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Abstract

We propose new collocation methods for phase-field models. Our algorithms are based on Isogeometric

Analysis, a new technology that makes use of functions from computational geometry, such as, for example,

Non-Uniform Rational B-Splines (NURBS). NURBS exhibit excellent approximability and controllable global10

smoothness, and can represent exactly most geometries encapsulated in Computer Aided Design (CAD)

models. These attributes permitted us to derive accurate, efficient, and geometrically flexible collocation

methods for phase-field models. The performance of our method is demonstrated by several numerical

examples of phase separation modeled by the Cahn-Hilliard equation. We feel that our method successfully

combines the geometrical flexibility of finite elements with the accuracy and simplicity of pseudo-spectral15

collocation methods, and is a viable alternative to classical collocation methods.
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1. Introduction

The Cahn-Hilliard equation is a central model in nonlinear interface dynamics [5] and pattern formation

[63]. It was derived about fifty years ago as a model for phase separation of immiscible fluids [23, 24]. Since20

then, it has been applied to a variety of physical problems, including planet formation [70], microstructure

evolution of binary mixtures [2, 3, 26] and phase separation of polymer blends [27]. The Cahn-Hilliard

equation is also one of the simplest equations that can model stable co-existence of two phases and, as such,

is the basis for various multiphase flow theories [31, 32, 57, 60]. Even more important is the fact that the ideas

behind the Cahn-Hilliard equation have given rise to a new class of mathematical models termed phase-field25

models [39]. These models treat the interfaces as diffuse, track their dynamical evolution, and encode the

interfacial physics at once. Phase-field models have had a significant impact on condensed matter physics

[36, 37], fluid mechanics [16, 44], and solid mechanics [20, 61, 62]. Since the numerical challenges faced when

dealing with phase-field equations are common to many different models, we feel that studying efficient and

accurate algorithms for the Cahn-Hilliard equation is a significant goal in computational physics.30

The Cahn-Hilliard model is a nonlinear partial differential equation that involves fourth-order derivatives

in space. Typical solutions to the equation include thin layers that evolve dynamically through the computa-

tional domain. The length scale of these layers is given by a small parameter that multiplies the fourth-order

derivative, making the problem singularly perturbed. All these features make the numerical approximation of
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the Cahn-Hilliard equation a significant challenge. Although, new finite element methods are being proposed

to solve the Cahn-Hilliard equation [43, 68, 72], collocation methods continue to be the standard methodology

for computational phase field modeling. The two most representative examples of collocation methods for

phase field models are the finite difference method [12, 25, 50, 67] and spectral methods [12, 33, 52, 66, 69].

Most work on collocation methods for the Cahn-Hilliard equation has been focused on the development of5

algorithms to study the structure of the spatial patterns and free-energy evolution in extended systems, like

in the spirit of the problem of isotropic turbulence decay in fluid mechanics. It is, however, becoming clear

that technological applications will demand accurate and robust algorithms that can handle complicated

geometries and boundary conditions (a significant example has been recently presented in [4]). This paper

constitutes a first step in this direction. We propose a new collocation method for the Cahn-Hilliard equation10

that is fast, accurate, robust, geometrically flexible, and can handle a variety of different boundary conditions.

Our collocation scheme is based on Isogemetric Analysis (IGA) [28, 55]. IGA is a computational tech-

nology that uses functions from computational geometry to represent both the solution and the domain

of a boundary-value problem. The most frequently utilized functions are Non-Uniform Rational B-Splines

(NURBS) [29, 55] and T-Splines [13] which are widely used in computational geometry and design. The first15

applications of IGA were within the framework of finite element discretizations in which NURBS replaced

the standard piece-wise polynomials, giving rise to new and more accurate discretizations on a per-degree-

of-freedom basis [10, 14, 15, 21, 22, 30, 34, 38, 48, 56, 58, 59, 64]. In fact, IGA is a generalization of finite

elements because NURBS are a superset of piece-wise polynomials. However, IGA offers new possibilities

not available in classical finite elements [54], such as, for example, the straightforward generation of basis20

functions of arbitrarily high global smoothness. Within the context of geometrically flexible methods, this

seems to be a unique attribute of IGA with profound implications on the accuracy of the discretization

[1, 17, 29, 41]. Additionally, the possibility of generating arbitrarily smooth basis functions on complicated

domains opens the door to geometrically flexible collocation methods [8], which have been already success-

fully applied in the fields of elastostatics and explicit elastodynamics [9], as well as for the development25

of innovative structural elements [11, 18]. A detailed study on the advantages of isogeometric collocation

over Galerkin approaches is provided by [65]. In that paper, the authors show the superior behavior, in

terms of accuracy-to-computational-time ratio, attained by collocation with respect to Galerkin, in particu-

lar for higher order approximations; moreover, they introduce and analyze adaptive isogeometric collocation

methods based on local hierarchical refinement of NURBS.30

Here we use these ideas to derive new collocation methods for phase-field models. The numerical examples

in this paper show that our algorithms are very efficient, and seem to be a successful combination of the

geometrical flexibility of classical finite element methods and the accuracy, efficiency, and simplicity of pseudo-

spectral collocation methods.

