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Abstract

We develop a new continuum mechanics modeling framework, with particular focus on the

van der Waals fluid. By invoking the microforce theory, the Coleman-Noll procedure is

generalized to derive consistent constitutive relations in the presence of non-local effects.

A new thermodynamically consistent algorithm for the van der Waals model is designed,

based on a semi-discrete scheme using functional entropy variables and a new temporal

scheme invoking a family of new quadrature rules. We show that the resulting fully discrete

scheme is unconditionally stable-in-entropy and second-order accurate-in-time. Isogeometric

analysis is utilized to implement the numerical scheme. The aforementioned properties are

verified by benchmark problems. Finally, three sets of application problems are simulated to

demonstrate the capability of the model and the algorithm. In particular, our methodology

provides a comprehensive suite of predictive tools for boiling flows.

Keywords: Phase-field model, Diffuse interface, Microforce, Coleman-Noll approach, Van

der Waals fluid, Non-convex flux, entropy variables, Time integration, Isogeometric analysis,

Phase transition, Evaporation, Condensation, Thermocapillarity, Boiling
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1 Introduction

1.1 Phase transition and classical modeling techniques

Liquid-vapor two-phase flows are ubiquitous in the natural world as well as in industry.

Liquid-vapor phase transitions involve a sharp change of the fluid density, which is induced

by environmental changes. Typical environmental changes include pressure variations and

thermal variations. For instance, the local pressure near a rotating propeller may drop below

the boiling pressure, and vapor bubbles may generate near the blades [?]. This phenomenon

is called cavitation and is still a limiting factor for the ship propeller design nowadays. On the

other side, phase transitions induced by temperature variations can be observed in daily life as

boiling, evaporation, and condensation. In industry, liquid-vapor phase transitions take place

everyday in steam generators, heat exchangers, and various pipelines. The accompanying

thermal effects make the multiphase flow a widely-used mechanism for energy transfer.

To date, many modeling techniques have been designed to simulate multiphase flows.

Most of them fall into the category of either the interface-tracking methods or the interface-

capturing methods. The interface-tracking methods resolve the interface by aligning the

computational mesh along the interface and update the mesh with the fluid flow. This

approach gives a sharp and accurate representation of the interface. Despite that, this

method requires constantly re-meshing of the computational domain, and it is typically in-

tractable for topological transitions. Three-dimensional problems with severe topological

transitions are still notoriously difficult to solve with the interface-tracking methods. The

interface-capturing methods use additional unknowns to implicitly represent the interface.

The interface is typically immersed in the computational domain. Consequently, the inter-

face representation is less accurate than that of the interface-tracking methods. However,

the interface-capturing methods enjoy several advantages: they are relatively easier for im-

plementation, there is no burden for constant mesh updating, and topological transitions

are aptly handled. Existing instantiations of the interface-capturing methods include the

volume-of-fluid (VOF) method [?] and the level-set method [?]. Both methods have been

applied in commercial codes and are still popular in the literature. However, they are not

without shortcomings. The VOF method uses a post-processing procedure to construct the

interface, which inevitably introduces errors. In the level-set methods, the level-set function

needs to be reinitialized every a few steps. The re-initialization procedure is rather ad hoc,

and it destroys the conservation structure.
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1.2 Phase-field models

To address the aforementioned modeling difficulties, phase-field models were proposed as an

alternative interface-capturing method. It uses a so-called phase-field order parameter to

distinguish different phases. Phase-field models postulate that the interface has finite width

and material properties transit across the interfacial region smoothly but sharply. Based

on the postulates, van der Waals developed his Nobel-winning theory to calculate the cap-

illarity for liquid-vapor interfaces. Later, Korteweg developed the so-called Korteweg stress

formulation and coupled the van der Waals theory with the hydrodynamic system. Hitherto,

the fluid model based on the van der Waals theory is named as the Navier-Stokes-Korteweg

equations. This fluid theory is characterized by a non-convex free energy, supplemented with

a non-local density gradient term. In mathematics, this non-local term regularizes the sin-

gularity introduced by the non-convex free energy function. In physics, the non-local term

represents the surface energy. In modern continuum mechanics, this model falls into the

category of the grade-N fluid model [?]. In 1985, Dunn and Serrin studied the thermody-

namic consistency of the Navier-Stokes-Korteweg equations, and found that for the model

to be consistent with the second law, a new term had to be added to the energy equation

[?]. They called this non-classical term “interstitial working flux”.

Parallel to the development of the Navier-Stokes-Korteweg equations, another branch of

phase-field models have been developed focusing on multicomponent systems. The origi-

nal idea comes from the work by Cahn and Hilliard [?], in which the authors proposed a

fourth order nonlinear diffusion equation to mimic the behavior of a two-component mixture.

Recently, the Cahn-Hilliard type models have been generalized to model more complicated

multicomponent systems, such as spinodal decomposition [?], tumor growth [?], fingering

effect in porous medium [?], etc. A significant progress was made by Gurtin and his collab-

orators in providing a rational mechanics framework for the Cahn-Hilliard type models [?].

In his theory, a set of forces, called microscopic forces or microforces, were introduced to

account for the phase dynamics. Later, this theory was applied to construct plasticity theory

of single crystals [?], fracture models [?], alloy models [?], and ferroelectric models [?], to list

a few. In Section 2, this theory is adopted as a means to derive constitutive relations for the

van der Waals fluid material. Interestingly, the “interstitial working flux” appears naturally

in this derivation as the power expenditure of the microstress. This, in part, justifies the

work of Dunn and Serrin within the classical rational mechanics framework [?].

Traditional interface-tracking and interface-capturing methods are designed to follow

existing interfaces. When dealing with phase transition phenomena, those methods become

intractable. One may need to introduce artificial procedures and empirical assumptions [?] to

mimic such phenomena. In contrast, the solid mathematical and thermodynamic foundations
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of phase-field models allow them to describe these complicated phenomena without resorting

to artificial modeling work. In this work, this advantage will be demonstrated by a suite

of boiling simulations. Boiling is regarded to be highly difficult for numerical simulations.

Traditional models require artificial knowledge, such as the bubble release rate and bubble

departure radius, to describe the boiling process. In this work, two and three-dimensional

boiling simulations are carried out using the van der Waals fluid model in Section 5.3.

Owing to the thermodynamically consistent nature, the dependency on empirical knowledge

is significantly reduced, and there is no ad hoc procedure involved. This approach provides

unified predictive capability for both nucleate and film boiling

Despite its success in modeling, phase-field models face several challenges. The entropy

function for phase-field models are always non-convex, which creates difficulty for both math-

ematical analysis and numerical simulation. Phase-field models usually have a high-order

differential term, which necessitates novel numerical techniques for discretization. Further-

more, the interface width for real materials is typically a few nanometers. Therefore, adaptive

refinement near the interfacial region is demanded for real-world simulations.

