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Abstract This paper focuses on the numerical simula-1

tion of martensitic transformations in shape memory alloys2

(SMAs) using a phase-field model. We developed a dynamic3

thermo-mechanical model for SMAs, using strain based4

order parameter, having a bi-directional coupling between5

structural and thermal physics via strain, strain rate and tem-6

perature. The model involves fourth order spatial derivatives7

representing a domain wall. We propose an isogeometric8

analysis numerical formulation for straightforward solu-9

tion to the fourth order differential equations. We present10

microstructure evolution under different loading conditions11

and dynamic loading simulations of the evolved microstruc-12

tures of SMAs of different geometries to illustrate the flex-13

ibility, accuracy and stability of our numerical method. The14

simulation results are in agreement with the numerical and15

experimental results from the literature.16
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1 Introduction 19

Phase transformations are observed across different length 20

and time scales from phase transitions due to atomic 21

rearrangements to planet evolution. It is a widely studied 22

phenomenon in materials science, mathematics and engineer- 23

ing [10,33,37,42,43]. The mathematical modeling of phase 24

transformations involves treatment of interfaces, that is, thin 25

transition regions, between two or more phases. Phase-field 26

modeling is a widespread methodology where the interface 27

is treated by a diffused smoothly-varying transition layer. 28

The continuous treatment of interfaces reduces the prob- 29

lem complexity and makes its numerical approximation more 30

tractable. 31

Phase-field modeling is widely used to study phase trans- 32

formations in shape memory alloys (SMAs) at the meso- 33

and nano-scale [9,31,33]. SMAs exhibit reconstructive solid- 34

to-solid phase transformations due to symmetry breaking. 35

The high symmetry atomic arrangement (austenite phase) is 36

transformed into the lower symmetry arrangements (marten- 37

sitic variants) from a crystallographic point of view. Phase 38

transformations in SMAs reveal themselves as complex pat- 39

terns of microstructures, such as parallel twins, zig-zag twins, 40

cross twins, wedge and habit plane [7]. These microstruc- 41

tures have different phases separated by an invariant plane. 42

A phase-field model can describe this complex microstruc- 43

ture by using appropriately defined conserved field variables, 44

or order-parameters, that vary continuously across the invari- 45

ant plane. A continuous variation of field variables across the 46

invariant plane often leads to higher order differential terms in 47

the governing equations, which poses significant challenges 48

for the numerical discretization of the model [27]. 49

Different numerical schemes have been proposed to solve 50

higher-order differential equations. The finite difference 51

method has been widely used to solve phase transformations 52
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of SMAs on geometrically simple domains [2,35,46]. Alter-53