The outline of this paper is as follows: We introduce the Cahn-Hilliard equation in Section 2. Our35

numerical formulation is presented in Section 3. Section 4 illustrates, with several numerical examples, the

efficiency, accuracy, and geometrical flexibility of our algorithm. We draw conclusion in Section 5.
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2. The Cahn-Hilliard equation

We present the Cahn-Hilliard equation in the context of isotropic and isothermal phase separation of

immiscible fluids. Within this simplified setting, the thermodynamic state of the mixture is defined by an

order parameter u of the mass fraction. The assumption of an isothermal system indicates that the relevant

thermodynamic potential is a free energy, which in the context of two-phase immiscible mixtures is called5

Ginzburg-Landau free energy.

2.1. Ginzburg-Landau free energy

Let V be an open subset of R
d, where d is the spatial dimension. The Ginzburg-Landau free energy is

defined as the functional G : H1(V ) �→ R which takes the form

G[u] =
∫

V

(
F (u) +

ε2

2
|∇u|2

)
dV (1)10

where H1 is the Sobolev space of square integrable functions with square integrable first derivatives. Following

the interpretation of Cahn and Hilliard [23, 24], F is the free energy of an homogeneous system and the

gradient term accounts for the interfacial free energy. Among the various possibilities for the homogeneous

free energy F , we take the simple form

F (u) =
α

4

(
u2 − β

α

)2

(2)15

This function is non-convex and presents a double well structure with two local minima located at u = −√
β/α

and u = +
√

β/α, which are called the binodal points.

The Cahn-Hilliard equation is a statement of mass conservation

∂u

∂t
+ ∇ · j = 0 (3)

where the mass flux j is chosen such that the Ginzburg-Landau free energy decreases with time. This can20

be achieved taking

j = −∇
(

δG
δu

)
(4)

where δG/δu represents the variational derivative of G with respect to variations of u that vanish on ∂V .

Using Eqs. (3) and (4) we obtain the Cahn-Hilliard equation

∂u

∂t
= Δ

(
f(u) − ε2Δu

)
(5)25

where

f(u) = F ′(u) = αu3 − βu (6)

is the chemical potential of a uniform solution. For an alternative derivation based on a microforce balance,

the reader is referred to [51].

Since the dynamics of the Cahn-Hilliard equation is driven by the minimization of the Ginzburg-Landau30

free energy, the solution will approach the binodal points, defining a spatial structure with patches of each of
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the phases that dynamically coarsen over time. The patches of pure phases are separated by thin layers with

thickness ν. A typical argument to find how ν scales with the physical parameters of the model is to obtain

a one-dimensional, stationary solution to the Cahn-Hilliard equation on an infinite domain. That solution

should represent a fully separated flow. This can be achieved by solving the ordinary differential equation

αu3
s − βus − ε2u′′

s = 0 in x ∈ (−∞, +∞) subject to boundary conditions us(±∞) = ±√
β/α. The solution5

of the last equation is us(x) =
√

β/α tanh
(√

β/2 x/ε
)

which, for fixed β, indicates that ν ∼ ε. Based on

this result, we proposed in [43] an argument to select the mesh characteristic length of a numerical scheme

in terms of ε.

2.2. Initial/boundary-value problem

Let us assume that the spatial domain V has a smooth boundary ∂V that can be decomposed into two10

complementary parts as ∂V = ∂VD ∪ ∂VN . We state the following initial/boundary-value problem over the

spatial domain V and the time interval (0, T ): given u0 : V �→ R and uD : ∂VD �→ R, find u : V × [0, T ] �→ R

such that

∂u

∂t
= Δ

(
f(u) − ε2Δu

)
in V × (0, T ) (7)

u = uD on ∂VD × [0, T ] (8)15

∇ (
f(u) − ε2Δu

) · n = 0 on ∂VN × [0, T ] (9)

∇u · n = 0 on ∂V × [0, T ] (10)

u(x, 0) = u0(x) in V (11)

3. Numerical formulation

Here we present our fully discrete algorithm for the Cahn-Hilliard equation. We start by defining a time-20

discrete version of the equation, which is eventually discretized in space using our isogeometric collocation

methods.

3.1. Time discretization

We utilize the linearly stabilized Eyre’s method [40] to perform time integration. Thus, the non-convex

homogeneous free energy F is split into two convex functions Fc and Fe, as follows,25

F (u) = Fc(u) − Fe(u) (12)

We call Fc and Fe the contractive and expansive parts because they reduce and increase, respectively, the L2

energy into the system. This splitting is always possible, but it is not unique. Among the various possibilities,

we take

Fc(u) = βu2, Fe(u) = −α

4
u4 + 3

β

2
u2 +

αβ2

4α2
(13)30
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which satisfies the necessary requirements, namely, the functions Fc and Fe are both convex in the physically

relevant domain and they verify equation (12). The chemical potentials associated to this splitting are given

by,

fc(u) = 2βu, fe(u) = −αu3 + 3βu (14)

In what follows, we present our time-stepping scheme. Let us divide the time interval of interest [0, T ] into5

N subintervals (tn, tn+1); n = 0, . . . , N − 1, where t0 = 0 and tN = T . We use the notation δn = tn+1 − tn.