1.3 Numerical analysis

In the numerical analysis for nonlinear problems, a central topic is the stability analysis. One

significant example is the study of entropy-stable schemes for gas dynamics. It was revealed

that the weak form of the compressible Navier-Stokes equations will intrinsically satisfy the

Clausius-Duhem inequality by invoking a particular set of variables, namely the entropy vari-

ables [?]. In the late 1980s, the space-time formulation was applied to the entropy-variable

formulation to construct a fully discrete entropy-stable scheme [?]. Hereafter, the entropy-

variable formulation constitutes a foundation for computing compressible flows. Interested

readers are referred to [?] for a detailed review. It should be pointed out that the validity

of the entropy-variable formulation and the space-time methods are all contingent upon the

convexity of the entropy function. For phase-field problems, the non-convexity of the entropy

function precludes the possibility of directly applying the aforementioned techniques. In this

work, the numerical difficulties are addressed in Section 3. First, the definition of the entropy

variables is generalized to the functional setting. Interestingly, it will be revealed in Section

3.3 that the formula for entropy variables is formally invariant under different fluid models.

It should be noted that the entropy variables should not be merely regarded as algebraic

change-of-variables. In fact, they are mappings from the conservation variables to their dual

spaces (see Theorem 3). Invoking the functional entropy variables, we derive an alternative

statement of the original Navier-Stokes-Korteweg equations. The weighted residual formula-
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tion based on this alternative statement leads to a provably entropy dissipative semi-discrete

formulation. Second, to develop a stable temporal scheme, we resort to the method based

on a family of new quadrature rules [?, ?, ?]. For this thermal problem, the major difficulty

comes from the discretization of the energy time derivative, since the isothermal Navier-

Stokes-Korteweg equations have been well handled [?]. A new jump operator is devised for

the total energy. It will be shown that this new jump operator is a third-order perturbation

to the classical jump operator. By using the perturbed trapezoidal rules repeatedly, it will

be proven that the temporal approximation based on the new jump operator dissipates en-

tropy. Compared with the space-time formulation, the requirement for convexity is released.

Hence, it is anticipated that this new temporal discretization technology is applicable to

more general problems.

In this work, the Non-Uniform Rational B-Splines (NURBS) are utilized to provide a rep-

resentation of the geometry as well as an approximation space for the spatial discretization.

Invoking the isoparametric philosophy, this approach leads to the NURBS-based isogeomet-

ric analysis [?]. Isogeometric analysis has been shown to enjoy several desirable numerical

properties: (1) it retains an exact representation of the geometry; (2) it possesses a unique

k-refinement technology, which allows one to generate higher-continuity basis functions with-

out proliferation of degrees of freedom; (3) it exhibits superior robustness [?] and accuracy [?]

properties compared with traditional finite elements. The above attributes make isogeomet-

ric analysis a particularly effective approach in the approximation of phase-field problems

[?]. As the first instantiation of the isogeometric analysis, the NURBS-based technology

has been widely used in both design and analysis [?]. Recent advancements of isogeomet-

ric analysis include T-splines and isogeometric collocation methods. T-splines allow one to

create complicated engineering design in a single watertight geometric model [?] and enable

local refinement in analysis [?]. Isogeometric collocation methods are shown to be an effi-

cient alternative to isogeometric Galerkin methods [?], which offers a potentially powerful

alternative for phase-field simulations [?].

1.4 Structure and content of the paper

The body of this work is organized as follows. In Section 2, a unified modeling framework

is derived. The Navier-Stokes-Korteweg equations are recovered within this framework by

choosing an appropriate Helmholtz free energy functional. The thermodynamic properties of

this model are discussed. In Section 3, provably entropy-stable, second-order time accurate

numerical schemes are designed and analyzed for the Navier-Stokes-Korteweg equations. In

Section 4, benchmark problems are studied to verify the theoretical estimates. In Section 5,
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a suite of application examples, including evaporation, condensation, thermocapillarity, and

boiling flows, are numerically investigated using the model and algorithm we developed. We

draw conclusions and discuss future research directions in Section 6.

2 The Navier-Stokes-Korteweg equations

2.1 Balance laws

Our discussion of the continuum theory is restricted to the Euclidean space R3, which is

described by a fixed orthonormal vector set ei, i = 1, 2, 3. The continuum body under

consideration occupies a region B ⊂ R3, which is referred to as the reference configuration.

The material point in B is labeled by X = (X1, X2, X3)T . The motion that the continuum

body undergoes is denoted as X : B × [0,∞) → R3. The image of B by X at time t is

denoted as Bt, which is often referred to as the current configuration. The spatial position

of material points X at time t is given by

x = X (X, t) .

x = (x1, x2, x3)T is referred to as the spatial coordinates. Here we postulate that the map

X is differentiable, one-to-one, and orientation preserving for each time t ≥ 0. Consider an

arbitrary open set Ω of B, its image at time t is denoted as Ωt = X (Ω, t). The boundary ∂Ωt

is oriented with a unit outward normal vector n(x). We assume that there exists a density

field ρ(x, t) and a velocity field u (x, t) at the current configuration. The spatial velocity

field is defined as

u (x, t) =
∂

∂t
X (X, t) where x = X (X, t).

In the following, we understand D/Dt as the material time derivative, i.e.,

D

Dt
(·) :=

∂

∂t
(·) + u · ∇ (·) .

Now, we have the following balance laws that govern the behavior of the continuum body.

• Conservation of Mass

d

dt

∫
Ωt

ρ(x, t)dVx = 0. (1)

• Balance of Linear Momentum
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d

dt

∫
Ωt

ρ(x, t)u(x, t)dVx =

∫
∂Ωt

σ(x, t)dAx +

∫
Ωt

ρb(x, t)dVx. (2)

Here the traction field is given by σ(x, t) = T(x, t)n(x), where T(x, t) is the Cauchy stress

tensor; b(x, t) is the external body force per unit mass.

• Balance of Angular Momentum

d

dt

∫
Ωt

x× ρ(x, t)u(x, t)dVx =

∫
∂Ωt

x× σ(x, t)dAx +

∫
Ωt

x× b(x, t)dVx. (3)

In our work, the central modeling subject is the liquid-vapor phase transition. The phase-field

order parameter for the change of the state of matter is chosen as the density ρ. Following the

idea of Gurtin [?], we assume that there exists a set of forces that accounts for the kinematics

of phase transitions. These forces are named microforces mainly because they are involved

with the local transformation of the material, rather than the macroscopic movements. Here,

we assume that the kinematics of ρ is associated wtih the following forces:

ξ, the microstress ,

ϕ, the internal microforce,

l, the external microforce.

This set of microforces is balanced as is stated in the following equation.

• Balance of Microforce Associated with Density Phase Transition

∫
∂Ωt

ξ(x, t) · n(x, t)dAx +

∫
Ωt

ϕdVx +

∫
Ωt

ldVx = 0. (4)

Remark 1. The notion of microforce was initially introduced to generalized the Cahn-

Hilliard equation [?]. For a comprehensive review, interested readers are referred to [?].