natively, spectral methods have been reported to be efficient54

in solving phase-field models because they can resolve sharp55

interfaces with a moderate number of uniform grid points56

[11]. Other numerical techniques like the method of lines,57

the finite volume method or hybrid optimization algorithms58

have been proposed to solve phase-field models [45]. Most59

of the above methodologies use uniform grid stencils and are60

not flexible with complex geometries in real-world applica-61

tions. In such scenarios, one should resort to the finite element62

method (FEM), which finds wide applicability across engi-63

neering disciplines to simulate physics with geometric flexi-64

bility. The FEM has been extensively used for the variational65

formulation of second-order differential operators, where the66

conforming element has inter-element continuity restricted to67

C 0. However, the conforming discretization of fourth-order68

spatial differential operators requires the basis functions to be69

at least C 1-continuous across element boundaries. There are70

few conforming finite elements (e.g., 2D Argyris element)71

which support higher order continuity, necessary for solving72

higher-order differential equations. One of the roundabout73

ways is to use mixed finite elements for spatial discretization,74

which leads to an increase in degrees of freedom, and, thus,75

is not an ideal solution. In short, there is a need of a numeri-76

cal method which can have geometric flexibility and achieve77

higher-order continuity of the basis functions. We believe78

that isogeometric analysis (IGA), a recently-proposed com-79

putational method, can prove to be an effective procedure for80

solving higher-order problems on complex geometries.81

IGA is an analysis tool based on the Non-Uniform82

Rational B-Spline (NURBS) basis, a backbone of modern83

Computer-Aided Design (CAD) packages. IGA employs84

complex NURBS-based representations of the geometry and85

the field variables in a variational formulation of the equa-86

tions. Thus, IGA may open the door to technologies that87

directly integrate CAD and analysis, simplifying or elimi-88

nating altogether the mesh-generation bottleneck [6,13,14,89

28,40,41]. Using IGA, the geometry can be modeled exactly90

in many instances and, as a consequence, geometric errors are91

eliminated. IGA accommodates the classical concepts of h-92

and p-refinement, but introduces a new procedure, namely93

k-refinement that seems to be unique within the geometri-94

cally flexible numerical methods. In k-refinement the order95

of the approximation is elevated, but continuity is likewise96

increased, creating new opportunities for the approximation97

of problems whose discretization requires smoothness [3–98

5,16,20,24–26,29,30,38]. Thus, we believe that IGA pro-99

vides unique attributes in solving higher-order differential100

operators with C 1 or higher order continuity along with101

higher accuracy and robustness without a need of using102

mixed finite element formulation or non conforming ele-103

ments. The accuracy and robustness of IGA methodology104

have been reported for solving the phase-field models in the105

field of crack propagation [8], spinodal decomposition [32], 106

topology optimization [17], and tumor angiogenesis [44]. We 107

reported the first use of the IGA for solving the phase-field 108

models for microstructure evolution in SMAs in [18]. Here, 109

we extend the studies to different geometries and bound- 110

ary conditions, performing physically-relevant simulations 111

(for example, tensile tests) to investigate thermo-mechanical 112

behavior of SMA structures as a function of their microstruc- 113

tures. 114

In this paper, we model the two dimensional square- 115

to-rectangular phase transformations in FePd SMA speci- 116

mens and numerically solve the governing equations using 117

IGA. The coupled equations of nonlinear thermoelasticity 118

have been developed by using the phase-field model and the 119

Ginzburg–Landau theory. The governing laws are introduced 120

in the IGA framework by using a variational formulation that 121

can be simply derived by multiplying the governing equa- 122

tions with a smooth function and integrating by parts twice. 123

Thus, no additional variables are introduced avoiding the use 124

of mixed methods which typically require complicated sta- 125

bility analyses. Using the proposed algorithm, we perform 126

several numerical studies on SMAs under coupled thermo- 127

mechanical dynamic loading conditions. The examples show 128

the strong thermo-mechanical coupling of SMAs and illus- 129

trate the flexibility, accuracy and stability of our numerical 130

methods. 131

The rest of the paper is organized as follows: Sect. 2 132

describes the derivation of the coupled thermo-mechanical 133

model of square-to-rectangular phase transformations in 134

SMAs. The weak formulation and IGA numerical imple- 135

mentation of the governing equations are described in Sect. 136

3. The above methodology is exemplified with several two 137

dimensional numerical simulations on SMA patches in Sect. 138

4. Finally, the conclusions are given in Sect. 5. 139

2 Formulation of dynamic coupled thermo-mechanical 140

model for square-to-rectangular phase 141

transformations in SMAs 142

The square-to-rectangular phase transformations are a 2D 143

representation of cubic-to-tetragonal phase transformations 144

observed in several SMA materials like FePd, InTl or NiAl. 145

The square phase represents high-temperature and high- 146

symmetric austenite phase while rectangles, with a length 147

along two coordinate axes, represent low-temperature low- 148

symmetric martensite variants. The dynamics of SMA is 149

highly dependent on the temperature. The SMA may exhibit 150

ferroelastic, pseudo-elastic and elastic behavior at low, inter- 151

mediate and high temperatures [21]. This wide range of qual- 152

itative behaviors is captured in the simulations by accounting 153

for the coupling effects between the structural and thermal 154

fields. 155
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2.1 Theory156

In this section, we derive the governing equations of SMA157

dynamics accounting for thermo-mechanical nonlinear cou-158

pling. We begin by introducing basic notations for the kine-159

matics of SMAs. Let us call uuu = {u1, u2}T the displace-160

ment field. We will work on the physical domain � ⊂ R
2,161

parameterized by Cartesian coordinates xxx = {x1, x2}T . Let162

us call ǫǫǫ the Cauchy–Lagrange infinitesimal strain tensor,163

component-wise defined as ǫi j =
(
ui, j + u j,i

)
/2, i, j ∈164

{1, 2}, where an inferior comma denotes partial differentia-165

tion (e.g., ui,1 = ∂ui/∂x1). Let us define the following strain166

measures167

e1 = (ǫ11 + ǫ22) /
√

2, e2 = (ǫ11 − ǫ22) /
√

2,168

e3 = (ǫ12 + ǫ21) /2, (1)169

that we call hydrostatic, deviatoric, and shear strain, respec-170

tively. To derive the fundamental equations governing the171

thermo-mechanical coupling of SMAs, we will use the172

phase-field method and Landau–Ginzburg free energy. In173

phase-field modeling, the different phases are distinguished174

using an order parameter. The order parameter for square-175

to-rectangular phase transformations is the deviatoric strain176

that we denote e2. The austenite and two martensite variants177

are defined by e2 = 0, and e2 = ±1, respectively.178

The free energy for the 2D square-to-rectangular phase-179

transformations considering the Landau-based potential is180

defined as181

F =
∫

�

[
a1

2
e2

1+
a3

2
e2

3+
a2

2
τe2

2−
a4

4
e4

2+
a6

6
e6

2+
kg

2
|∇e2|2

]
dxxx182

=:
∫

�

Fdxxx (2)183

where ai , kg and θm are the material constants, τ = (θ −184

θm)/θm is the dimensionless temperature, θ is the material185

temperature and | · | denotes the Euclidean norm of a vector186

living in R
2. Figure 1 shows the plot of free-energy density187

F as a function of e2 and θ . When the temperature is higher188

than the phase transformation temperature θm , the Landau189

energy function has a minimum corresponding to the austen-190

ite phase. When the temperature is lower than θm , the energy191

has several minima corresponding to the variants of marten-192

site. When the temperature is near θm , the Landau free energy193

has minima corresponding to the austenite and the variants194

of martensite.195

The kinetic energy K , the energy associated with the196

external body forces B, and the dissipation D are defined,197

respectively, as198

−2
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Fig. 1 Free energy functional of square-to-rectangular phase transfor-

mations as a function of e2 and θ . When the temperature is higher than

the phase transformation temperature θm , the Landau energy as a func-

tion of e2 has a minimum corresponding to the austenite phase. When

the temperature is lower than θm , the energy has several minima cor-

responding to the variants of martensite. When the temperature is near

θm , the Landau free energy has minima corresponding to the austenite

and the variants of martensite (color online)

K =
∫

�

ρ

2
|u̇uu|dxxx; B =

∫

�

fff · uuudxxx; D =
∫

�

η

2
∇uuu : ∇uuu dxxx, 199

(3) 200

where ρ is the density, fff is the external body load vector, η 201

is the dissipation constant, u̇uu indicates the time derivative of 202

uuu and ∇uuu : ∇uuu = ui, j ui, j (repeated indices indicate sum- 203

mation). The Hamiltonian of the problem can be expressed 204

as 205

H =
t∫

0

(K − F − B − D)dt 206

:=
t∫

0

∫

�

H(t, xxx,uuu, u̇uu,∇uuu,∇∇uuu)dxxxdt, (4) 207

where [0, t] is the time interval of interest. Using calculus 208

of variations to determine the extrema of the functional (4), 209

leads to the momentum balance equations. If we take varia- 210

tions with respect to ui , we obtain the ith component of the 211

momentum balance equation, which is, 212

∂ H

∂ui

− ∂

∂x1

(
∂ H

∂ui,1

)
− ∂

∂x2

(
∂ H

∂ui,2

)
+ ∂

∂x2
1

(
∂ H

∂ui,11

)
213

+ ∂

∂x1∂x2

(
∂ H

∂ui,12

)
+ ∂

∂x2
2

(
∂ H

∂ui,22

)
− ∂

∂t

(
∂ H

∂ u̇1

)
= 0. 214

(5) 215

Equation (5) can be rewritten as 216

ρ
∂2ui

∂t2
= σi j, j + σ

g
i + η∇2u̇i + fi , (6) 217
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where repeated indices indicate summation, and218