We call un the time discrete approximation to u(tn), where we have omitted the dependence on the spatial

coordinate for simplicity. We propose the following time integration algorithm: Given un, find un+1 such

that
un+1 − un

δn
= Δ

(
fc(un+1) − fe(un) − ε2Δun+1

)
(15)10

Equation (15) may be rewritten as

un+1 − 2βδnΔun+1 + ε2δnΔ2un+1 = un + 6αδnun|∇un|2 + 3δn(αu2
n − β)Δun (16)

We note that the algorithm (16) is linearly implicit and, thus, the updates can be computed every time

step by solving a linear problem. Although the unconditional stability of this method is out of the scope

of this paper, we note that this method has been shown to be unconditionally stable when combined with15

certain spatial discretizations (for a detailed discussion on unconditionally stable schemes for the Cahn-

Hilliard equation, the reader is referred to [45] or [35, 42, 46, 47, 49, 52, 53]). In our case, we expect the

algorithm to at least permit taking time steps significantly larger than those employed by explicit methods.

3.2. Space discretization

Our space discretization makes use of the finite-dimensional spaces generated by Non-Uniform Rational20

B-Splines (NURBS), which, in turn, originate from B-Splines. Thus, we start our presentation showing how

to generate a B-Spline basis.

3.2.1. One-dimensional B-Splines

A one-dimensional B-Spline basis is a set of n piecewise polynomial functions of degree p denoted by

{Bi,p}i=1,...,n. These functions are generated from a knot vector, which is a set of non-decreasing coordinates25

(in parametric space) called knots. Let us introduce the following knot vector

Kξ = (ξ1, ξ2, . . . , ξn+p+1). (17)

Without loss of generality, it may be assumed that ξ1 = 0 and ξn+p+1 = 1, and the basis functions are

defined on the interval [0, 1]. Moreover, we assume that the knot vector is open, that is, ξ1 = . . . = ξp+1 and

ξn+1 = . . . = ξn+p+1. Given p and Kξ, we define the zeroth degree B-Spline functions {Bi,0}i=1,...,n as30

Bi,0(ξ) =

⎧⎨⎩ 1 if ξi ≤ ξ < ξi+1

0 otherwise
(18)
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The p-th degree B-Splines basis functions are defined recursively using the relation

Bi,q(ξ) =
ξ − ξi

ξi+p − ξi
Bi,q−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Bi+1,q−1(ξ); i = 1, . . . , n; q = 1, . . . , p. (19)

The functions {Bi,p}i=1,...,n are C∞ everywhere except at the knots. At a non-repeated knot, the functions

have p − 1 continuous derivatives. If a knot has multiplicity k, the number of continuous derivatives at that

point is p − k.5

3.2.2. Two-dimensional B-Splines

Given two polynomial degrees p(i), i = 1, 2 and two knot vectors Kγ , γ = ξ(1), ξ(2) of lengths n(i) +

p(i) + 1, respectively, two-dimensional B-Spline functions are defined by taking tensor products of their

one-dimensional counterparts

Bi(1),i(2)(ξ
(1), ξ(2)) = ⊗2

γ=1Bi(γ),p(γ)(ξ(γ)) (20)10

We will denote Ξ the parametric space, which may be assumed to be Ξ = [0, 1]2. Using the functions (20)

we can generate a volumetric object V = F B(ξ) by way of the geometrical map F B such that

F B(ξ) =
∑
i∈I

CiBi(ξ) ∀ξ ∈ Ξ (21)

where Ci ∈ R
2 are the control points and

I = {i = (i(1), i(2)) ∈ N
2, i(k) = 1, . . . , n(k) + p(k) + 1} (22)15

3.2.3. Non-Uniform Rational B-Splines (NURBS)

NURBS geometrical objects in R
d are projective transformations of B-Spline geometrical entities in R

d+1.