• Conservation of Energy

d

dt

∫
Ωt

ρ(x, t)E(x, t)dVx =

∫
∂Ωt

(
T(x, t)u(x, t) +

D

Dt
ρ(x, t)ξ(x, t)− q

)
· ndAx

+

∫
Ωt

b(x, t) · u(x, t) + l(x, t)
D

Dt
ρ(x, t) + ρ(x, t)r(x, t)dVx. (5)

Here in equation (5), the following notations are introduced:
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E(x, t) = ι(x, t) + 1
2
|u(x, t)|2, the total energy density per unit mass,

ι(x, t), the internal energy density per unit mass,

q(x, t), the heat flux,

r(x, t), the heat source per unit mass.

It is noteworthy that besides the traditional working terms of the macroscopic forces and

the macroscopic sources, there are non-classical terms contributing to the change of the

total energy. These terms are the power expenditures of the microstress ξ and the external

microforce l: ∫
∂Ωt

D

Dt
ρ(x, t)ξ(x, t) · ndAx,

∫
Ωt

l(x, t)
D

Dt
ρ(x, t)dVx.

The external microforce does not contribute to the energy change. See [?] for a conceptual

explanation.

• Second Law of Thermodynamics

∫
Ωt

D(x, t)dVx :=
d

dt

∫
Ωt

ρ(x, t)s(x, t)dVx +

∫
∂Ωt

q(x, t) · n(x)

θ(x, t)
dAx

−
∫

Ωt

ρ(x, t)r(x, t)

θ(x, t)
dVx ≥ 0. (6)

Here D(x, t) denotes the total dissipation, s(x, t) denotes the entropy density, and θ(x, t) is

the absolute temperature. The above inequality is called the second law of thermodynamics,

or the Clausius-Duhem inequality.

Applying the divergence and the Reynolds’ transport theorems, we can obtain the gov-

erning equations and the Clausius-Duhem inequality in local forms (omitting the arguments

x and t for simplicity) as

Dρ

Dt
+ ρ∇ · u = 0, (7)

ρ
Du

Dt
= ∇ ·T + ρb, (8)

T = TT , (9)

∇ · ξ + ϕ+ l = 0, (10)

ρ
DE

Dt
= ∇ ·

(
Tu +

Dρ

Dt
ξ − q

)
+ ρb · u + l

Dρ

Dt
+ ρr, (11)
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D := ρ
Ds

Dt
+∇ ·

(q

θ

)
− ρr

θ
≥ 0. (12)

In addition to the governing equations (7)–(12), there is a balance equation for the

internal energy ι. The total energy balance equation can be expanded first as

ρ
Dι

Dt
+ ρu · Du

Dt
=∇ ·T · u + T : ∇u +∇ · ξDρ

Dt
+ ξ · ∇

(
Dρ

Dt

)
−∇ · q + ρb · u + l

Dρ

Dt
+ ρr. (13)

The linear momentum balance equations and the microforce balance equation can be utilized

to give the following relations.

ρu · Du

Dt
= ∇ ·T · u + ρb · u, (14)

∇ · ξDρ
Dt

+ l
Dρ

Dt
= −ϕDρ

Dt
. (15)

Substituting (14)–(15) into (13), we may obtain a balance equation for the internal energy

as follows.

ρ
Dι

Dt
= T : ∇u− ϕDρ

Dt
+ ξ · ∇

(
Dρ

Dt

)
−∇ · q + ρr. (16)

This equation will be used as a starting point for the derivation of constitutive relations.

2.2 Coleman-Noll type analysis and constitutive relations

To close the model, we still need to provide the constitutive relations for the Cauchy stress,

the internal energy density, the entropy density, the heat flux, and the microforces. In this

section, we derive the explicit form of the constitutive relations in terms of a thermodynamic

potential. In this derivation, the Coleman-Noll type argument is applied so that the resulting

constitutive relations will be thermodynamically consistent.

2.2.1 Free energy imbalance

The Helmholtz free energy density per unit mass Ψ(x, t) is defined by

Ψ(x, t) := ι(x, t)− θ(x, t)s(x, t).
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Taking material time derivatives at both sides, we get the relation

Dι

Dt
− θDs

Dt
=
DΨ

Dt
+ s

Dθ

Dt
. (17)

Substituting the internal energy balance equation (16) and the second law of thermodynamics

(12) into the above relation, we can get an inequality

ρ
DΨ

Dt
+ ρs

Dθ

Dt
≤ T : ∇u− ϕDρ

Dt
+ ξ · ∇

(
Dρ

Dt

)
− q · ∇θ

θ
.

Moving the term ρsDθ/Dt to the right hand side, we can get a constraint inequality for Ψ

as

ρ
DΨ

Dt
≤ T : ∇u− ϕDρ

Dt
+ ξ · ∇

(
Dρ

Dt

)
− q · ∇θ

θ
− ρsDθ

Dt
. (18)

The inequality (18) is referred to as the free energy imbalance. It plays an analogous role to

(12) in restricting constitutive relations. In fact, for pure mechanical processes when thermal

effects are negligible, the Helmholtz free energy is the thermodynamic potential that charac-

terizes the dissipation behavior of the isothermal system. For an isobaric isothermal process,

however, the Gibbs free energy should be chosen as a proper thermodynamic potential [?].

In this work, the isobaric process is not considered. Hence, the Helmholtz free energy is a

valid thermodynamic potential. Before proceeding further, we split the Cauchy stress T and

the velocity gradient ∇u into deviatoric and hydrostatic parts.

1. The Cauchy stress T can be split into deviatoric and hydrostatic parts,

T = Td + Th, (19)

where

Td = T− 1

3
(trT) I, (20)

Th =
1

3
(trT) I. (21)

Here I is the identity tensor, and tr(·) is the trace operator.

2. The velocity gradient can be split into three parts,

∇u = Ld + Lh + W, (22)
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wherein

Ld =
1

2

(
∇u +∇uT

)
− 1

3
∇ · uI, (23)

Lh =
1

3
∇ · uI, (24)

W =
1

2

(
∇u−∇uT

)
. (25)

In this split, Ld and Lh are the deviatoric and hydrostatic parts of the rate of strain

tensor L; W is the spin tensor.

Consequently, it is straightforward to make the following observations.

1. According to the mass balance equation (7), we have

∇ · u = −Dρ/Dt
ρ

. (26)

2. The gradient of material time derivative Dρ/Dt can be expanded as

∇
(
Dρ

Dt

)
=

D

Dt
(∇ρ) +∇uT∇ρ =

D

Dt
(∇ρ) + Ld∇ρ+ WT∇ρ− Dρ/Dt

3ρ
∇ρ. (27)

3. Making use of the property of deviatoric tensors, the inner product of T and ∇u can

be written alternatively as

T : ∇u = Td : Ld + Th : Lh = Td : Ld +
1

3
(trT)∇ · u. (28)

Making use of the above observations, the free energy imbalance (18) relation can be rewrit-

ten as

ρ
DΨ

Dt
≤Td : Ld − trT

3ρ

Dρ

Dt
− ϕDρ

Dt
+ ξ · D

Dt
(∇ρ) +∇ρ · Ldξ +∇ρ ·Wξ − 1

3ρ
∇ρ · ξDρ

Dt

− q · ∇θ
θ
− ρsDθ

Dt
. (29)

2.2.2 Coleman-Noll type analysis

Following Truesdell’s principle of equipresence [?], we demand that the constitutive relations

are functions depending on ρ, ∇ρ, Dρ/Dt, θ, ∇θ, Ld, and W. Specifically, the Helmholtz
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free energy density Ψ can be written as

Ψ = Ψ

(
ρ,∇ρ, Dρ

Dt
, θ,∇θ,Ld,W

)
.

