagrangian mesh. Our algorithm avoids this
computational overhead altogether. For comparison purposes, we also implemented
the isogeometric version of the approach proposed in [21] and [76], where all the basis
functions of Shv are projected onto Shus . For basis functions of degree p ≥ 2, our
algorithm was significantly faster and, at the very least, as accurate as that based on
the projection of Eulerian basis functions. Earlier works also report on the fact that,
according to numerical evidence, the Lagrangian mesh needs to be at least twice as
fine as the Eulerian mesh. As suggested in [76], this could be related to the projection
of the fluid shape functions onto the space Shus . In some situations, the projection
on Shus of Eulerian shape functions with significant support on the solid is zero if the
Lagrangian mesh is not fine enough. As we will show in our numerical examples,
our method also circumvents this problem, and we have been able to perform very
accurate computations on Lagrangian meshes which have the same element size as
the Eulerian mesh. This is also related to the fact that the order of the Eulerian
meshes that we utilize in our simulations is p ≥ 2 and, as a result, the support of the
basis functions is p+ 1 ≥ 3 elements in each direction. Since the support of the basis
functions is larger, the above-described situation will be probably avoided.
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3. From an implementation point of view, the semi-discrete weak form (45) is computed
as follows: We first loop over the elements of the Eulerian mesh defined on Ω to
compute the terms BED

MS and LED. Then, we loop over the elements of the Lagrangian
mesh defined on Ωs

0 to subtract the fluid contributions and add the terms of the solid
mechanics equations. One of the crucial advantages of this implementation is that
when we loop over the elements on Ω we do not need to know where the solid is
located with respect to the Eulerian mesh to compute the integrals.

4. Following [76], when we loop over the Lagrangian mesh to subtract the contributions
of the fluid mechanics equations computing BLD the stabilization terms are not sub-
tracted. Note also that the residuals from which we define the velocity and pressure
fine scales (44) are those of the fluid mechanics equations, which correspond to the
righ-hand sides of Eq. (44). The residual rC will approach zero on the whole compu-
tational domain, including the solid domain as the whole system is incompressible.
However, the residual rM will approach zero within the fluid domain, but not within
the solid domain. Therefore, we do not have a residual-based stabilization in the
classical sense of this term. We do note, nevertheless, that our stabilization is consis-
tent in the entire fluid-solid system because τM tends to zero as the mesh is refined.
This solution is less than satisfactory for us, but computing the residuals in a fully
consistent way would produce a significant computational overhead, and would re-
quire an algorithmical tracking on the solid position when we loop over the Eulerian
mesh. This can be incorporated into our algorithm, but one of its most appealing
features would be lost. Another way to make the stabilization completely residual
based would be not to construct the stabilization terms of the fluid mechanics equa-
tions in the elements covered by the structure. This would introduce inefficiencies
in the algorithm and would require to construct suitable stabilization terms in the
solid to deal with the incompressibility constraint. For these reasons, we did not
consider this option, either. In practical computations, the behavior of our algorithm
has been very satisfactory, but we acknowledge that with this implementation it may
not be possible to achieve higher-order convergence rates within the solid domain.
We believe this point deserves more investigation, and we hope to address it in the
future.

3.2. Time discretization

At this stage our formulation remains continuous in time. Here, we propose a mono-
lithic and fully-implicit algorithm based on the generalized-α method. The generalized-α
algorithm was first proposed by Chung and Hulbert [61] for the structural mechanics equa-
tions, and later extended by Jansen et al. [62] to first-order systems. To illustrate our
method, let us divide the time interval of interest [0, T ] into a sequence of subintervals
(tn, tn+1) with fixed time-step size ∆t = tn+1− tn. To describe our algorithm, we define the
following residual vectors

RM =
{
RM
A,i

}
; RC =

{
RC
A

}
; RP =

{
RP
B,i

}
(49)
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Here, A ∈ {1, . . . , nED} is a control-variable index, B is an index that takes values from 1
to nLD, and i is a dimension index which runs from 1 to d. The components of the residual
vectors are given by

RM
A,i = BED

MS

(
{NAei, 0}, {vh, ph}

)
− LED (NAei) +BLD

(
NAei,v

h
)
− LLD (NAei) (50)

RC
A = BED

MS

(
{0, NA}, {vh, ph}

)
(51)

RP
B,i = ei ·

[
∂uh

∂t
(τ̃B, t)− vh

(
ϕh(τ̃B, t), t

)]
(52)

Let us call V n, P n and An the time-discrete approximation of the global vector of con-
trol variables of vh(·, tn), ph(·, tn), and ∂vh