σ11 = 1√
2

[
a1e1 + a2τe2 − a4e3

2 + a6e5
2

]
, (7a)219

σ12 = 1

2
a3e3 = σ21, (7b)220

σ22 = 1√
2

[
a1e1 − a2τe2 + a4e3

2 − a6e5
2

]
. (7c)221

The higher-order differential term σσσ g takes the form222

σ
g
1 = −kg

2

[
u1,1111 + u1,1122

]
+ kg

2

[
u2,1112 + u2,1222

]
223

= − kg√
2
∇2

(
∂e2

∂x1

)
, (8a)224

σ
g
2 = +kg

2

[
u1,1112 + u1,1222

]
− kg

2

[
u2,1122 + u2,2222

]
225

= kg√
2
∇2

(
∂e2

∂x2

)
. (8b)226

If we define the differential operator ∇⊥ as ∇⊥ =227

{∂(·)/∂x1,−∂(·)/∂x2}T , the stressσσσ g can be written in diver-228

gence form as229

σσσ g = ∇ ·
(

kg

2
∇∇⊥e2

)
.230

To account for the thermo-mechanical coupling in this231

framework, we need to define an energy balance equation. We232

will assume that the contribution of σσσ g to the energy balance233

is negligible. Under this assumption, the energy equation can234

be expressed as (compare with [34]):235

ρ
∂e

∂t
− σσσ : ∇vvv + ∇ · qqq = g, (9)236

wherevvv = u̇uu, e is the internal energy,qqq is the heat flux and g is237

the heat supply per unit mass. Following classical thermody-238

namics, we derive the state variables from a thermodynamic239

potential. Let us define the Helmholtz free energy as240

Ψ = F − Cvθ ln θ, (10)241

where Cv is the specific heat of the material. In order for the242

theory to comply with the second law of thermodynamics,243

we define the internal energy and the heat flux as follows:244

e = Ψ − θ
∂�

∂θ
; qqq = −κ∇θ, (11)245

where κ is the thermal conductivity which we assume con-246

stant. Using these expressions in Eq. (9), dropping the mixed247

derivatives and the higher-order powers of the strains ei , we248

obtain the following equation249

ρCv

∂θ

∂t
= κ∇2θ + a2

θ

θm

e2
∂e2

∂t
+ g. (12)250

2.2 Strong form of the boundary-value problem for the 251

phase-field model 252

Let � ⊂ R
2 be an open set in two dimensional space. The 253

boundary of �, assumed sufficiently smooth (e.g., Lipschitz), 254

is denoted by Ŵ. We call nnn the unit outward normal to Ŵ. 255

We assume the boundary Ŵ to be composed of two comple- 256

mentary parts, such that Ŵ = Ŵu ∪ Ŵσ , Ŵu ∩ Ŵσ = ∅. The 257

boundary-value problem governing the dynamic evolution of 258

the SMA can be stated as follows: find the displacements uuu 259

: � × (0, T ) 
→ R
2, and temperature θ : � × (0, T ) 
→ R 260

such that 261

ρ
∂2uuu

∂t2
= ∇ · σσσ + σσσ g + η∇2u̇̇u̇u + fff , in � × (0, T ),

(13.1)

262

cv

∂θ

∂t
= κ∇2θ + a2θe2

∂e2

∂t
+ g, in � × (0, T ),

(13.2)

263

uuu = uuu D, on Ŵuuu × (0, T ),

(13.3)

264

(
σσσ + kg

2
∇∇⊥e2

)
nnn = 0, on Ŵσσσ × (0, T ),

(13.4)

265

∇θ · nnn = 0, on Ŵ × (0, T ),

(13.5)