We take material time derivative of Ψ, and the chain rule leads to

DΨ

Dt
=
∂Ψ

∂ρ

Dρ

Dt
+

∂Ψ

∂(∇ρ)
· D (∇ρ)

Dt
+

∂Ψ

∂ (Dρ/Dt)

D2ρ

Dt2
+
∂Ψ

∂θ

Dθ

Dt
+

∂Ψ

∂ (∇θ)
· D (∇θ)

Dt

+
∂Ψ

∂Ld
:
DLd

Dt
+

∂Ψ

∂W
:
DW

Dt
. (30)

Now substituting (30) into the free energy imbalance (29) and making use of the relations

(22)-(28), we can get

ρ
DΨ

Dt
=ρ

(
∂Ψ

∂ρ

Dρ

Dt
+

∂Ψ

∂(∇ρ)
· D (∇ρ)

Dt
+

∂Ψ

∂ (Dρ/Dt)

D2ρ

Dt2
+
∂Ψ

∂θ

Dθ

Dt
+

∂Ψ

∂ (∇θ)
· D (∇θ)

Dt

+
∂Ψ

∂Ld
:
DLd

Dt
+

∂Ψ

∂W
:
DW

Dt

)
≤ Td : Ld − trT

3ρ

Dρ

Dt
− ϕDρ

Dt
+ ξ · D

Dt
(∇ρ) +∇ρ · Ldξ

+∇ρ ·Wξ − 1

3ρ
∇ρ · ξDρ

Dt
− q · ∇θ

θ
− ρsDθ

Dt
. (31)

Grouping terms together, the above inequality is equivalent to(
ρ
∂Ψ

∂ρ
+

trT

3ρ
+ ϕ+

1

3ρ
∇ρ · ξ

)
Dρ

Dt
+

(
ρ

∂Ψ

∂ (∇ρ)
− ξ
)
· D
Dt

(∇ρ) + ρ
∂Ψ

∂ (Dρ/Dt)

D2ρ

Dt2

+

(
ρ
∂Ψ

∂θ
+ ρs

)
Dθ

Dt
+ ρ

∂Ψ

∂ (∇θ)
· D (∇θ)

Dt
+

q · ∇θ
θ

+ ρ
∂Ψ

∂Ld
:
DLd

Dt
+ ρ

∂Ψ

∂W
:
DW

Dt

− Ld :
(
Td +∇ρ⊗ ξ

)
−W : (∇ρ⊗ ξ) ≤ 0. (32)

Through appropriate choice of external forces and external sources, we may have arbitrary

levels of the material rates of the state variables in (32) at a particular time. Various

constitutive relations may be inferred from the above relation. Here we provide a simple but

general set of constitutive relations by invoking the argument made by Coleman and Noll

[?]. First, we notice that due to the arbitrariness of D2ρ/Dt2,

∂Ψ

∂ (Dρ/Dt)
= 0. (33)
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Similar arguments results in

∂Ψ

∂ (∇θ)
= 0, (34)

∂Ψ

∂Ld
= 0, (35)

∂Ψ

∂W
= 0. (36)

Above relations (33)-(36) imply that the Helmholtz free energy density Ψ is independent of

Dρ/Dt, ∇θ, Ld, and W. Hence, it can be written as

Ψ = Ψ (ρ,∇ρ, θ) .

The relation (32) is reduced to(
ρ
∂Ψ

∂ρ
+

trT

3ρ
+ ϕ+

1

3ρ
∇ρ · ξ

)
Dρ

Dt
+

(
ρ

∂Ψ

∂ (∇ρ)
− ξ
)
· D
Dt

(∇ρ)

+

(
ρ
∂Ψ

∂θ
+ ρs

)
Dθ

Dt
+

q · ∇θ
θ
− Ld :

(
Td +∇ρ⊗ ξ

)
−W : (∇ρ⊗ ξ) ≤ 0. (37)

Based on the above inequality, the following choices are made.

ϕ = −trT

3ρ
− ρ∂Ψ

∂ρ
− 1

3ρ
∇ρ · ξ −B

Dρ

Dt
, (38)

ξ = ρ
∂Ψ

∂ (∇ρ)
, (39)

s = −∂Ψ

∂θ
, (40)

q = −κ∇θ, (41)

Td = DLd − 1

3
tr(DLd)I− 1

2
(∇ρ⊗ ξ + ξ ⊗∇ρ) +

1

3
∇ρ · ξI. (42)

These choices will be shown to be sufficient to guarantee the inequality in the next section.

In the meantime, we demand that the constitutive relation for ξ should respect

∇ρ⊗ ξ = ξ ⊗∇ρ. (43)
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This relation may result from the frame indifference. In conjunction with (39), it can be

rewritten as

∇ρ⊗ ρ ∂Ψ

∂ (∇ρ)
= ρ

∂Ψ

∂ (∇ρ)
⊗∇ρ. (44)

It poses a constraint on how should the non-local gradient term ∇ρ enter into the free energy

density function Ψ. It has been revealed in [?] that terms in the form of d · ∇ρ or C : ∇2ρ ,

with d being a constant vector and C being a constant second-order tensor, cannot enter into

the free energy density function Ψ. This assertion can be easily justified using the constraint

relation (44). We will only consider the case with ∇ρ entered into the free energy density

function Ψ as |∇ρ|2. This is in fact the case considered by van der Waals in his seminal

work [?]. This special choice for the Helmholtz free energy density function guarantees the

satisfaction of the relation (43).

In (38), B is a scalar; κ is a second-order tensor in (41); D is a fourth-order tensor in

(42). The choices (38)-(42) and the constraint relation (43) are sufficient but not necessary

to guarantee the inequality (37). Other choices conforming to (37) can be made to generate

more sophisticated models. Our choices should not be regarded as the unique solutions to

the inequality (37). But we will show that the choices made here are general enough to

recover a number of meaningful models.

2.2.3 Constitutive relations

Based on the relations (38)-(42), we can obtain the constitutive relations expressed in terms

of Ψ.

Microstress

The relation (39) gives the constitutive relation for the microstress straightforwardly.

ξ = ρ
∂Ψ

∂ (∇ρ)
. (45)

Cauchy stress

From the relations (38), (39), (41), and the microforce balance equation (10), we have

the constitutive relation for trT as

trT

3
= ρ∇ ·

(
ρ

∂Ψ

∂ (∇ρ)

)
− ρ2∂Ψ

∂ρ
− 1

3
ρ

∂Ψ

∂ (∇ρ)
· ∇ρ+ ρl −Bρ

Dρ

Dt
. (46)

Replacing the microstress ξ by the relations (39), the deviatoric part of the Cauchy
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stress is given by the choice (42).