∂t
(·, tn), respectively. Similarly, Un and V n are

the time-discrete approximation of the global vector of control variables of uh(·, tn) and
∂uh

∂t
(·, tn). Let us also define U

G

n as the vector that collects the time-discrete approxima-

tion to the solid displacements at the Greville points, that is, U
G

n ≈ {uhi (τ̃A, tn)}nLD
A=1 for all

i = 1, . . . , d. Analogously, we define V
G

n ≈ {∂u
h
i

∂t
(τ̃A, tn)}nLD

A=1 for all i = 1, . . . , d. Using this

notation, our time-integration algorithm may be defined as follows: given V n, An, Un,
and V n, find V n+1, An+1, V n+αf

, An+αm , P n+1, Un+1, V n+1, Un+αf
, and V n+αm such

that

RM(V n+αf
,An+αm ,P n+1,U

G

n+αf
) = 0 (53)

RC(V n+αf
,An+αm ,P n+1) = 0 (54)

RP (U
G

n+αf
,V

G

n+αm
,V n+αf

) = 0 (55)

V n+αf
= V n + αf (V n+1 − V n) (56)

An+αm = An + αm(An+1 −An) (57)

U
G

n+αf
= U

G

n + αf (U
G

n+1 −U
G

n ) (58)

V
G

n+αm
= V

G

n + αm(V
G

n+1 − V
G

n ) (59)

V n+1 = V n + ∆t((1− γ)An + γAn+1) (60)

U
G

n+1 = U
G

n + ∆t((1− γ)V
G

n + γV
G

n+1) (61)

Note that although V n+1 and An+1 are treated separately, they are not independent as

Eq. (60) must hold true. The same argument applies to U
G

n+1 and V
G

n+1, which are related
through Eq. (61). In Eqs. (53)–(61), αm, αf and γ are real-valued parameters that control
the accuracy and stability of the algorithm. Jansen et al. [62] showed that second-order
accuracy can be attained by taking

γ =
1

2
+ αm − αf , (62)

while unconditional stability (for a linear problem) requires

αm ≥ αf ≥
1

2
(63)
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A particular feature of generalized-α is that the method parameters can be expressed in
terms of %∞ (the spectral radius of the amplification matrix as ∆t → ∞) in such a way
that conditions (62)–(63) are automatically satisfied. This can be accomplished by taking

αm =
1

2

(
3− %∞
1 + %∞

)
(64)

αf = γ =
1

1 + %∞
(65)

with %∞ ∈ [0, 1]. By using Eqs. (64)–(65), all the eigenvalues of the amplification matrix
take on the value −%∞ when ∆t→∞, which suggests that %∞ can be used to control high-
frequency dissipation with the guarantee that second-order accuracy and unconditional
stability for a linear problem are granted. In our computations, we have taken %∞ = 1/2,
which represents an adequate balance between accuracy and robustness in our simulations.

3.3. Implementation

Eqs. (53)–(55) constitute a nonlinear system. To solve this nonlinear system we use
Newton-Raphson’s algorithm which results in a two-stage predictor multicorrector method
defined as follows:

Predictor stage: Set

V n+1,(0) = V n (66)

An+1,(0) =
(γ − 1)

γ
An (67)

P n+1,(0) = P n (68)

Un+1,(0) = Un (69)

V n+1,(0) =
(γ − 1)

γ
V n (70)

where the subscript 0 on the left-hand side quantities is the Newton-Raphson iteration
index. Note that the predictions are based on Eqs. (66), (68) and (69), while (67) and (70)
are only a consequence of Eqs. (60) and (61).

Multicorrector stage: Repeat the following steps for i = 0, 1, 2, ..., imax, or until conver-
gence is achieved:

1. Evaluate the global unknowns at intermediate time levels

V n+αf ,(i) = V n + αf (V n+1,(i) − V n) (71)

An+αm,(i) = An + αm(An+1,(i) −An) (72)

P n+1,(i) = P n+1,(i) (73)

Un+αf ,(i) = Un + αf (Un+1,(i) −Un) (74)

V n+αm,(i) = V n + αm(V n+1,(i) − V n) (75)
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2. Use the intermediate time levels of the i-th Newton iteration to compute the tangent
matrix K ,(i) and the residual vector R,(i), where

K ,(i) =

 K11,(i) K12,(i) K13,(i)

K21,(i) K22,(i) K23,(i)

K31,(i) K32,(i) K33,(i)

 ; R,(i) =


RM
,(i)

RC
,(i)

RP
,(i)

 (76)