Let Ĉi ∈ R
2 be a set of control points in two-dimensional space and ωi a set of positive real numbers called

weights such that (Ĉi, wi) ∈ R
3. We define the following B-Spline geometrical object in R

3 as,

V̂ = F̂ (Ξ) (23)20

where

F̂ (ξ) =
∑
i∈I

(Ĉi, wi)Bi(ξ), ξ ∈ Ξ (24)

The NURBS object V is defined as

V = F (Ξ) (25)

where the geometrical mapping F is defined as,25

F (ξ) =
∑
i∈I

Ĉi

wi

wiBi(ξ)∑
j∈I

wjBj(ξ)
, ξ ∈ Ξ (26)

Denoting,

Ci =
Ĉi

wi
, W (ξ) =

∑
i∈I

wiBi(ξ), Ri(ξ) =
wiBi(ξ)
W (ξ)

(27)

we have that

F (ξ) =
∑
i∈I

CiRi(ξ), ξ ∈ Ξ (28)30

We will call Ri, i ∈ I, NURBS basis functions in parametric space.
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3.2.4. Discrete space

NURBS basis functions in physical space are defined as the push forward of the functions Ri, i ∈ I. The

discrete space that we will use for our numerical method is the space spanned by those functions, namely

Vh = span{Ri ◦ F−1, i ∈ I} (29)

where the superscript h denotes the mesh-size and also indicates that Vh is a finite-dimensional discrete space.5

Approximation properties of Vh depend on the mesh-size: we refer to [19] for the mathematical details.

3.2.5. Collocation strategy

In order to motivate our collocation scheme for the spatial discretization, we first discuss the one-

dimensional fourth-order toy problem

∂4

∂ξ4
φ(ξ) = g(ξ), ∀ξ ∈ (0, 1) (30)

∂

∂ξ
φ(0) =

∂

∂ξ
φ(1) = 0 (31)

∂3

∂3ξ
φ(0) =

∂3

∂3ξ
φ(1) = 0 (32)

where g is a continuous funtion on (0, 1) and φ is the unknown. Assume that we look for an approximate

solution φh ∈ span{Bi,p}i=1,...,n, that is, a degree p, dimension n, spline on a given knot vector. It is

understood that the spline regularity is at least C4 and therefore the degree is p > 4. Because of the10

boundary conditions (31)-(32) that account for 4 independent equations, we have to derive n − 4 equations

from (30). In the collocation setting, we need to introduce collocation points, denoted τ̂j , for j = 3, . . . , n−2,

and set
∂4

∂ξ4
φh(τ̂j) = g(τ̂j), ∀j = 3, . . . , n − 2. (33)

Notice that (33) are indeed n − 4 equations, and with the two boundary conditions at 0 (which can be15

associated to j = 1, 2) and at 1 (which can be associated to j = n − 1, n) we have a square linear system.

Notice also that (33) is an interpolation problem on fourth-order derivative of splines, that is, for splines of

degree p− 4 on the same knot vector. A natural choice is then to select suitable interpolation points for the

space span{Bi,p−4}i=3,...,n−2 as τ̂j . One possibility is then to select Greville sites for degree p − 4 splines,

that is,20

τ̂j =
1

p − 4

j+p−2∑
i=j+3

ξi (34)

Observe that, from the open knot vector property, the first and last collocation points above are the interval

endpoints, that is τ̂3 = 0 and τ̂n−2 = 1.

If the differential operator included lower-order terms (e.g., second-order derivatives or zero-order terms

as in Eq. (16)), then (34) would still be a valid choice. Indeed, following e.g. the argument of [8], one can25

prove the convergence of such a scheme under suitable assumptions.
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For the time-discrete Cahn-Hilliard equation in two dimensions, the problem to be addressed is (16).

Assuming that the right-hand side of Eq. (16) is known, we look for u such that

u − aΔu + bΔ2u = r in V (35)

∇u · n = 0 on ∂V (36)

∇(Δu) · n = 0 on ∂V (37)

with a = 2βδn and b = ε2δn, and where we have considered the Neumann boundary condition (10) and,

accordingly, we have simplified the flux condition (9). Note that we have also assumed VD = ∅. The two-

dimensional collocation scheme for (35)–(37) can be designed in the lines of the one-dimensional scheme

above. First, we look for a discrete solution uh in the space Vh defined in (29), which has dimension

dim(Vh) = n(1)n(2) (38)5

Then, we set the collocation points on the parametric domain as the tensor product of (34), that is

τ̂C
ν =

⎛⎝ 1
p(1) − 4

j(1)+p(1)−2∑
i=j(1)+3

ξ
(1)
i ,

1
p(2) − 4

j(2)+p(2)−2∑
i=j(2)+3

ξ
(2)
i

⎞⎠ , ν ≡ (j(1), j(2)) ∈ IC (39)

where the index set is

IC = {3, . . . , n(1) − 2} × {3, . . . , n(2) − 2}

The collocation points (39) for a particular example can be observed in Figure 1. If the computational10

domain is a mapped geometry V , the collocation points on V are the push-forward of (39)

τC
ν = F (τ̂C

ν ) (40)

where F is the NURBS mapping defined in Eq. (26). Finally, we collocate equation (35) as

uh(τC
ν ) − aΔuh(τC

ν ) + bΔ2uh(τC
ν ) = r(τC

ν ), ∀ν ∈ IC (41)