266

uuu(xxx, 0) = uuu0(xxx), in �, (13.6) 267

θ(xxx, 0) = θ0(xxx), in �, (13.7) 268
269

where uuu D : � 
→ R
2 denotes the prescribed displacements, 270

and uuu0 : � 
→ R
2, θ0 : � 
→ R are given functions which 271

represent the initial displacements and temperature, respec- 272

tively. 273

2.3 Dimensionless form of the phase-field equations 274

We rescale Eqs. (13.1) and (13.2) to a dimensionless form 275

by using the following change of variables: 276

ei = ecēi , ui = ecδūi , x = δ x̄, 277

F = FcF̄ , t = tc t̄, θ = θcθ̄ . (14) 278

The variables with bar and subscript c are rescaled variables 279

and constants respectively. The thermo-mechanical field Eqs. 280

(13.1) and (13.2) can now be converted to the dimensionless 281

form: 282
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∂2ūi

∂ t̄2
= ∂σ̄i j

∂ x̄ j

+ σ̄
g
i + η̄∇2 ˙̄ui + f̄i ,283

(summation on j is implied) (15)284

∂θ̄

∂ t̄
= k̄

(
∂2θ̄

∂ x̄2
+ ∂2θ̄

∂ ȳ2

)
+ χ̄ θ̄ ē2

∂ ē2

∂ t̄
+ ḡ, (16)285

with rescaled constants defined as286

ec =
√

a4

a6
, δ =

√
kga6

a2
4

, tc =
√

ρδ2

a6e4
c

, η̄ = ηtc

ρδ2
,287

k̄ = ktc

δ2ρCv

, χ̄ = a2e2
2√

2ρCvθc

, ḡ = gtc

ρCvθc

, f̄i = fi t
2
c

ρecδ
.288

(17)289

3 Numerical formulation290

We numerically implement the governing equations in a vari-291

ational form utilizing IGA. We discretize the domain using292

C 1-continuous functions essential for the discretization of293

fourth-order PDEs in primal form. The second order accurate294

generalized-α method, which accounts for high-frequency295

damping, is used for time integration along with an adaptive296

time stepping scheme developed by the authors of [23].297

3.1 Weak formulation298

The weak formulation is derived by multiplying the gov-299

erning equations with weighting functions {UUU ,�} and trans-300

forming them by using integration by parts. Initially, we con-301

sider periodic boundary conditions in all directions. Let X302

denote both the trial solution and weighting function spaces,303

which are assumed to be identical. The variational formu-304

lation is stated as follows: find SSS = {uuu, θ} ∈ X such that305

B(WWW , SSS) = 0 ∀WWW = {UUU ,�} ∈ X, where306

B(WWW , SSS) =
∫

�

[
ρUUU · ∂2uuu

∂t2
+ �Cv

∂θ

∂t

]
d�307

+
∫

�

(
∇UUU : (σσσ+η∇u̇̇u̇u)−kg

2
∇2UUU · ∇⊥e2 − UUU · fff

)
d�308

+
∫

�

[
κ∇� · ∇θ − �

(
g + a2

θ

θm

e2
∂e2

∂t

)]
d�. (18)309

3.2 Semi-discrete formulation310

For the space discretization of Eq. (18), the Galerkin method311

is used. We approximate Eq. (18) by the following variational312

problem over the finite element space Xh ⊂ X . Thus, the313

problem can be stated as: find SSSh = {uuuh, θh} ∈ Xh such that314

∀WWW h = {UUU h,�h} ∈ Xh : 315

B(WWW h, SSSh) = 0, (19) 316

with WWW h and SSSh defined as 317

WWW h = {UUU h,�h},UUU h =
nb∑

A=1

UUU A NA,�h =
nb∑

A=1

�A NA,

(20.1)

318

SSSh = {uuuh, θh},uuuh =
nb∑

A=1

uuu A NA, θh =
nb∑

A=1

θA NA, (20.2) 319

320

where the NA’s are the basis functions, and nb is the dimension 321

of the discrete space. In this work, we define the NA’s using 322

NURBS basis functions of degree greater than two, which 323

achieve global C 1-continuity or higher. A NURBS basis is 324

constructed directly from a B-Spline basis, which is defined 325

by using the Cox-de Boor recursion formula as [15] : 326

p = 0 : Ni,0(ξ) =
{

1 if ξi ≤ ξ < ξi+1

0 otherwise
327

p > 0 : Ni,p(ξ) = ξ − ξi

ξi+p − ξi

Ni,p−1(ξ) 328

+ ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (21) 329

where p is polynomial order, n is the number of functions in 330

the basis, and ξi ∈ R is the ith component in a knot vector 331

��� = {ξ1, ξ2, . . . , ξn+p+1}. Using the B-Spline basis we can 332

define a B-Spline curve living in R
d by linearly combining 333

the basis functions as 334

FFFC (ξ) =
n∑

i=1

CCC i Ni,p(ξ), (22) 335

with the control points CCC i ∈ R
d , i ∈ {1, . . . , n}. A NURBS 336

curve in R
d is a projective transformation of a B-Spline curve 337

defined in R
d+1. Let us assume that DDDi ∈ R

2, i ∈ {1, . . . , n} 338

is a set of control points in a two-dimensional space, and 339

let ωi be a set of positive numbers called weights such that 340

{DDDi , ωi } ∈ R
3. We define the following B-Spline curve living 341

in R
3 as 342

FFF D(ξ) =
n∑

i=1

{DDDi , ωi }Ni,p(ξ). (23) 343

The NURBS curve associated to FFF D is defined as 344

FFF(ξ) =
n∑

i=1

DDDi

ωi

ωi Ni,p(ξ)∑n
j=1 ω j N j,p(ξ)

. (24) 345

Note that the NURBS curve FFF lives in R
2. Using the notation 346
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ĈCC i = DDDi

ωi

, W (ξ)=
n∑

i=1

ωi Ni,p(ξ), Ri,p(ξ) = ωi Ni,p(ξ)

W (ξ)
,

(25)347

we have that348

FFF(ξ) =
n∑

i=1

ĈCC i Ri,p(ξ). (26)349

We will call Ri,p, NURBS basis functions. Two- or three-350

dimensional NURBS basis can be constructed by projecting351

tensor products of one-dimensional B-Spline bases. We note352

that when there are no repeated knots in the knot vector,353

quadratic NURBS or B-Spline functions achieve global C 1
354

continuity.355

3.3 Time stepping scheme356

LetXXX,ẊXX, andẌXX denote the vector of global degrees of freedom357

and its first, and second time derivatives, respectively. Let us358

define the following residual vectors:359

RRR = {RRRC , RRRT }T , (27.1)360

RRRC = {RC
Ai }, (27.2)361

RC
Ai = B

(
{NAeeei , 0}, {uuuh, θh}

)
, (27.3)362

RRRT = {RT
A}, (27.4)363

RT
A = B

(
{0, NA}, {uuuh, θh}

)
. (27.5)364

365

Given XXXn , ẊXXn and ẌXXn and �tn = tn+1 − tn , find XXXn+1, ẊXXn+1,366

ẌXXn+1, XXXn+α f
, ẊXXn+α f

, and ẌXXn+αm , such that367

RRRC
(
XXXn+α f

, ẊXXn+α f
, ẌXXn+αm

)
= 0, (28.1)368

RRRT
(
XXXn+α f

, ẊXXn+α f
, ẌXXn+αm

)
= 0, (28.2)369

XXXn+α f
= XXXn + α f

(
XXXn+1 − XXXn

)
, (28.3)370

ẊXXn+α f
= ẊXXn + α f

(
ẊXXn+1 − ẊXXn

)
, (28.4)371

ẌXXn+αm = ẌXXn + αm

(
ẌXXn+1 − ẌXXn

)
, (28.5)372

ẊXXn+1 = ẊXXn + �tn

[
(1 − γ ) ẌXXn + γ ẌXXn+1

]
, (28.6)373

XXXn+1 = XXXn + �tnẊXXn + (�t)2

2

[
(1 − 2β) ẌXXn + 2βẌXXn+1

]
.