Note that the residual R,(i) may be linearized with respect to different variables,
leading to distinct tangent matrices. Here, we linearize with respect to An+1, P n+1

and V
G

n+1. Once we have decided to linearize with respect to An+1 and V
G

n+1, the

variables V n+1 and U
G

n+1 as well as all the α-levels become linearly dependent upon

An+1 and V
G

n+1 through Eqs. (56)–(61). Using this choice, the tangent matrix is
given by

K11,(i) =
∂RM

,(i)

∂An+1,(i)

; K12,(i) =
∂RM

,(i)

∂P n+1,(i)

; K13,(i) =
∂RM

,(i)

∂V
G

n+1,(i)

; (77)

K21,(i) =
∂RC

,(i)

∂An+1,(i)

; K22,(i) =
∂RC

,(i)

∂P n+1,(i)

; K23,(i) =
∂RC

,(i)

∂V
G

n+1,(i)

; (78)

K31,(i) =
∂RP

,(i)

∂An+1,(i)

; K32,(i) =
∂RP

,(i)

∂P n+1,(i)

; K33,(i) =
∂RP

,(i)

∂V
G

n+1,(i)

, (79)

We note that K23 and K32 vanish. In our implementation, we neglect the contribu-
tions K13 and K31 to the tangent matrix. Under these assumptions, and considering
that K23 and K32 are zero, the global linear system may be decoupled as(

K11,(i) K12,(i)

K21,(i) K22,(i)

){
∆An+1,(i)

∆P n+1,(i)

}
= −

{
RM
,(i)

RC
,(i)

}
(80)

K33,(i)∆V
G

n+1,(i) = −RP
,(i) (81)

with the additional advantage that the unknowns of each greville point in the global

vector ∆V
G

n+1,(i) are decoupled in such a way that (81) is solved as nLD independent
systems of equations of size d×d. We remark that the matrix K33,(i) has this special
shape because we are linearizing with respect to the displacements at Greville points

U
G

n+1. If we were to linearize with respect to their associated control variables Un+1,
the dnLD equations would be coupled, leading to a more intensive computation.
The submatrices K lm for l,m ∈ {1, 2, 3} may be computed using the chain rule. For
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example,

K11,(i) =
∂RM

,(i)

∂An+1,(i)

=
∂RM

,(i)

∂V n+αf ,(i)

∂V n+αf ,(i)

∂V n+1,(i)

∂V n+1,(i)

∂An+1,(i)

+
∂RM

,(i)

∂An+αm,(i)

∂An+αm,(i)

∂An+1,(i)

= αfγ∆t
∂RM

,(i)

∂V n+αf ,(i)

+ αm
∂RM

,(i)

∂An+αm,(i)

. (82)

Finally, we note that the global linear system (80) has the same size as that of a
fully-implicit incompressible Navier-Stokes formulation and is solved up to a given
tolerance using the GMRES method [77] with incomplete LU factorization [78, 79, 80].

3. Update the Newton-Rapshon iterates as follows

V n+1,(i+1) = V n+1,(i) + γ∆t∆An+1,(i) (83)

An+1,(i+1) = An+1,(i) + ∆An+1,(i) (84)

P n+1,(i+1) = P n+1,(i) + ∆P n+1,(i) (85)

U
G

n+1,(i+1) = U
G

n+1,(i) + γ∆t∆V
G

n+1,(i) (86)

V
G

n+1,(i+1) = V
G

n+1,(i) + ∆V
G

n+1,(i) (87)

Note that the updates of An+1, P n+1 and V
G

n+1 are straightforward while V n+1 and

U
G

n+1 are updated consistently with Eqs. (60)–(61) that define the generalized-α
method.

4. From the i-th Newton iterate of the time-discrete Greville values of the solid displace-

ment U
G

n+1,(i), compute their corresponding control variables Un+1,(i). This may be

done independently for each of the spatial directions. Therefore, let us define UG

n+1,(i)

as the entries of U
G

n+1,(i) that correspond to the first spatial direction. Similarly, we

define Un+1,(i) as the restriction of Un+1,(i) to the first spatial dimension. Then, we
can compute Un+1,(i) by solving the linear system

MUn+1,(i) = UG

n+1,(i) (88)

where the entries of the matrix M are given by

M = {MAB}; MAB = NB(τ̃A); A,B ∈ {1, . . . , nLD} (89)

Note that the matrix M depends neither on time nor on the spatial direction. Thus,
M can be pre-computed and pre-factorized at the beginning of the simulation. When-
ever we need to solve system (88), we only perform the corresponding backward and
forward substitutions. The process defined by Eqs. (88)–(89) is repeated for the
remaining spatial directions. This completes one nonlinear iteration.
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Remark:

We acknowledge that our strategy of using a non-consistent tangent matrix (see Step 2
of the Multicorrector stage) may limit the size of our time steps. However, computing
the consistent tangent matrix produces a significant computational overhead, so we
chose not to do so. Other authors have reported on the use of matrix-free Newton-
Krylov methods [21]. In our implementation, utilizing the tangent matrix (80)–(81)
vastly outperformed the use of matrix-free techniques. Using matrix-free methods,
the computational cost of a time step was higher and we could not take time steps
as large as those employed with the tangent matrix (80)–(81). In the future, we will
investigate in more detail the possibility of using the consistent tangent matrix.