Boundary conditions as (36) and (37), or of more general kind, can be imposed by interpolation. For15

this purpose, we introduce on the boundary of the parametric domain [0, 1]2 the Greville sites for degree p

splines, that is

{
τ̂BC

ν , ν ∈ IBC
}

=

⎧⎨⎩
⎛⎝ 1

p(1)

j(1)+p(1)∑
i=j(1)+1

ξ
(1)
i , 0

⎞⎠ , j(1) ∈ {1, . . . , n(1)}
⎫⎬⎭

∪
⎧⎨⎩

⎛⎝ 1
p(1)

j(1)+p(1)∑
i=j(1)+1

ξ
(1)
i , 1

⎞⎠ , j(1) ∈ {1, . . . , n(1)}
⎫⎬⎭

∪
⎧⎨⎩

⎛⎝0,
1

p(2)

j(2)+p(2)∑
i=j(2)+1

ξ
(2)
i

⎞⎠ , j(2) ∈ {2, . . . , n(2) − 1}
⎫⎬⎭

∪
⎧⎨⎩

⎛⎝1,
1

p(2)

j(2)+p(2)∑
i=j(2)+1

ξ
(2)
i

⎞⎠ , j(2) ∈ {2, . . . , n(2) − 1}
⎫⎬⎭

(42)
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where the first two line sets refer to the 2n(1) points on the two horizontal edges of [0, 1]2, and include the

four corners, while the third and fourth line sets refer to the 2n(2) − 4 points on the two vertical edges of

[0, 1]2, this time excluding corners (see Figure 1). The index set IBC is suitably defined to account for all

points in (42). Again the interpolation points on ∂V are the push-forward of (42)

τBC
ν = F (τ̂BC

ν ) (43)5

and then we interpolate the boundary conditions (36) and (37) at the τBC
ν ,

∇uh(τBC
ν ) · n = 0, ∀ν ∈ IBC (44)

∇(Δuh)(τBC
ν ) · n = 0, ∀ν ∈ IBC (45)

At the four corners of V , the normal vector n that appears in (44)-(45) is understood in an averaged

sense. We note now that (41) and (44)-(45) give a total of

#IC + #IBC + #IBC = (n(1) − 4)(n(2) − 4) + 4n(1) + 4n(2) − 8 = n(1)n(2) + 8

linear equations. Comparing to (38), it is understood that we need to reduce the number of equations. We

propose the following strategy: at each corner, we average the three equations (45) that are associated to10

the corner point and the two adjacent points (see Figure 1). This idea seems adequate to deal with all kind

of possible boundary conditions, and even though at this stage a proof of convergence is not available, our

numerical examples demonstrate the viability of the approach.

To summarize, our fully discrete algorithm is as follows: Given uh
n, find uh

n+1 ∈ Vh such that

uh
n+1(τ

C
ν ) − 2βδnΔuh

n+1(τ
C
ν ) + ε2δnΔ2uh

n+1(τ
C
ν ) =

uh
n(τC

ν ) + 6αδnuh
n(τC

ν )|∇uh
n(τC

ν )|2 + 3δn(αuh
n(τC

ν )2 − β)Δuh
n(τC

ν ), ∀ν ∈ IC

∇(uh
n+1(τ

BC
ν )) · n = 0 ∀ν ∈ IBC

∇(Δuh
n+1(τ

BC
ν )) · n = 0 ∀ν ∈ IBC with averaging at corners

(46)15

An example of selection of collocation and interpolation points is shown in Figure 1.

4. Numerical examples

Here we present a set of numerical examples that show the accuracy, efficiency, robustness, and geometrical

flexibility of our approach. For all the numerical examples we will take α = β = 1 in Eq. (2), which leads to

the stable homogeneous solutions u = ±1. We will use p = 5 in all the numerical examples.20

4.1. Accuracy test

Exact solutions to the Cahn-Hilliard equation are not available in several spatial dimensions. For this

reason, we will take an adequate initial condition and solve the initial-boundary value problem (7)–(11) in

two dimensions using a sufficiently small time step. We will compute the solution using different-size spatial

discretizations and observe how the solution converges as we refine the spatial discretization. Following [73],25
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we will take an initial condition for which we can anticipate the behavior of the solution at early times.

For this purpose, we linearize the Cahn-Hilliard equation with respect to a given concentration u within the

miscibility gap, and derive the partial differential equation

∂u

∂t
= f ′(u)Δu − ε2Δ2u (47)

which approximately describes the early-time dynamics of the Cahn-Hilliard equation [6]. Now, we perform5

a linear stability analysis of equation (47) using small perturbations of the concentration u. In particular,

we take

u0 = u + η cos(2πx/λ)eωt; η << u (48)

Substituting (48) in (47), we obtain an expression for the growth factor ω, namely,

ω = −
(

2π

λ

)2
[
f ′(u) + ε2

(
2π

λ

)2
]

(49)10

The growth of perturbations requires ω > 0, which for the remaining parameters being fixed, is achieved for

λ > λmin =
2πε√−f ′(u)

(50)

Note that equation (50) is well defined because u is in the miscibility gap, and, thus f ′(u) < 0. The fastest-

growing mode can be obtained by maximizing ω with respect to λ. This mode is termed critical mode and

is given by a wavelength λcr such that15

λcr =
√

2λmin (51)