(28.7)

374

375

To define a second-order accurate and unconditionally stable376

method, the parameters αm and α f can be defined in terms of377

ρ∞ ∈ [0, 1], the spectral radius of the amplification matrix378

as �t 
→ ∞, as follows [15]379

αm = 1

2

(
3 − ρ∞
1 + ρ∞

)
, α f = 1

1 + ρ∞
, (29) 380

while the parameters γ and β must fulfill the relations 381

γ = 1

2
+ αm − α f , β = 1

4

(
1 − α f + αm

)2
, (30) 382

with choice of 383

αm ≥ α f ≥ 1

2
, 384

for the unconditional stability. 385

This method can be implemented as a two-stage predictor- 386

multicorrector algorithm as follows: 387

(i) Predictor stage: Set 388

ẊXXn+1,(0) = ẊXXn, (31.1) 389

ẌXXn+1,(0) = γ − 1

γ
ẌXXn, (31.2) 390

XXXn+1,(0) = XXXn + �tnẊXXn 391

+ (�tn)2

2

[
(1 − 2β) ẌXXn + 2βẌXXn+1,(0)

]
,

(31.3)

392

393

where the subscript 0 on the left-hand-side quantities is the 394

iteration index of the nonlinear solver. 395

(ii) Multicorrector stage: Repeat the following steps for 396

i = 1, 2, · · · , imax 397

1. Evaluate iterates at the α-levels 398

XXXn+α f ,(i−1) = XXXn + α f

(
XXXn+1,(i−1) − XXXn

)
, (32.1) 399

ẊXXn+α f ,(i−1) = ẊXXn + α f

(
ẊXXn+1,(i−1) − ẊXXn

)
, (32.2) 400

ẌXXn+αm ,(i−1) = ẌXXn + αm

(
ẌXXn+1,(i−1) − ẌXXn

)
. (32.3) 401

402

403

2. Use the solutions at the α-levels to assemble the residual 404

and the tangent matrix of the linear system 405

KKK (i)�ẌXXn+1,(i) = −RRR(i). (33) 406

Solve this linear system using a preconditioned GMRES 407

algorithm to a specified tolerance. 408

3. Use ẊXXn+1,(i) to update the iterates as 409

ẌXXn+1,(i) = ẌXXn+1,(i−1) + �ẌXXn+1,(i), (34.1) 410

ẊXXn+1,(i) = ẊXXn+1,(i−1) + γ�tnẌXXn+1,(i), (34.2) 411

XXXn+1,(i) = XXXn+1,(i−1) + β (�tn)
2 ẌXXn+1,(i). (34.3) 412

413
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This completes one non-linear iteration. Steps 1–3 are to414

be repeated until the residual vectors RRRC and RRRT have415

been reduced to a given tolerance.416

The tangent matrix KKK (i) in Eq. (33) may be computed417

using the chain rule as follows,418

KKK =
∂RRR

(
XXXn+α f

, ẊXXn+α f
, ẌXXn+αm

)

∂ẌXXn+αm

∂ẌXXn+αm

∂ẌXXn+1

419

+
∂RRR

(
XXXn+α f

, ẊXXn+α f
, ẌXXn+αm

)

∂ẊXXn+α f

∂ẊXXn+α f

∂ẊXXn+1

∂ẊXXn+1

∂ẌXXn+1

420

+
∂RRR

(
XXXn+α f

, ẊXXn+α f
, ẌXXn+αm

)

∂XXXn+α f

∂XXXn+α f

∂XXXn+1

∂XXXn+1

∂ẌXXn+1

421

= αm

∂RRR
(
XXXn+α f

, ẊXXn+α f
, ẌXXn+αm

)

∂ẌXXn+αm

422

+ α f γ�tn

∂RRR
(
XXXn+α f

, ẊXXn+α f
, ẌXXn+αm

)

∂ẊXXn+α f

423

+ α f β (�tn)
2

∂RRR
(
XXXn+α f

, ẊXXn+α f
, ẌXXn+αm

)

∂XXXn+α f

,424

(35)425

where we have omitted the sub-index (i) for notational426

simplicity.427

4 Numerical simulations428

To illustrate the implementation and effectiveness of the429

IGA approach, a number of numerical simulations have been430

performed using the developed dynamic thermo-mechanical431

model. Most numerical simulations have been performed on432

a rectangular SMA specimen of � = [0, Lx ] × [0, L y] as433

shown in Fig. 2a. Moreover, some numerical simulations, in 434

particular, on annular and circular domains, are presented to 435

illustrate the geometrical flexibility of the approach. (refer 436

to Fig. 2 for domain and boundary nomenclature). The ini- 437

tial and boundary conditions for the experiments have been 438

described in the respective sections. The rescaling constant 439

for spatial and temporal domain are 1.808 nm, and 1.812 ps, 440

respectively. The Fe70Pd30 material parameters [1] used for 441

the simulations are as described in Table 1. 442

In the following sections, we first validate our numerical 443

methodology by comparing our results with those obtained 444

by using a mixed formulation and standard C 0 Lagrange ele- 445

ments. Then, we carry out the mesh refinement studies with h- 446

and k-refinements. In all the following simulations, we use 447

uniform knot vectors with no repeated knots. The dynam- 448

ics of SMA specimens under thermo-mechanical loadings is 449

described afterwards. Finally, we study the microstructure 450

evolution in an annulus and circular geometry. 451

4.1 Comparison of results with Lagrange and B-Spline 452

bases 453

The results of IGA have been first validated with the results 454

from the 2D simulations carried out with the commercial 455

Comsol Multiphysics software [12]. The mixed finite ele- 456

ment formulation has been used to implement the thermo- 457

mechanical equations in Comsol. The identical problems 458

have been set up in both approaches, with same initial and 459

boundary conditions on a square geometry with Lx = L y = 460

150 nm. The microstructures were evolved starting from an 461

initial displacement seed (in dimensionless unit) in the center 462

of the domain xxxc = {xc
1, xc

2}T defined as 463

u0
1 = exp(−5 · 10−2|xxx − xxxc|2), u0

2 = −u0
1, (36) 464

starting with initial temperature θ0 = 250 K. All the bound- 465

aries of the domain have been constrained in the struc- 466

tural degrees of freedom uuu = 000. The geometry is meshed 467

(a) (b) (c)