Td =DLd − 1

3
tr(DLd)I− ρ

2

(
∇ρ⊗ ∂Ψ

∂ (∇ρ)
+

∂Ψ

∂ (∇ρ)
⊗∇ρ

)
+
ρ

3
∇ρ · ∂Ψ

∂ (∇ρ)
I. (47)

Combining the two parts, the Cauchy stress T reads

T =Td +
trT

3
I

=DLd − 1

3
tr(DLd)I− ρ

2

(
∇ρ⊗ ∂Ψ

∂ (∇ρ)
+

∂Ψ

∂ (∇ρ)
⊗∇ρ

)
+

(
ρ∇ ·

(
ρ

∂Ψ

∂ (∇ρ)

)
− ρ2∂Ψ

∂ρ
+ ρl −Bρ

Dρ

Dt

)
I. (48)

Heat flux

The constitutive relation for the heat flux is given by the choice (41), i.e.,

q = −κ∇θ. (49)

This choice agrees with the Fourier’s law [?].

Entropy

The relation (40) defines the entropy density s as

s = −∂Ψ

∂θ
. (50)

This definition coincides with the classical thermodynamic definition [?]. Consequently,

the internal energy density ι is given by

ι = Ψ + θs = Ψ− θ∂Ψ

∂θ
. (51)

2.3 Dissipation inequalities

In this section, the choices (38)-(42) are validated by analyzing the dissipation of the model.

It will be clear how different terms enter into the dissipative mechanisms in isolated and

isothermal processes.

Lemma 1. Given the constitutive relations (45)–(51), the dissipation D defined in (12) takes

17



the form

D =
1

θ
Ld : DLd +

1

θ
B

(
Dρ

Dt

)2

+
1

θ2
∇θ · κ∇θ. (52)

Proof. We start by considering the internal energy balance equation

ρ
Dι

Dt
= T : ∇u− ϕDρ

Dt
+ ξ · ∇

(
Dρ

Dt

)
−∇ · q + ρr. (53)

It is known from (28) that

T : ∇u = Td : Ld +
1

3
(trT)∇ · u. (54)

Making use of the constitutive relation (47), we have

Td : Ld =Ld : DLd − 1

3
tr(DLd)I : Ld − ρ

2

(
∇ρ⊗ ∂Ψ

∂ (∇ρ)
+

∂Ψ

∂ (∇ρ)
⊗∇ρ

)
: Ld

+
ρ

3
∇ρ · ∂Ψ

∂ (∇ρ)
I : Ld

=Ld : DLd − ρ

2

(
∇ρ⊗ ∂Ψ

∂ (∇ρ)
+

∂Ψ

∂ (∇ρ)
⊗∇ρ

)
: Ld, (55)

since I : Ld = trLd = 0. According to the constitutive relation (46), we have

1

3
(trT)∇ · u =ρ∇ ·

(
ρ

∂Ψ

∂ (∇ρ)

)
∇ · u− ρ2∂Ψ

∂ρ
∇ · u− 1

3
ρ

∂Ψ

∂ (∇ρ)
· ∇ρ∇ · u

+ ρl∇ · u−Bρ
Dρ

Dt
∇ · u

=−∇ ·
(
ρ

∂Ψ

∂ (∇ρ)

)
Dρ

Dt
+ ρ

∂Ψ

∂ρ

Dρ

Dt
+

1

3

∂Ψ

∂ (∇ρ)
· ∇ρDρ

Dt

− lDρ
Dt

+ Bρ2 (∇ · u)2 . (56)

Recalling from the relation (27), we have

ξ · ∇
(
Dρ

Dt

)
=ξ ·

[
D

Dt
(∇ρ) + Ld∇ρ+ WT∇ρ− Dρ/Dt

3ρ
∇ρ
]

=ρ
∂Ψ

∂ (∇ρ)
·
[
D

Dt
(∇ρ) + Ld∇ρ+ WT∇ρ− Dρ/Dt

3ρ
∇ρ
]
. (57)
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The microforce balance equation implies ϕ = −∇ · ξ − l. Consequently, we have

ϕ
Dρ

Dt
= −∇ · ξDρ

Dt
− lDρ

dD
. (58)

Now substituting (54)-(58) into (53), and using (43) repeatedly, we obtain

ρ
Dι

Dt
=Ld : DLd − ρ

2

(
∇ρ⊗ ∂Ψ

∂ (∇ρ)
+

∂Ψ

∂ (∇ρ)
⊗∇ρ

)
: Ld −∇ ·

(
ρ

∂Ψ

∂ (∇ρ)

)
Dρ

Dt

+ ρ
∂Ψ

∂ρ

Dρ

Dt
+

1

3

∂Ψ

∂ (∇ρ)
· ∇ρDρ

Dt
− lDρ

Dt
+ Bρ2 (∇ · u)2 +∇ · ξDρ

Dt
+ l

Dρ

Dt

+ ρ
∂Ψ

∂ (∇ρ)
·
[
D

Dt
(∇ρ) + Ld∇ρ+ WT∇ρ− Dρ/Dt

3ρ
∇ρ
]
−∇ · q + ρr

= Ld : DLd + Bρ2 (∇ · u)2 + ρ
∂Ψ

∂ρ

Dρ

Dt
+ ρ

∂Ψ

∂ (∇ρ)
· D
Dt

(∇ρ)−∇ · q + ρr

= Ld : DLd + Bρ2 (∇ · u)2 + ρ

(
DΨ

Dt
− ∂Ψ

∂θ

Dθ

Dt

)
−∇ · q + ρr

= Ld : DLd + Bρ2 (∇ · u)2 + ρ

(
Dι

Dt
− θDs

Dt

)
−∇ · q + ρr.

Moving all time derivative terms to the left hand side yields

ρ
Ds

Dt
=

1

θ
Ld : DLd +

1

θ
Bρ2 (∇ · u)2 − 1

θ
∇ · q +

1

θ
ρr.

By definition, we have

D :=ρ
Ds

Dt
+∇ ·

(q

θ

)
− ρr

θ

=
1

θ
Ld : DLd +

1

θ
Bρ2 (∇ · u)2 − q · ∇θ

θ2

=
1

θ
Ld : DLd +

1

θ
Bρ2 (∇ · u)2 +

∇θ · κ∇θ
θ2

,

which completes the proof.

The dissipation formulation (52) suggests that the model will guarantee the second law

of thermodynamics if the material moduli are positive semi-definite, which is summarized in

the following theorem.

Theorem 1. If D is a positive semi-definite fourth-order tensor, κ is a positive semi-definite

second-order tensor, and B ≥ 0, the system of balance equations (7)-(11) satisfies the second
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law of thermodynamics in the following sense.

D =
1

θ
Ld : DLd +

1

θ
Bρ2 (∇ · u)2 +

∇θ · κ∇θ
θ2

≥ 0.

The proof of this theorem follows straightforwardly from Lemma 1. The significance of

this theorem is that the modeler only needs to design an explicit formulation for the thermo-

dynamic potential. Once it is given, the model is closed with non-negative dissipation. Under

isothermal condition, the entropy dissipation relation will degenerate into an inequality for

the summation of the Helmholtz free energy and the kinetic energy.