Substituting (51) in equation (49), we get the largest growth factor

ωcr =
f ′(u)
4ε2

(52)

For the above stated reasons, we will take as initial condition for our initial-boundary value problem the

function20

u0(x, y) = u + η cos(2πx) cos(2πy) (53)

where u = 0 and η = 0.1. Now, we will select the parameters of the Cahn-Hilliard equation so as to make the

perturbations in (53) the most unstable mode. Using equations (50) and (51), we conclude that this amounts

to take the computational domain Ω = [0, 1]2 and ε = 1/(4
√

2π). Taking this initial condition we expect the

perturbation to grow, without creating new wavelengths, at least until the equilibrium concentrations (u =25

±1) are reached. The linear analysis predicts that this will happen at a time ts such that the amplification

factor eωcrts takes the value 10. This yields a linear time scale of the order ts ≈ 3 · 10−2. After that time, the

solution might bifurcate into a coarser arrangement. We have actually verified numerically that the solution

achieves the equilibrium concentrations approximately at time t ≈ 5 · 10−2. After that, the solution remains

practically time independent until time tb ≈ 0.2 when it bifurcates and undergoes the typical coarsening30

process.

Following [73] the numerical solutions coming from different refinements will be compared at t = 0.08. We

will use discretizations arising from uniform meshes composed of 162, 322, 642, and 1282 control points. The

10



time step is δ = 10−4. To use exactly the same initial condition for all the refinements we proceed as follows:

we project the function (53) onto the coarsest discretization, and then use standard knot insertion algorithms

to produce identical functions on finer discretizations. This can be achieved because knot insertion generates

nested discretizations in which richer spaces are supersets of coarser discretizations.

Figure 2(a) shows the initial condition, while Figure 2(b) presents the numerical solution on the 1282
5

discretization (note that the color scale is different). The numerical solutions on the coarser meshes are

almost indistinguishable from that on the 1282 mesh. To make the differences apparent, we take horizontal

cutlines of the solution at y = 0.5 and plot them in Figure 3. The plot shows that the solutions on different

discretizations are superposed at the natural scale of the plot. Only when we zoom in (see the inset) are

we able to observe differences. In the inset, it is observed that the numerical approximation converges to a10

function, which we assume to be the exact solution. As we refine the mesh, the approximations get closer to

the solution on the 1282 discretization.

4.2. Phase separation on a square domain

A homogeneous mixture of two fluids is unstable under thermal fluctuations within the so-called miscibility

gap. This phenomenon is reproduced by the Cahn-Hilliard equation. A standard linear stability analysis of15

the Cahn-Hilliard equation reveals that homogeneous states that fall into the so-called spinodal region are

unstable solutions that bifurcate into lower-free-energy states in which both phases are fully separated.

This section presents several numerical examples showing the two main separation mechanisms, namely,

spinodal decomposition and nucleation1. The relevant mechanism in the Cahn-Hilliard equation will be

defined by the initial condition. We take u0(x) = u + r, where u is a constant and r is random number20

uniformly distributed on [−0.005, 0.005]. For u = 0, spinodal decomposition will be the governing separation

mechanism, while for u �= 0 but within the miscibility gap, nucleation will take place. For these simulations

we employ a uniform mesh composed of 5122 control points and a constant time step δ = 10−5.

In the first calculation we take u = 0, and let the solution evolve. The time history of the phase variable

u may be observed in Figure 4. The different snapshots show the typical spinodal decomposition spatial25

structure. The mixture separates forming a complicated striped pattern that coarsens over time. As shown

in [43], if we let the simulation evolve, the stationary solution would be a fully separated flow with two

rectangular patches.

In Figure 5, we show the solution for u = 0.4. The rest of the parameters remain the same as in the last

calculation. We observe in Figure 5 that now the separation mechanism is nucleation. Isolated nuclei come30

up from the mixture. Again, the spatial microstructure of the mixture coarsens over time. We observe that

large bubbles grow at the expense of small bubbles in consistency with the phenomenon of Ostwald ripening.

Finally, we present another example that mixes both separation mechanisms. In this case, we do not take

u as a constant, but we vary it linearly with the horizontal spatial coordinate from −1 to 1. This setting gives

1In condensed matter physics literature, the word nucleation refers to the traversing of a free-energy barrier to form a new

phase.
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rise to three different morphologies as shown in Figure 6. On the left-hand side of the domain, the red phase

nucleates into the blue one. The exact opposite occurs on the right-hand side. In the middle, where u ≈ 0,

we observe again the striped pattern typical from spinodal decomposition. We also notice two vertical fronts

that move symmetrically to the vertical boundaries of the domain (x = 0 and x = 1). The reason for this

is that close to those boundaries, the initial condition approaches the pure phases which are stable solutions5

of the Cahn-Hilliard equation. Thus, phase separation on those parts of the domain is very slow or even

inexistent. Figure 7 shows the time evolution of the free-energy functional G for the spinodal decomposition

(Figure 7(a)), the nucleation example (Figure 7(b)), and the mixed decomposition (Figure 7(c)). We observe

that the free energy is decreasing at all times, which is consistent with the behavior of the exact solution.