4. Numerical Examples

In this section we present four numerical examples computed using the discretization
introduced in Sections 3.1 and 3.2. The code used to perform these simulations has been
developed on top of the PetIGA framework [81, 82, 83], which adds NURBS discretization
capabilities and integration of forms to the scientific library PETSc [84, 85].

4.1. Free falling cylinder

An object falling in a fluid will try to adjust its velocity to a terminal or settling velocity
that we call vT . The terminal velocity of a falling object is reached when the sum of the
drag force (FD), which increases with velocity, and buoyancy (Fb) equals the downward
force of gravity (Fg) acting on the object. Since the net force on the object is then zero,
the object moves with constant velocity. That is, to obtain the exact solution for the
settling velocity of a rigid cylinder with infinite length and radius a which is released to
fall in a channel of width 2L, we impose

FD + Fb = Fg (90)

where

Fb = gρfπa2 (91)

Fg = gρsπa2 (92)

Here, g is the Euclidean norm of g. We assume that for this problem the relevant Reynolds
number is based on the terminal velocity and the cylinder diameter, that is,

Re =
2ρfvTa

µ
(93)

According to [86], under the assumption of creeping flow (Re << 1), and undeformable
solid, FD can be expressed as

FD =
4πµvT

ln
(
L
a

)
− 0.9157 + 1.7244

(
a
L

)2 − 1.7302
(
a
L

)4 , (94)
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which using Eqs. (90)–(92) leads to the terminal velocity

vT =

(
ρs − ρf

)
ga2

4µ

[
ln

(
L

a

)
− 0.9157 + 1.7244

( a
L

)2

− 1.7302
( a
L

)4
]

(95)

In this numerical example, we will validate our numerical results against the exact solution
(95). The infinite length of the cylinder allows us to neglect the dynamics in the direction
of the axis of the cylinder and therefore we set up a two-dimensional domain, which has
to be long enough in the direction of gravity such that the cylinder can reach its terminal
velocity. The solid has to be sufficiently stiff in order to complete the whole simulation
without experiencing perceptible deformations. We have used a Neo-Hookean model with
dilatational penalty in 2D, whose stored energy function can be obtained by setting d = 2
in Eqs. (16)–(18). Taking the derivative of the stored energy function we get the second
Piola-Kirchhoff stress tensor

S = µsJ−2/d

(
I − 1

d
tr(C)C−1

)
+

1

2
κs
(
J2 − 1

)
C−1 (96)

where d = 2. Note that following [20], for this example, and also for the remaining examples,
we have included also ψdil into the stored energy functional to derive S. Consistently with
what was reported in [20], we found that disregarding the dilatational part of the stored
energy function produced non-negligible errors in the incompressibility constraint. Thus,
following [20] we used relatively small values of κs for our computations (on the order
of magnitude of µs/10). Within this range, we did not find the numerical solution to be
sensitive to the value of κs. The remaining physical parameters are taken as follows: gravity
acceleration g = 981 cm/s2, dynamic viscosity µ = 5 dyn/cm2, fluid density ρf = 1 g/cm3,
solid density ρs = 1.25 g/cm3 and shear modulus µs = 33550 g/(cm s2). The dimensions
of the computational domain are 2L× 3L with L = 2 cm and the radius of the cylinder is
a = 0.25 cm. Introducing these parameters in Eq. (95), we obtain vT = 0.912 cm/s and
the Reynolds number is Re = 0.0912� 1.

The geometry of the problem, boundary conditions and Lagrangian mesh are repre-
sented in Fig. 2. NURBS shape functions, unlike Lagrange shape functions, are able to
represent the axial section of a cylinder exactly when NURBS of second order or higher
are used. Note that one face of each of the elements adjacent to the cylinder axis has been
degenerated by placing multiple control points at the same location, and thus many param-
eter values map to the same point in physical space. Such a mapping is not invertible, but
it is still analysis-suitable since the Gauss quadrature points never fall on the singularity
itself.