Lemma 2. Under the isothermal condition, if u = 0 and ξ ·n = 0 on the boundary ∂Ωt, the

following relation holds.

d

dt

∫
Ωt

ρ

(
Ψ +

|u|2

2

)
dVx =

∫
Ωt

(
ρb · u + l

Dρ

Dt
− θD

)
dVx. (59)

Proof. Since θ is constant, according to Ψ = ι− θs, one has

DΨ

Dt
=
Dι

Dt
− θDs

Dt
.

and

Ψ +
1

2
|u|2 = ι+

1

2
|u|2 − θs.

Multiplying the the above equation with ρ and integrating over Ωt results in

d

dt

∫
Ωt

ρ

(
Ψ +

1

2
|u|2
)
dVx =

d

dt

∫
Ωt

ρ

(
ι+

1

2
|u|2 − θs

)
dVx

=

∫
∂Ωt

(
Tu +

Dρ

Dt
ξ

)
· ndAx +

∫
Ωt

(
ρb · u + l

Dρ

Dt
− θD

)
dVx.

The boundary integral terms are canceled due to the boundary conditions, and hence

d

dt

∫
Ωt

ρ

(
Ψ +

1

2
|u|2
)
dVx =

∫
Ωt

(
ρb · u + l

Dρ

Dt
− θD

)
dVx,

which completes the proof of the lemma.

Based on Lemma 2, we may obtain the following stability theorem for isothermal pro-

cesses.
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Diffuse Interface

φ

nφ

Figure 1: Illustration of the contact angle boundary condition (60). The red arrow points in
the direction −∇ρ/‖∇ρ‖.

Theorem 2. If (1) the system undergoes an isothermal process, (2) u = 0 and ξ · n = 0 on

the boundary ∂Ωt, (3) the forces b = 0 and l = 0 in Ωt, and (4) the material moduli D and

B are positive semi-definite, the stability of the system is given by the following dissipation

relation.

d

dt

∫
Ωt

ρ

(
Ψ +

|u|2

2

)
dVx = −

∫
Ωt

(
Ld : DLd + Bρ2 (∇ · u)2) dVx ≤ 0.

Remark 2. According to the constitutive relation (45), the boundary condition ξ · n = 0 is

equivalent to ∇ρ · n = 0. The general contact-angle boundary condition is

− ∇ρ
‖∇ρ‖

= cos(φ), (60)

wherein

‖∇ρ‖ =
√
∇ρ · ∇ρ,

and φ is the contact angle of the diffuse-interface against the wall boundary measured in the

vapor phase (see Figure 1). Hence, ∇ρ ·n = 0 gives the ninety-degree contact angle boundary

condition.
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2.4 The van der Waals fluid model

In the preceding section, a general continuum mechanics modeling framework has been es-

tablished, with the objective of taking non-local effects into account. Theorems 1 and 2

reveal that the model is thermodynamically consistent if the material moduli are positive

semi-definite. Thus, the modeling work is principally reduced to a proper design of the

thermodynamic potential. This design procedure is primarily based on the consideration of

thermodynamics. Our discussion will focus on the van der Waals fluid. The full thermome-

chanical theory of the van der Waals fluid, initially derived by Dunn and Serrin [?], will be

recovered. We will discuss preliminary thermodynamic properties of the system.

2.4.1 Governing equations

Van der Waals’ Nobel-winning theory [?] is considered well-suited for describing liquid-vapor

phase transitions. In thermodynamics, the Helmholtz free energy density for the van der

Waals fluid, Ψ, is given by

Ψ(ρ, θ,∇ρ) = Ψloc(ρ, θ) +
λ

2ρ
|∇ρ|2, (61)

Ψloc(ρ, θ) = −aρ+Rθ log

(
ρ

b− ρ

)
− Cvθ log

(
θ

θref

)
+ Cvθ, (62)

where a, b are associated with fluid properties whose meanings will be revealed in the coming

discussion; θref > 0 is the reference temperature value for the model; R is the specific gas

constant; Cv is the specific heat capacity for the van der Waals fluid; λ is the capillary

coefficient. In this work, we assume λ is a constant. With the Helmholtz free energy given,

the constitutive relations can be readily obtained. According to (45), the microstress for the

van der Waals fluid is

ξ = ρ
∂Ψ

∂ (∇ρ)
= λ∇ρ.

Following (48), the Cauchy stress can be written explicitly as

T =DLd − 1

3
tr(DLd)I− ρ

2

(
∇ρ⊗ ∂Ψ

∂ (∇ρ)
+

∂Ψ

∂ (∇ρ)
⊗∇ρ

)
+

(
ρ∇ ·

(
ρ

∂Ψ

∂ (∇ρ)

)
− ρ2∂Ψ

∂ρ
+ ρl + Bρ2∇ · u

)
I

=DLd − 1

3
tr(DLd)I− λ∇ρ⊗∇ρ+

(
λρ∆ρ− ρ2∂Ψ

∂ρ
+ ρl + Bρ2∇ · u

)
I.
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For convenience, the Cauchy stress can be split into three parts:

T = τ + ς − pI, (63)

wherein

τ =DLd − 1

3
tr
(
DLd

)
I + Bρ2∇ · uI, (64)

ς =− λρ∇ρ⊗∇ρ+

(
λρ∆ρ+

λ

2
|∇ρ|2 + ρl

)
I, (65)

p =ρ2∂Ψloc

∂ρ
= Rb

ρθ

b− ρ
− aρ2. (66)

Here, τ represents the viscous shear stress, ς represents the capillarity, and p stands for the

thermodynamic pressure. In the subsequent discussion, we assume

l = 0,

Dijkl = 2µ̄δikδjl,

B =

(
λ̄+

2

3
µ̄

)
1

ρ2
,

in which µ̄ and λ̄ are the first and second viscosity coefficients. Under these choices,

ς =− λρ∇ρ⊗∇ρ+

(
λρ∆ρ+

λ

2
|∇ρ|2

)
I

is identical to the stress derived by and named after Korteweg [?];

τ =µ̄
(
∇u +∇uT

)
+ λ̄∇ · uI

is the shear stress for Newtonian fluids. The heat flux q, the entropy density s, and the

internal energy density ι are

q =− κ∇θ,

s =−R log

(
ρ

b− ρ

)
+ Cv log

(
θ

θref

)
,

ι =− aρ+ Cvθ +
λ

2ρ
|∇ρ|2.
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It should be noticed that based on the choice of the material modulus D, the Cauchy stress

T satisfies

T = TT ,

which implies that the angular momentum balance equation (9) is already satisfied. We recall

that in the derivation of the constitutive relation for trT in (46), the microforce balance

equation is used. Similarly to the angular momentum balance equation, the microforce

balance equation (10) is satisfied by the constitutive relations and decoupled from the system.