4.3. Rupture of thin liquid columns during phase separation10

In this example we use the Cahn-Hilliard equation to simulate the rupture of thin liquid columns during

phase separation. The computational mesh is composed of 5122 control points and the time step is δ = 10−5.

We embed into a fully separated phase (u = −1) three columns of a mixture with a concentration in

the miscibility gap, as shown in Figure 8(a). The thickness of the liquid columns is 0.05 with sinusoidal

perturbations. The three columns are composed of mixtures with different concentrations, leading to different15

rupture topologies as shown in the snapshots of Figure 8. The liquid column on the left is defined by the

concentration −0.26, the one in the middle by −0.32, and that on the right by −0.38. It is shown in

the simulation that the closer to the spinodal decomposition regime the column concentration is, the more

elongated the drops are (left column). As we approach the nucleation regime (right column), the drops

become isolated circular spots as one would expect. Finally, we note that Figure 9 shows that the free energy20

of the discrete solution is time decreasing.

4.4. Phase separation on mapped domains

Here we show the geometrical flexibility of our method by solving the Cahn-Hilliard equation on mapped

geometries. We will illustrate the methodology using a quarter of an annulus and a circle, but more general

geometries can be utilized. The NURBS geometrical mapping that transforms the parametric space (a25

square) into a quarter of an annulus can be found, for example, in [28]. The mapping that transforms the

parametric domain into a circle can be found in [71]. We wish to emphasize that, due to the use of NURBS,

the geometrical representation of the computational domain is exact. To apply our collocation method on the

mapped geometry, the partial derivatives of the discrete solution in the physical space are obtained simply

using the chain rule.30

4.4.1. Phase separation on a quarter of an annulus

In this example, we take an annulus with internal radius ri = 1 and external radius re = 4. The mesh

is composed of 2562 control points and the time step is δ = 10−4. The interface length scale is given

by ε2 = 10−3. We solve a nucleation example taking as initial condition a random perturbation of the

homogeneous state u = 0.4. Figure 10 shows snapshots of the time history of the numerical solution. We35
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observe again the typical spatial pattern of nucleation in which bigger bubbles grow at the expense of smaller

bubbles, leading to microstructure coarsening over time.

4.4.2. Phase separation on a circle

In this final example, we consider a circle of radius r = 4. We remark that the adopted mapping [71]

gives rise to four singular points lying on the boundary of the domain. Such points naturally lack the5

minimum regularity required for the imposition of Neumann boundary conditions. This kind of problems

can be simply solved for instance by resorting to multi-patch geometries comprised of regular patches. Multi-

patch conditions for isogeometric collocation have been discussed and successfully applied in the framework

of elasticity [9], but it is out of the scope of the present paper to extend them to the case under investigation.

However, we decided to consider this problem to have the opportunity to illustrate the flexibility of our10

method with respect to boundary conditions, showing how to impose in a simple and straighforward way

Dirichlet conditions (which amounts to taking ∂VN = ∅ in (9))2. As initial condition we will take a random

perturbation of the homogeneous state u = 0. Then, to make the boundary conditions compatible with

the initial conditions, we take uD = 0 in (8). As a consequence, we have to impose (8) and (10) on the

boundary. These boundary conditions can be imposed strongly in the spline space Vh by removing the basis15

functions that are not zero or have not zero derivatives at the boundary (as shown in [7] in the context of

the solution of different fourth order PDEs by means of standard Galerkin-based isogeometric analysis). The

computational mesh is composed of 2562 control points, and the time step is δ = 10−4. The interface length

scale is given by ε2 = 10−3. The time history of the phase variable is shown in Figure 11 which shows the

coarsening dynamics of the mixture subjected to Dirichlet boundary conditions. Figure 12 shows the time20

evolution of the free energy for the numerical examples on mapped geometries. We note that the free energy

is time decreasing in both cases, although for the example on a circle that does not have to be necessarily

the case, because that property no longer holds for the exact solution when Dirichlet boundary conditions

are imposed.

5. Conclusions25

We have presented isogeometric collocation methods for phase-field models. We have illustrated the ideas

behind our method by discretizing the Cahn-Hilliard equation, which is one of the most widely utilized

phase-field models. We have presented several numerical examples involving the phase separation of two-

phase immiscible systems. The numerical examples show the accuracy, efficiency, and geometrical flexibility

of our method, which we believe successfully combines geometrical flexibility with simplicity and efficiency.30

2We remark that the strategy described in Section 3.2.5 can be successfully used also to impose Dirichlet boundary conditions.