Both the Lagrangian mesh and the Eulerian mesh are comprised of quadratic NURBS
elements. The shape functions of the Eulerian mesh are at least C1-continuous everywhere.
The shape functions of the Lagrangian mesh are C0-continuous (in the circumferential
direction) along two diametral lines, and at least C1-continuous everywhere else. All the
simulations are performed with the same Lagrangian mesh which has 11 elements in the
radial direction and 48 elements in the circumferential direction. The time step used in the
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simulations is ∆t = 10−3 s. We have computed the average solid velocity in the direction of
gravity for simulations with different Eulerian meshes. The points chosen to calculate that
average are the images of the Greville points. As shown in Fig. 3, the more we refine the
Eulerian mesh, the closer we get to the analytical solution. The relative difference between
the analytical and numerical terminal velocity is 5.7% with 100× 150 elements, 2.1% with
150× 225 elements, and 0.5% with 200× 300 elements.

Fig. 4 shows the vortices and the recirculation that appear close to the free falling
cylinder. In Fig. 5, we plot the pressure subtracting its hydrostatic component along
with the Lagrangian mesh and the finest Eulerian mesh used in our computations. It is
noticeable that the elements of the Lagrangian mesh are even bigger than the elements
of the Eulerian mesh. Despite this fact, the simulation yields very accurate results as it
can be seen in Fig 3. Based on previously reported numerical results, the possibility of
using a Lagrangian mesh coarser than the Eulerian mesh seems to be a unique feature of
of NURBS functions with p ≥ 2 that is not attained with classical Lagrange elements.

In Fig. 6, we consider several fluid viscosities while the rest of parameters remain fixed.
We then compare the numerical result with the analytical solution for each case. In Fig.
7, we repeat the same procedure, but this time we vary the solid density while keeping the
other parameters fixed. In both cases, the difference between the numerical result and the
analytical solution increases as the Reynolds number increases. This comes as no surprise,
since the analytical solution is deduced under the assumption of creeping flow and as a
result it looses its accuracy for predicting the correct terminal velocity when the Reynolds
number gets close to one or is even higher. This is precisely what Figs. 6 and 7 show.

Finally, for comparison purposes, we also computed this example by using an alternative
algorithm that projects the shape functions of the Eulerian mesh onto the Lagrangian mesh
using a collocation-like process for each shape function (see Remark 2 in Section 3.1). The
idea is to project the Eulerian shape functions using a procedure similar to that used for
the displacement field. Note that the projection of a shape function, though, is a linear
process, unlike the projection of the displacement, which is nonlinear. We have also tried
projecting the Eulerian velocity and its time derivative and using these projected quantities
when looping over the elements of the Lagrangian mesh. For that, we have made use of
Eq. (9). The variation of the results when using these projected quantities is very subtle
(data not shown) and the algorithm becomes slower.

4.2. Free falling sphere
The second example is a 3D computation of a sphere of radius a falling in a fluid. The

terminal velocity of the simulation is going to be compared with an analytical solution in
order to validate the method in a three-dimensional setup. As it has been mentioned in
the previous section, we impose Eq. (90). Although this time the drag force, buoyancy
and the downward force of gravity acting on the object are given by

FD =
1

2
πa2CDρ

fv2
T (97)

Fb =
4

3
πa3gρf (98)
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Fg =
4

3
πa3gρs (99)

If we knew the value of the drag coefficient CD, we could calculate the terminal velocity
of the free falling sphere. Theoretical solutions under the assumption of creeping flow
(Re � 1) show that the drag coefficient of a sphere falling in an unbounded domain takes
the value

CD =
24

Re

(100)

where Re is the same as in Eq. (93), but this time a refers to the radius of the sphere. This
expression for the drag coefficient yields the terminal velocity

vStokes =
2g

9µ
a2(ρs − ρf ) (101)

We have renamed vT to vStokes not only because this solution was derived by Stokes [87]
but to emphasize that it is valid only under the limit of Re � 1 and in an unbounded
medium. Since we cannot perform a computation on an infinite domain, we need to correct
Eq. (101) to account for the presence of rigid walls. The effects caused by the rigid walls
involve an increase in the viscous dissipation which decreases the speed of the sphere. In
particular, the correction factor due to the wall-attachment effects K for creeping flow of
a Newtonian fluid is defined by

K =
vStokes
vT

(102)

It describes the decrease in the speed resulting from the presence of the walls as a function
of the ratio of the radius of the falling sphere and a cylinder which contains the surrounding
fluid. Being a the radius of the sphere and A the radius of the cylinder, Bohlin [88] obtains
for Re � 1 and a/A < 0.6,

K =

[
1− 2.10443

( a
A

)
+ 2.08877

( a
A

)3

+ . . .