Let us denote the power expenditure of the microstress as Π = ξDρ/Dt = λρ∇ · u∇ρ. The

governing equation for the van der Waals fluid in terms of the conservation variables are

∂ρ

∂t
+∇ · (ρu) = 0, (67)

∂(ρu)

∂t
+∇ · (ρu⊗ u) +∇p−∇ · τ −∇ · ς = ρb, (68)

∂(ρE)

∂t
+∇ · ((ρE + p) u− (τ + ς) u) +∇ · q +∇ ·Π = ρb · u + ρr. (69)

This system of equations is commonly known as the Navier-Stokes-Korteweg equations [?].

According to Lemma 1, the dissipation for the system is

D =
1

θ
Ld : DLd +

1

θ
Bρ2 (∇ · u)2 +

1

θ2
∇θ · κ∇θ

=
2µ̄

θ
Ld : Ld +

1

θ

(
λ̄+

2

3
µ̄

)
(∇ · u)2 +

1

θ2
∇θ · κ∇θ. (70)

To ensure the second law of thermodynamics, it is sufficient to require that

µ̄ ≥ 0, λ̄+
2

3
µ̄ ≥ 0, κ is positive semi-definite.

In contrast to the compressible Navier-Stokes equations, the term Π is an unfamiliar term

appearing in the energy equation (69). This term was initially introduced by Dunn and Serrin

to enforce the thermodynamic consistency and was named as the “interstitial working flux”

[?]. In our framework, ∇ ·Π appears naturally as the power expenditure of the microstress

ξ. The previously mysterious term finds a rational mechanics explanation in the microforce

theory [?].

Remark 3. If we assume that the interface parameter λ is constant, the capillary force term
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Figure 2: Illustration of the van der Waals pressure p given by (66) at different temperatures.
The colored squares delimit the elliptic regions. The critical point is marked by a black circle.

∇ · ς can be written in the following non-conservative form.

∇ · ς = λρ∇ (∆ρ) . (71)

Remark 4. Choosing the Helmholtz free energy density function as

Ψ = Rθ log (ρ)− Cvθ log

(
θ

θref

)
+ Cvθ,

the compressible Navier-Stokes equations can be recovered.

2.4.2 Thermodynamic properties

We start the discussion on the thermodynamic properties by defining the critical point. The

critical point (ρcrit, θcrit) is defined to be the values of density and temperature that satisfy

∂p

∂ρ
(ρcrit, θcrit) = 0,

∂2p

∂ρ2
(ρcrit, θcrit) = 0.
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Figure 3: Comparison of the van der Waals equation of state with real fluids at temperature
θ = 0.85θcrit. The data of water, carbon dioxide, methane, and propane are obtained from
[?] and scaled to dimensionless form. Figure (b) gives a detailed view in the vapor phase.
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Simple calculations show that the solutions of the above equations are

ρcrit =
b

3
, θcrit =

8ab

27R
,

and the critical pressure is pcrit := p(ρcrit, θcrit) = ab2/27. In Figure 2, the van der Waals

pressure function is plotted as a function of density by fixing the temperature. It can be

observed from the figure that the pressure function is not monotone when the temperature

is below the critical temperature, and there is a region in which the pressure drops with

the increase of the density. This region is commonly referred to as the elliptic region,

since the system of conservation equations is of the first-order elliptic type in the vanishing

viscosity-capillarity limit within this region. The approximation property of the van der

Waals equation of state is demonstrated by comparing with the data for real fluids. In

Figure 3, the van der Waals equation of state is plotted as a blue solid curve as a function

of density at temperature θ = 0.85θcrit. The thermodynamic data for water, carbon dioxide,

methane, and propane are downloaded from the NIST database [?] and plotted in the same

figure in dimensionless quantities. As can be seen, the van der Waals model gives qualitatively

accurate description of various fluids in both vapor and liquid states. Considering a binomial

expansion

(
1− ρ

b

)−1

≈ 1 +
ρ

b
+
ρ2

b2
, when | ρ

b
|� 1,

the thermodynamic pressure can be approximated as

p ≈ Rθρ

(
1 +

(
1

b
− a

Rθ

)
ρ2 +

1

b2
ρ3

)
, (72)

when the density is small. This suggests that the van der Waals theory can be viewed as

a high-order modification of the perfect gas law. Nowadays, modifications of the van der

Waals model are introduced by adding more high-order terms to tune the approximation

property for specific materials. Examples include the Beattie-Bridgeman equation [?] and

the Benedict-Webb-Rubin equation [?]. Another modification was made by Serrin [?], who

introduced a new equation of state in the form

pserrin = Rb
ρθ

b− ρ
− aθŝρr̂,

wherein ŝ < 1 and r̂ > 1 are two parameters. This model was claimed to give very accurate

pressure curve over a large range of temperature.
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Figure 4: Illustration of the local free energy ρΨloc of the van der Waals fluid given by (62)
at temperature θ = 0.8θcrit. The green squares delimit the elliptic region. The magenta
dash-dot-line is the common tangent line passing thorough the Maxwell states, which are
marked as the magenta circles.

Next, let us introduce the local electrochemical potential νloc as

νloc :=
∂ (ρΨloc)

∂ρ
.

It does not come from our preceding thermomechanical theory. It is a pure thermodynamic

quantity. With the local Helmholtz free energy function given in (62), the electrochemical

potential can be written explicitly as

νloc = −2aρ+Rθ log

(
ρ

b− ρ

)
+

Rθb

b− ρ
− Cvθ log

(
θ

θref

)
+ Cvθ.

The equilibrium state at a given temperature can be determined by constructing a com-

mon tangent line passing thorough the free energy curve ρΨloc at two points (ρl, ρlΨloc(ρl))

and (ρv, ρvΨloc(ρv)). These two points correspond to the energetically stable liquid and vapor

states at the temperature and are usually referred to as the Maxwell states. Mathematically,

28



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Elliptic region

Metastable
vapor

Metastable

liquid

supercritical fluid

Density ρ/b

T
e
m
p
e
ra
tu
re

θ
/
θ
cr
it

Figure 5: Illustration of the elliptic region, the metastable regions, the spinodal line, and
the binodal line for the van der Waals fluid.

the common tangent line requires that

∂(ρΨloc)

∂ρ
(ρv) =

∂(ρΨloc)

∂ρ
(ρl), (73)

ρv
∂(ρΨloc)

∂ρ
(ρv)− ρvΨloc(ρv) = ρl

∂(ρΨloc)

∂ρ
(ρl)− ρlΨloc(ρl). (74)

The relation (73) implies the local electrochemical potentials νloc at the two states are iden-

tical. The relation (74) can be rewritten as

ρ2
v

∂Ψloc

∂ρ
(ρv) = ρ2

l

∂Ψloc

∂ρ
(ρl),

or, equivalently, p(ρv) = p(ρl). Therefore, the system is in electrochemical and mechanical

equilibrium at the Maxwell states. The Maxwell states together with the common tangent

line are illustrated in Figure 4. It can be clearly observed from the figure that the common

tangent line lies below the energy curve, which implies the two-phase state is favored against

the homogeneous mixture state, according to the minimum energy principle.