However, since the strategy proposed here is a simple and straigthforward alternative which is also able to deal with Dirichlet

conditions on a boundary with singular points, we believe that it is worthwhile to show an example where it is used.
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Figure 1: Example of collocation points and boundary condition interpolation points. We consider the parametric domain,

we set degree p = 5 and the knot vector K = (0, 0, 0, 0, 0, 0, .2, .4, .6, .8, 1, 1, 1, 1, 1, 1) in each direction. The collocation points

from (39) are represented by stars, the interpolation points (42) for the boundary conditions are indicated by circles. The

boundary condition (45) is averaged at each corner on the thick circles.

(a) Initial condition (b) Solution at t = 0.08

Figure 2: Accuracy test. The initial condition, shown in panel (a), represents the most unstable mode for the Cahn-Hilliard

equation in the linear regime. When we advance the solution in time, the perturbations with respect to the homogeneous state

u = 0 grow leading to the solution in panel (b) at time t = 0.08 (note that the color scale is different). We computed the

solution on meshes composed of 162, 322, 642, and 1282 control points, and they were almost indistinguishable at the scale of

the plot (here we show the solution on the finest mesh).
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Figure 3: Accuracy test. Comparison of the numerical solutions computed on uniform meshes composed of 162, 322, 642, and

1282 control points. We took horizontal cutlines (at y = 0.5) of the solution to the problem shown in Figure 2(b). The inset

shows an amplified view of the interval x ∈ [0.4, 0.6].
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(a) t = 2 · 10−3 (b) t = 4 · 10−3

(c) t = 5 · 10−2 (d) t = 5 · 10−1

Figure 4: Phase separation on a square domain. The governing separation mechanism is spinodal decomposition. The mixture

separates from a randomly perturbed homogeneous state (u = 0) giving rise to a striped pattern of complicated topology that

coarsens over time. The mesh is composed of 5122 control points. The parameters are ε2 = δ = 10−5.
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(a) t = 4 · 10−3 (b) t = 1 · 10−2

(c) t = 5 · 10−2 (d) t = 5 · 10−1

Figure 5: Phase separation on a square domain. The governing separation mechanism is nucleation. The mixture separates

from a randomly perturbed homogeneous state (u = 0.4) giving rise to a spatial structure composed of isolated circular patches

whose size increases with time. The mesh is composed of 5122 control points. The parameters are ε2 = δ = 10−5.
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(a) t = 1 · 10−3 (b) t = 2 · 10−3

(c) t = 6 · 10−3 (d) t = 1.5 · 10−1

Figure 6: Phase separation on a square domain from a randomly perturbed linear state u = 2(x − 0.5). Both spinodal

decomposition and nucleation take place on different parts of the computational domain. The mesh is composed of 5122 control

points. The parameters are ε2 = δ = 10−5.
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(b) Nucleation
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(c) Mixed

Figure 7: Phase separation on a square domain. Time evolution of the free energy funtional G of the discrete solution. We

observe that G is monotonically decreasing, indicating that the discrete solution respects the underlying physics of the problem.

Panel (a) corresponds to the spinodal decomposition. The parameters are ε2 = δ = 10−5 and u = 0. Panel (b) corresponds to

nucleation. The parameters are ε2 = δ = 10−5 and u = 0.4. Panel (c) corresponds to the mixed separation mechanism in which

spinodal decomposition and nucleation take place simultaneously. The parameters are ε2 = δ = 10−5 and u = 2(x − 0.5).
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(a) t = 0 (b) t = 2 · 10−4

(c) t = 10−3 (d) t = 5 · 10−3

Figure 8: Rupture of thin liquid columns during phase separation. The images show how different mixture concentration in

the liquid columns lead to different rupture patterns. The mesh is composed on 5122 control points. The parameters are

ε2 = δ = 10−5.
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Figure 9: Phase separation on a square domain. We plot the time evolution of the free energy funtional G, which is monotonically

decreasing. This behavior is consistent with that of the exact solution. The parameters are ε2 = δ = 10−5.
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(a) t = 0.5 (b) t = 1.5

(c) t = 3.0 (d) t = 5.0

Figure 10: Nucleation on a quarter of an annulus. The exterior radius is re = 4, while the interior is ri = 1. The mixture

separates from a randomly perturbed homogeneous state u = 0.4. The mesh is composed of 2562 control points. The parameters

are ε2 = 10−3 and δ = 10−4.
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(a) t = 0.1 (b) t = 0.3

(c) t = 0.9 (d) t = 2.0

Figure 11: Spinodal decomposition on a circle of radius r = 4. We use homogeneous Dirichlet boundary conditions and let the

mixture separate from a randomly perturbed uniform solution u = 0. The computational mesh is composed of 2562 control

points and the time step is δ = 10−4. The interface length scale is given by ε2 = 10−3.
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(a) Spinodal decomposition on an annulus
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(b) Nucleation on a circle

Figure 12: Time evolution of the free energy for the numerical examples on mapped domains. We observe that the free energy

is monotonically decreasing in both cases. We note, however, that for the example with Dirichlet boundary conditions, the free

energy does not necessarily have to decrease.
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