]−1

(103)

Experimental works [89] also obtain expressions which yield very similar results under the
assumptions stated above. We can now compare the theoretical result with our numerical
result. As in the previous section, the solid has to be sufficiently stiff in order to complete
the whole simulation without experiencing perceptible deformations and the length of the
computational domain in the gravity direction needs to be long enough such that the sphere
can reach its terminal velocity. The material used for the sphere is the same as that used
for the cylinder in the previous section, but d = 3 in this case. The physical parameters
of this example are the following: gravity acceleration g = 981 cm/s2, dynamic viscosity
µ = 10 dyn/cm2, fluid density ρf = 1 g/cm3, solid density ρs = 1.5 g/cm3 and shear
modulus µs = 33550 g/(cm s2). The computational domain is a cylinder of 4 cm of height
and A = 2 cm of radius. The radius of the sphere is a = 0.25 cm. The geometry of the
problem, boundary conditions and Lagrangian mesh are represented in Fig. 8.
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The Eulerian mesh has 60×60×67 quadratic elements and it is nonuniform, as the mesh
is finer through the path of the sphere. The geometry was generated by extruding a circle
in the vertical (z) direction. To define the circle, we used a map that transforms each edge
of the parameter space into a quarter of the circumference (details on the parameterization
of the circle can be found, for example, in [90]). This makes the mapping singular at four
points on the boundary, which produces four singular lines when the circle is extruded in
vertical direction. Everywhere else, the basis functions are at least C1 continuous. The
Lagrangian mesh has 9 × 20 × 40 quadratic elements, the continuity between elements is
C1 with the exception of three circles in which the continuity is C0 in an angular direction
(this choice for the representation of a sphere has been used previously in FSI simulations
[1]). NURBS shape functions, unlike Lagrange shape functions, are able to represent a
sphere and a cylinder exactly when NURBS of second order or higher are used. The time
step used in the simulation is ∆t = 10−3 s.

We have computed the average velocity in the gravity direction of the solid during the
simulation. Again, the points chosen to calculate that average have been the images of the
Greville points. As it can be seen in Fig. 9, the terminal average velocity of the simulation
is very similar to the analytical result. In particular, the relative difference between the
numerical and analytical terminal velocity is 3.2% . In Fig. 10(a), we plot the magnitude of
the velocity, the streamlines and the Lagrangian mesh at time t = 0.1 s and in Fig. 10(b),
we plot the velocity in z direction in two perpendicular slices at time t = 0.1 s together
with the Eulerian mesh.

4.3. Parallelogram submerged in a flow

In this case we consider a parallelogram embedded in a tube with Poiseuille-like flow.
The same material model as in Section 4.1 is used, although a very low shear modu-
lus is established so that the solid is very soft. All simulations are performed using
the following physical parameters: gravity acceleration g = 981 cm/s2, dynamic viscos-
ity µ = 0.01 dyn/ cm2, fluid density ρf = 1 g/cm3 and solid density ρs = 1.5 g/cm3.

The problem setup is shown in Fig. 11. We assume that for this problem the relevant
Reynolds number is based on the inflow velocity (78 cm/s) and the side of the tube per-
pendicular to the flow (25 cm); its value is Re = 195000. The initial position of the solid
is such that its long side is perpendicular to the flow. The velocity gradient along the long
side of the parallelogram will cause a rotation of the solid. During that process, it will
experiment large deformations due to its low stiffness. As it will be shown, these large
deformations can distort the Lagrangian mesh up to a point where the simulation fails. In
order to establish some criterion, we will consider the simulations to be successful if the
solid is able to rotate 90 degrees.

The time step used in the simulations is ∆t = 10−3 s. We will work with a fixed number
of control variables in all the simulations of this section. In particular, 234 control variables.
First, we take µs = 400g/(cm s2). If we use a Lagrangian mesh with order p = 1 and C0

continuity between elements, it collapses when the parallelogram has rotated approximately
45 degrees. Nevertheless, a Lagrangian mesh with order p = 2 and C1 continuity between
elements is able to rotate 90 degrees as shown in Fig. 12. We then decrease the shear
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modulus to µs = 300g/(cm s2). The simulation fails for the two previous meshes with this
new value of the shear modulus, but a Lagrangian mesh with order p = 3 and C2 continuity
between elements is able to complete the simulation without any problems as shown in Fig.
13. We are therefore able to deal with larger deformations as we increase the order of the
mesh and the continuity between elements for the same number of degrees of freedom. The
same fact was shown for isogeometric structural analysis in [35]. These results suggest that
NURBS with higher order and higher continuity may increase the robustness of immersed
FSI methods.