Fig. 2 Domain and boundary nomenclature of a rectangular, b annular and c circular geometry
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Table 1 Material properties of

Fe70Pd30
a1 (GPa) a2 (GPa) a3 (GPa) a4 (GPa) a6 (GPa)

140 212 280 17 ×103 30 ×106

kg (N) θm (K) Cv (Jkg−1 K −1) κ (W m−1 K −1) ρ (kg m−3)

3.15 × 10−8 265 350 78 10,000

(a)

0 0.2 0.4 0.6 0.8 1
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04
Quadratic Lagrange

2nd degree B−spline

(b)

Fig. 3 Evolved microstructure deviatoric strain e2 (a) and cutline of

e2 solution for the quadratic Lagrange basis (using the Comsol Multi-

physics software), and second degree B-Spline basis (using IGA) along

normalized x̂ , the diagonal O–O′ (b) (red and blue on the left-hand-side

picture indicate martensite variants and green indicates the austenite

phase) (color online)

using 1282 quadratic Lagrange elements in Comsol and468

1302 second-order C 1-continuous B-Spline functions in the469

IGA. Note that using 1302 second-order basis functions in470

IGA produces 1282 knot spans (elements). Note also that,471

although the number of elements is the same in both cases,472

the number of global degrees of freedom is approximately 7473

times smaller in the case of the IGA . We have used a con-474

stant time step of 0.25 time units in both cases. Figure 3a475

shows the microstructure evolution at the static equilibrium.476

The figures shows self-accommodated twinned microstruc-477

tures. The microstructures are aligned along the diagonal478

of the square. The evolved microstructures are identical at479

the scale of the plot. We plot cut lines of the deviatoric480

strain order parameter e2 across x̂ , the normalized diagonal481

O–O′, shown in Fig. 3b. The solutions have been sampled482

across the lines and plotted using a piecewise linear interpo-483

lation. The maximum error recorded in the results is less than484

1 %. The difference in the solution in Comsol and IGA can485

be attributed to the different ways of implementation of the486

solvers. The results indicate that our implementation is cor-487

rect in the IGA. The energy and average temperature evo-488

lutions during the microstructure formation using IGA are489

shown in Fig. 4. The results of the study show the effec-490

tiveness of IGA approach to obtain the correct solutions491

with far less degrees of freedom than standard Lagrange492

elements.493

4.2 Mesh refinement studies 494

In this section, we study the sensitivity of the solution to a 495

mesh size using the h- and k-refinements. Within the geomet- 496

ric flexible methods, k-refinement is a unique feature of the 497

IGA that achieves better approximability increasing the order 498

and the global continuity of the basis functions simultane- 499

ously. Our examples show how highly smooth basis functions 500

can approximate sharp layers in the solution accurately and 501

stably. The simulations have been carried out on the square 502

domain with Lx = L y = 90 nm using B-Splines of degree 503

p = 2, p = 3, and p = 4, and global continuity C p−1. For 504

each case, we employ meshes composed of 322, 642, and 505

1282 elements. We use periodic boundary conditions and the 506

same initial condition as described in Sect. 4.1. 507

We are interested here in microstructure evolution i.e., the 508

spatial variation of the deviatoric strain e2. The fully evolved 509

microstructure has accommodated martenstic twins which 510

are periodic on boundaries. The deviatoric strains are plot- 511

ted at the same time instant for the coarsest mesh (second 512

degree 322 element mesh) and the finest mesh (fourth degree 513

1282 element mesh) in Fig. 5. The meshes with other basis 514

functions approximate sharp layers accurately. 515

The maximum error with the coarsest mesh is less than 516

2 % with respect to the fine mesh indicating that with the 517

IGA, the good results can be obtained even on the coarsest 518
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−0.1
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−0.06
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−0.02
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e
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(a)

0 0.5 1 1.5 2 2.5
−0.08

−0.075

−0.07

−0.065

−0.06

−0.055

−0.05

−0.045

−0.04

−0.035

−0.03

Time (ns)

(b)

Fig. 4 Plot of dimensionless a energy and b temperature τ evolution with time for the numerical example described in Sect. 4.1

Fig. 5 Mesh refinement

studies. The plot shows the

deviatoric strain e2 results for

the coarsest and finest meshes

(red and blue indicate martensite

variants and green indicates the

austenite phase) (color online)