4.4. Hollow cylinders immersed in a flow

The fourth and final example consists of six hollow cylinders immersed in a water flow.
The cylinders are filled with water and the problem setup is shown in Fig. 14. The
inner radius of the cylinders is rin = 1.35 cm, while the exterior radius is rex = 1.5 cm.
The dimensions of the channel are 45 × 25 cm. The flow is driven by a parabolic inflow
velocity with a maximum of 50 cm/s, the lateral boundaries are assigned zero velocity,
and a zero-traction boundary condition is applied at the outflow. The initial condition for
the velocity is a paraboloid with a maximum of 50 cm/s. We use the same solid material
model as in Section 4.1. The shear modulus is µs = 335 g/(cm s2), which produces highly
deformable solids. We take ρs = 1.5 g/cm3. The fluid is water with dynamic viscosity
µ = 0.01 dyn/cm2 and density ρf = 1.0 g/cm3. Defining the Reynolds number as in
Section 4.3, we have Re = 125000.

In this case, we use relatively thin structures for which we use solid elements with two
C1 quadratic elements, that is, four C1 quadratic basis functions in the through-thickness
direction. This way of modeling shell-like structures with solid NURBS elements was intro-
duced in [25]. The Eulerian mesh has 210 × 175 quadratic elements and each Lagrangian
mesh has 2× 140 quadratic elements. The time step used in the simulation is ∆t = 10−3 s.

In Fig. 5 we plot the velocity magnitude and the pressure at different time steps where
can see how the presence of the solids modifies the flow conditions. This example shows how
the presence of thin solids can produce large pressure gradients that need to be resolved
by the Eulerian mesh. Again, the ability of higher-order NURBS to approximate rough
functions may increase the overall robustness of the algorithm.

5. Conclusions

We propose an immersed fluid-structure interaction method which uses NURBS-based
isogeometric analysis for both the viscous incompressible fluid and the nonlinear hyper-
elastic solid. The high inter-element continuity of NURBS allows us to deal with larger
deformations in the Lagrangian mesh, which increases the robustness of the overall algo-
rithm. We are able to run very accurate simulations with the same element size in both
meshes or even with bigger element size in the Lagrangian mesh, while works using stan-
dard C0 finite elements consistently reported the need for a Lagrangian mesh at least twice
as fine as the Eulerian mesh. The information transfer between the Eulerian mesh and the
Lagrangian mesh is kept to a minimum, and it is carried out by a collocation-like process
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that also exploits the high continuity of NURBS. We propose a fully-implicit, second-order
accurate time integration algorithm based on the generalized-α method, which leads to a
monolithic formulation. We validated our computational framework using theoretical data
in two and three dimensions.
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kirchhoff–love elements, Computer Methods in Applied Mechanics and Engineering
198 (2009) 3902–3914.

28



[35] S. Lipton, J. Evans, Y. Bazilevs, T. Elguedj, T. J. R. Hughes, Robustness of isogeo-
metric structural discretizations under severe mesh distortion, Computer Methods in
Applied Mechanics and Engineering 199 (2010) 357–373.

[36] I. Akkerman, Y. Bazilevs, V. M. Calo, T. J. R. Hughes, S. Hulshoff, The role of conti-
nuity in residual-based variational multiscale modeling of turbulence, Computational
Mechanics 41 (2008) 371–378.
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Figure 1: (Color online) Three possible configurations of the solid domain Ωs
t (green), the fluid domain Ωf

t

(blue), and the fluid-solid interface ΓI
t (red). Note that the solid domain is allowed to be non-connected

[see snapshot (c)]. The domain Ω is implicitly defined as the set enclosed by Γ.

Figure 2: Geometry, boundary conditions, and Lagrangian mesh for the free falling cylinder example. Note
that we impose non-slip boundary conditions on the lateral boundaries as this is the case for which the
exact solution applies. The inset shows a zoom in of the Lagrangian mesh. The lengths are in centimeters.
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Figure 3: (Color online) Exact terminal velocity (black line) and time evolution of the average cylinder
velocity obtained from the computations (red, blue and green lines). All computations were performed
using a Lagrangian mesh composed of 11 × 48 elements (knot spans). The Eulerian mesh was refined to
show convergence of the numerical solution to the exact solution. In all cases, we used quadratic basis
functions.
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Figure 4: (Color online) Velocity magnitude along with the streamlines at time t = 0.35 s for the free-falling
cylinder example. The plot clearly shows two large vortices close to the cylinder, which is the expected
laminar-flow solution. The Eulerian mesh is composed of 200 × 300 elements and the Lagrangian mesh
has 11× 48 elements. In all cases, we used quadratic basis functions. At the scale of the plot, the solution
looks symmetric as expected.
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Figure 5: (Color online) Contour plot of the pressure (subtracting the hydrostatic component) along with
the spatial discretizations. The Eulerian mesh is composed of 200 × 300 elements and the Lagrangian
mesh has 11× 48 elements. In all cases, we used quadratic basis functions. Note that the elements of the
Lagrangian mesh (white lines) are even bigger than the elements of the Eulerian mesh (black lines), and,
yet, the solution is very accurate as shown in Fig. 3.
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Figure 6: Relative difference between the analytical and numerical terminal velocities for several values
of the fluid viscosity. The analytical solution is only acceptable when Re � 1 since it is a solution for
creeping flow. When Re � 1, the analytical and numerical solutions show very good agreement. As the
Reynolds number gets close to one or higher, the difference between the two solutions increases as it must
happen. The Eulerian mesh has 200 × 300 elements and the Lagrangian mesh has 11 × 48 elements. We
used quadratic basis functions.
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Figure 7: Relative error of the numerical terminal velocity for several values of the solid density. The exact
solution is only acceptable when Re � 1 since it is a solution for creeping flow. When Re � 1, the exact
and numerical solutions show good agreement. As the Reynolds number gets close to one or higher, the
difference between the two solutions increases because the theoretical solution becomes inaccurate. The
Eulerian mesh is composed of 200× 300 elements and the Lagrangian mesh has 11× 48 elements. We used
quadratic basis functions.
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Figure 8: Geometry, boundary conditions, and Lagrangian mesh for the free falling sphere. The lengths
are in centimeters.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.02 0.04 0.06 0.08 0.1

v
(c

m
/
s)

Time (s)

Analytical terminal velocity, rigid case
Average sphere velocity

Figure 9: (Color online) Analytical terminal velocity (black line) and time evolution of the average sphere
velocity obtained from the computations. The Eulerian mesh is composed of 60 × 60 × 67 elements and
it is nonuniform, having higher spatial resolution around the sphere’s trajectory [see Fig. 10(b)]. The
Lagrangian mesh has 9× 20× 40 elements. We used quadratic basis functions.
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(a) Velocity magnitude, t = 0.1 s. (b) Vertical velocity, t = 0.1 s.

Figure 10: (Color online) Contour plot of the velocity magnitude, streamlines, and Lagrangian mesh at
time t = 0.1 s (a). Contour plot of the velocity in z (vertical) direction in two cut planes, along with the
Eulerian mesh. On the Eulerian mesh, the size of the elements is smaller close to the sphere’s trajectory
(b).

Figure 11: (Color online) Geometry, boundary conditions, initial position of the solid, and initial velocity
for the parallelogram submerged in a flow. The color scale represents horizontal velocity with blue color
corresponding to zero and red corresponding to 78 cm/s. The lengths are in centimeters.
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(a) p = 1, t = 0.412 s. (b) p = 2, t = 1.000 s.

Figure 12: Physical net of the Lagrangian mesh with 12 × 17 C0 linear elements a time step before the
failure of the simulation (a), and physical net of the Lagrangian mesh with 11× 16 C1 quadratic elements
when it has already completed the simulation (b). The shear modulus is µs = 400 g/(cms2) and the
number of control variables is 13× 18 in both meshes.
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(a) t = 0.0 s. (b) t = 0.2 s. (c) t = 0.4 s.

(d) t = 0.6 s. (e) t = 0.8 s. (f) t = 1.0 s.

Figure 13: Physical net of the Lagrangian mesh with 10×15 C2 cubic elements at different time steps along
the simulation. The shear modulus is µs = 300 g/(cms2) and the number of control variables is 13× 18.

Figure 14: (Color online) Geometry, boundary conditions, initial position of the solids, and initial velocity
for the 6 hollow cylinders immersed in a flow. The color scale represents horizontal velocity with blue color
corresponding to zero and red corresponding to 50 cm/s. The lengths are in centimeters.
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(a) Velocity magnitude, t = 0.2 s. (b) Pressure, t = 0.2 s.

(c) Velocity magnitude, t = 0.4 s. (d) Pressure, t = 0.4 s.

(e) Velocity magnitude, t = 0.6 s. (f) Pressure, t = 0.6 s.

Figure 15: (Color online) Contour plot of the velocity magnitude (left) and pressure (right) at different
time steps. The simulation shows how the solid objects subjected to a velocity gradient experience large
deformations, while those in the middle of the channel travel practically undeformed.

43