(a) Quadratic 32
2 (b) Quartic 128

2

mesh. The cut line of e2 and its error for meshes with 32 B-519

Spline basis and different continuity, with respect to the fine520

mesh are plotted along x̂ , the normalized diagonal O–O′, in521

Fig. 6.522

4.3 Body and thermal loadings523

To explore the importance of thermo-mechanical modeling524

in SMAs, we conduct a dynamic loading on a square domain525

with Lx = L y = 250 nm. The body and thermal loads are526

applied in the domain as527

fff = fff 0 sin(π t/tt ), g = g0 sin(π t/tt ), (37)528

where fff 0, g0 are the mechanical load and thermal load acting529

on the body, and tt is the total time. The sinusoidal load has530

been applied with f 0
1 = 0.5, f 0

2 = 0, and g0 = −0.25531

in the dimensionless units for tt = 2 ns. Three different532

simulations have been conducted with body load, thermal533

load, and combined body and thermal loads.534

The microstructure evolution for three simulations are535

shown in Figs. 7, 8, and 9. Note that the body load acts in536

x1 direction only. In the first simulation with body load, the 537

favorable martensite variant M+ pocket, to the f 0
1 loading, 538

appears at the boundary Ŵ1 and accommodated martensite 539

variant M− pocket on the opposite boundary Ŵ4. The second 540

simulation, with thermal load, favors the evolution of accom- 541

modated twinned microstructure morphology in a domain. 542

The needle shaped twin, as also observed experimentally 543

[39], is also captured with the developed dynamic thermo- 544

mechanical model. The third simulation with simultaneous 545

application of body and thermal loads causes the domain 546

to evolve into a complex microstructure (refer to Fig. 9). 547

The complex microstructure is a result of thermo-mechanical 548

coupling in SMAs. The evolution of the average temperature 549

in all three cases is shown in Fig. 10. These three simulations 550

show the strong impact of dynamic thermo-mechanical cou- 551

pling on microstructure evolution, and illustrate the necessity 552

of using coupled thermo-mechanical theories. 553

4.4 Tensile testing 554

To understand the thermo-mechanical properties of the 555

microstructure, we conduct tensile tests on the SMA wire 556
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0 0.2 0.4 0.6 0.8 1
−0.03

−0.02
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0.01
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0.03

0.04 Quadratic

Cubic

Quartic

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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−4

−2
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2

4

6

8

10
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−3

 

Quadratic

Cubic

Quartic

(a) (b)

Fig. 6 Mesh refinement studies. Plot of cutline of the solution of a deviatoric strain, and b error with respect to finest mesh (fourth degree 128

B-Spline basis functions in each direction), along normalized x̂ , the diagonal O–O′, for 32 basis function meshes

(a) t = 0.5 (b) t = 1 (c) t = 1.5 (d) t = 2

Fig. 7 Microstructure evolution under body load at different time instants t (ns) (red and blue indicate martensite variants and green indicates the

austenite phase) (color online)

(a) t = 0.5 (b) t = 1 (c) t = 1.5 (d) t = 2

Fig. 8 Microstructure evolution under thermal load at different time instants t (ns) (red and blue indicate martensite variants and green indicates

the austenite phase) (color online)

under dynamic loading conditions. The rectangular nanowires557

of domain � = [0, 1100] × [0, 220] nm are dynamically558

loaded under three cases starting with initial temperatures559

245 K (case 1), 265 K (case 2), and 285 K (case 3) correspond-560

ing to the temperatures below, equal, and above the critical561

temperature θm . The nanowires, initially in austenite phase,562

were first quenched at the temperatures and microstructures 563

are allowed to evolve with constrained boundariesuuu = 000. The 564

nanowires are evolved to the accommodated twinned marten- 565

ite phase in the case 1 and austenite in the case 2 and case 566

3 as shown in the subplots (a) of Figs. 11, 12, and 13. Next, 567

tensile tests have been carried out on the evolved nanowire 568
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(a) t = 0.5 (b) t = 1 (c) t = 1.5 (d) t = 2

Fig. 9 Microstructure evolution under simultaneous body and thermal loads at different time instants t (ns) (red and blue indicate martensite

variants and green indicates the austenite phase) (color online)

0 0.5 1 1.5 2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

 

 

Body loading

Thermal loading

Combined (body + thermal) loading

Fig. 10 Average temperature τ (dimensionless) evolutions during

body, thermal, and combined loadings (color online)

specimens separately. The domain is fixed on boundary Ŵ1569

with uuu = 000 and ramped loading and unloading based dis-570

placements, equivalent to the strain rate of 3 × 107 s−1, have571

been applied to the boundary Ŵ4 in the x1 direction. The high572

strain rate is a consequence of model rescaling.573

In the case 1, the twinned microstructure is converted into574

the detwinned microstructure with the unfavorable marten-575

site M− converting into the favorable martensite M+. In576

the case 2 and case 3, the austenite is converted into the577

detwinned martensite by the movement of habit plane. Figure578

14 shows the average axial stress-strain and average temper-579

ature evolution of the three cases. The significant influence580

of dynamic loading is observed in the average temperature581

evolution due to bi-directional coupling of e2, ė2, and θ . The582

phase transformation takes place simultaneously along with583

the elastic loading under the influence of high strain rate. Due584

to the loading in the cases 2 and 3, the austenite is converted585

into the favorable M+ variant causing habit plane to form.586

The stress-strain curve is stiffer in the case 2 and 3 due to the587

higher stiffness of austenite phase of SMAs at higher temper-588

ature. These observations are in agreement with the earlier589

published results based on the mixed formulation, as well as 590

on the experimental observations of SMAs under high strain 591

loading [19,22,36]. 592

4.5 Loading an annulus geometry 593

In the earlier sections, we conducted the studies on square and 594

rectangular domains. Here we conduct the dynamic loading 595

studies on the annulus geometries. The strength of IGA is to 596

model complex geometry exactly, thus eliminating geomet- 597

rical errors. The quarter annulus geometry domain � is mod- 598

eled as shown in Fig. 2b, with R1 = 375 nm and R2 = 500 599

nm. The domain is meshed with 64, and 256 quadratic C 1- 600

continuous NURBS based elements along radial, and circum- 601

ferential directions, respectively. 602

Two sets of simulations have been carried out in two 603

stages each. In the first stage, boundaries Ŵ were fixed and 604

microstructure was allowed to evolve at 240 K (case 1) and 605

275 K (case 2), below and above the transition tempera- 606

ture starting with a random initial condition. The evolved 607

microstructures in both cases are shown in subplots (a) in 608

Figs. 15 and 16. The domain evolves into an accommodated 609

microstructure in case 1. It is observed that the width of 610

martensitic twins are not uniform in the center of the domain, 611

which is distinct from the uniform spacing of martensitic 612

twins in a rectangular domain in Sect. 4.4 (refer to Fig. 11a). 613

In the case 2, the domain remains in an austenitic phase. 614

In the second stage, the evolved annulus domain is fixed 615

along the boundary Ŵ1 with uuu = 000 and ramped loading and 616

unloading based displacements, equivalent to the strain rate 617

of 3 × 107 s−1, have been applied to the boundary Ŵ4 in the 618

direction x1. In the case 1, the phase transformation starts 619

at the loading boundary Ŵ4. The detwinned microstructure is 620

converted into the favorable M+ phase through the process of 621

detwinning during loading, as observed in Fig. 15a–d. At the 622

end of loading (refer to subplot (e)), the annular domain has 623

M+ and M− and traces of unconverted detwinned martensite. 624

The microstructure at the end of the unloading is presented 625

in the subplot (f). 626
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(e) t = 1.42 (f) t = 2

(a) t = 0 (b) t = 0.2

(c) t = 0.48 (d) t = 0.95

Fig. 11 Microstructure evolution in nanowire during loading and unloading at different times t (ns) for case 1 (red and blue indicate martensite

variants and green indicates the austenite phase) (color online)

(e) t = 1.42 (f) t = 2

(a) t = 0 (b) t = 0.2

(c) t = 0.48 (d) t = 0.0.95

Fig. 12 Microstructure evolution in nanowire during loading and unloading at different times t (ns) for case 2 (red and blue indicate martensite

variants and green indicates the austenite phase) (color online)

The second stage of simulation in case 2 is presented in627

Fig. 16. During a loading cycle, the movement of the habit628

plane causes the austenite to get converted into the M+ favor-629

able phase as observed in the subplot (b). As the phase trans-630

formation progresses rearrangements of microstructures are631

observed in the subplots (c–e). The microstructure at the end632

of the unloading is presented in the subplot (f). The average633

temperature evolutions for both simulations are plotted in634

Fig. 18a.635

4.6 Loading a circular geometry636

Finally, we conduct a loading simulation on a SMA circu-637

lar domain. The circular domain � , as shown in Fig. 2c, is638

constrained at the bottom boundary Ŵ1 and loaded at the top 639

boundary Ŵ2. The arc lengths of Ŵ1 and Ŵ2 are chosen as 640

2α = 2β = π/2 radians. A simulation has been carried out 641

by loading the domain with a ramp displacementuuu equivalent 642

to the strain rate of 3×107 s−1 for 1 ns in the negative x2 direc- 643

tion. The initial conditions used are uuu = 000 and θ0 = 240 K. 644

The microstructure evolution is as shown in Fig. 17. The 645

phase transformation starts at the Ŵ2 boundary and propa- 646

gates as a habit plane between twinned martensites, aligned 647

along ±π/4 about the vertical central line of the circular 648

geometry, and an austenite domain as shown in a subplot (a). 649

As the phase transformation progresses (refer to subplot (b)), 650

the whole domain is converted into a complex microstructure, 651

with twins of different widths and small pockets of marten- 652

sitic variants in dots like microstructures, in a sector defined 653
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(e) t = 1.42 (f) t = 2

(a) t = 0 (b) t = 0.2

(c) t = 0.48 (d) t = 0.95

Fig. 13 Microstructure evolution in nanowire during loading and unloading at different times t (ns) for case 3 (red and blue indicate martensite

variants and green indicates the austenite phase) (color online)
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(a) (b)

Fig. 14 Evolution of average a axial stress–strain and b dimensionless temperature τ in the nanowire specimens for three cases (color online)

(a) t = 0 (b) t = 0.18 (c) t = 0.55 (d) t = 0.74 (e) t = 1 (f) t = 2

Fig. 15 Microstructure evolution in an annulus domain at different times t (ns) on loading for case 1 (red and blue indicate martensite variants

and green indicates the austenite phase) (color online)

by 2α, in Fig. 2c. Further, the partially developed microstruc-654

tures evolve into twins and start to coalesce as seen in sub-655

plots (c–d). At the end of the loading, as shown in a subplot656

(e), the twins span till the vertical central line of the circu-657

lar geometry. The top sector, described by the sector 2β, is658

converted into the M+ martensite. It is to be noted that there 659

exist traces of austenite at Ŵ1, due to the constrained bound- 660

ary conditions. The average temperature evolution is plotted 661

in Fig. 18b. 662
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(a) t = 0 (b) t = 0.18 (c) t = 0.55 (d) t = 0.74 (e) t = 1 (f) t = 2

Fig. 16 Microstructure evolution in an annulus domain at different times t (ns) on loading for case 2 (red and blue indicate martensite variants

and green indicates the austenite phase) (color online)

(a) t = 0.09 (b) t = 0.18 (c) t = 0.55 (d) t = 0.75 (e) t = 1

Fig. 17 Microstructure evolution in a circular domain at different times t (ns) (red and blue indicate martensite variants and green indicates the

austenite phase) (color online)
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Fig. 18 Evolution of average dimensionless temperature τ for a annulus and b circular geometries (color online)

5 Conclusions663

We have developed a numerical formulation of the phase-664

field model based on the IGA for SMAs. The formulation665

permits straightforward treatment of fourth-order spatial dif-666

ferential terms representing domain walls in SMAs, with-667

out the use of mixed finite element formulation or non-668

conforming elements. Several numerical examples have been669

presented with evolution under dynamic loadings. We vali-670

dated the IGA implementation with the results of quadratic671

Lagrange basis element using the commercial finite ele- 672

ment software with maximum error less than 1 %. The h- 673

and k-refinement studies suggested that the maximum error 674

with coarsest mesh (quadratic 322) is 2 % with respect 675

to most refined quartic 1282 indicating that the simula- 676

tions can be conducted even on the coarsest mesh with 677

good accuracy. The dynamic loading studies are in agree- 678

ment with previously published literature on mixed formula- 679

tions using commercial software and available experimental 680

results. 681
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The developed framework should prove to be useful in the682

study of thermo-mechanical dynamics of a realistic 3D SMA683

specimen under complex loadings.684
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