The thermodynamic properties of the van der Waals fluid model can be better understood

by drawing a θ-ρ phase diagram. In Figure 5, the elliptic region is circumscribed by the
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dashed spinodal line and is colored in grey. By connecting the Maxwell states, we get the

binodal line, which is drawn as the black solid curve in Figure 5. The regions enclosed by

the binodal line and the spindoal line are the liquid and vapor metastable regions, which

are colored in green and blue respectively. The metastable states are physically accessible

but energetically unstable. With enough thermodynamic perturbations, the energy barrier

may be overcome and the metastable states may evolve toward a more stable two-phase

system. The binodal line and the spinodal line meet at the critical point. Above the critical

temperature, the fluid becomes supercritical, and there is no more distinct liquid-vapor

states.

3 Numerical analysis

In this section, we focus on the design of numerical schemes for the Navier-Stokes-Korteweg

equations that preserve critical structure of the original strong problem.

3.1 Initial-boundary value problem for the Navier-Stokes-Korteweg

equations

We consider a fixed, open, connected, and bounded domain Ω ⊂ Rd, where d is the number

of spatial dimensions. The boundary of Ω is denoted as ∂Ω and is assumed to be sufficiently

smooth. The time interval of interest is denoted (0, T ), with T > 0. The Navier-Stokes-

Korteweg equations are considered in the space-time domain Ω× (0, T ) as

∂ρ

∂t
+∇ · (ρu) = 0, (75)

∂(ρu)

∂t
+∇ · (ρu⊗ u + pI)−∇ · τ −∇ · ς = ρb, (76)

∂ (ρE)

∂t
+∇ · ((ρE + p) u− (τ + ς)u) +∇ · q +∇ ·Π = ρb · u + ρr. (77)

In this section, we impose periodic boundary conditions for all variables. Therefore, the

problem can be regarded to be a periodic flow posed on a d-dimensional torus Td in space.

Given ρ0 : Ω̄ → (0, b), u0 : Ω̄ → Rd, and θ0 : Ω̄ → R as the initial density, velocity, and

temperature, the initial conditions for the strong problem (75)-(77) can be stated as

ρ(x, 0) =ρ0(x),

u(x, 0) =u0(x),

θ(x, 0) =θ0(x),
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for x ∈ Ω. In the above balance equations, τ is the viscous shear stress; ς is the Korteweg

stress; p is the thermodynamic pressure; q is the heat flux; Π is the interstitial working flux

or the power expenditure of the microstress; b : Ω× (0, T )→ Rd is the prescribed body force

per unit mass. The constitutive relations for these quantities have been given in Section

2.2.3. For the completeness of this section, we list them here:

τ =µ̄
(
∇u +∇uT

)
+ λ̄∇ · uI,

ς =

(
λρ∆ρ+

λ

2
|∇ρ|2

)
I− λ∇ρ⊗∇ρ,

p =Rbθ
ρ

b− ρ
− aρ2,

q =− κ∇θ,

Π =λρ∇ · u∇ρ.

Remark 5. In the remainder of this work, the Stokes’ hypothesis is adopted, i.e.,

λ̄ = −2

3
µ̄.

The total energy can be represented as

ρE = ρι+
1

2
ρ|u|2 = ρΨ + ρθs+

1

2
ρ|u|2. (78)

The definitions of the thermodynamic state variables are recollected here. The Helmholtz

free energy density Ψ, the local Helmholtz free energy density Ψloc, the local internal energy

density ιloc, the internal energy density ι, the entropy density s, and the local electrochemical

potential νloc are defined as

Ψ(ρ, θ,∇ρ) =Ψloc(ρ, θ) +
λ

2ρ
|∇ρ|2, (79)

Ψloc(ρ, θ) =− aρ+Rθ log

(
ρ

b− ρ

)
− Cvθ log

(
θ

θref

)
+ Cvθ, (80)

ι =ιloc +
λ

2ρ
|∇ρ|2, (81)

ιloc =− aρ+ Cvθ, (82)

s =−R log

(
ρ

b− ρ

)
+ Cv log

(
θ

θref

)
, (83)

νloc =− 2aρ+Rθ log

(
ρ

b− ρ

)
+

Rθb

b− ρ
− Cvθ log

(
θ

θref

)
+ Cvθ. (84)
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3.2 Dimensionless form of the Navier-Stokes-Korteweg equations

In this section, we perform dimensional analysis of the Navier-Stokes-Korteweg equations

using the MLTΘ system. The reference scale of mass, length, time, and temperature are

denoted as M0, L0, T0, and θ0. We may obtain the dimensionless quantities denoted with a

superscript ∗:

x = L0x
∗, t = T0t

∗, ρ =
M0

L3
0

ρ∗, θ = θ0θ
∗, u =

L0

T0

u∗,

p =
M0

L0T 2
0

p∗, λ =
L7

0

M0T 2
0

λ∗, µ̄ =
M0

L0T0

µ̄∗, τ =
M0

T 2
0L0

τ ∗,

ς =
M0

T 2
0L0

ς∗, b =
L0

T 2
0

b∗, κ =
M0L0

θ0T 3
0

κ∗, E =
L2

0

T 2
0

E∗,

q =
M0

T 3
0

q∗, Π =
M0

T 3
0

Π∗, r =
L2

0

T 3
0

r∗, s =
L2

0

T 2
0 θ0

s∗. (85)

With the above dimensionless variables, the dimensionless balance equations can be written

as

M0

T0L3
0

(∂ρ∗
∂t∗

+∇∗ · (ρ∗u∗)
)

= 0,

M0

T 2
0L

2
0

(∂(ρ∗u∗)

∂t∗
+∇∗ · (ρ∗u∗ ⊗ u∗) +∇∗p∗ −∇∗ · τ ∗ −∇∗ · ς∗ − ρ∗b∗

)
= 0,

M0

T 3
0L0

(∂(ρ∗E∗)

∂t∗
+∇∗ · ((ρ∗E∗ + p∗)u∗ − (τ ∗ + ς∗)u∗) +∇∗ · q∗ +∇∗ ·Π∗

− ρ∗b∗u∗ − ρ∗r∗
)

= 0.

The constitutive relations can be rescaled as

p∗ = Rb
L0T

2
0 θ0ρ

∗θ∗

bL3
0 −M0ρ∗

− aM0T
2
0

L5
0

ρ∗2,

τ ∗ = µ̄∗ (∇∗u∗ +∇∗u∗T )− 2

3
µ̄∗∇∗ · u∗I,

ς∗ = −λ∗∇∗ρ∗ ⊗∇∗ρ∗ +

(
λ∗ρ∗∆∗ρ∗ +

λ∗

2
|∇∗ρ∗|2

)
I,

q∗ = −κ∗∇∗θ∗,

s∗ = −RT
2
0 θ0

L2
0

log

(
M0ρ

∗

L3
0b−M0ρ∗

)
+
CvT

2
0 θ0

L2
0

log

(
θ0θ

∗

θref

)
,

Π∗ = λ∗ρ∗∇∗ · u∗∇∗ρ∗.
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The dimensionless viscosity coefficient µ̄∗ = L0T0µ̄/M0 measures the ratio of the viscous force

to the inertial force; the dimensionless capillarity coefficient λ∗ = M0T
2
0 λ/L

7
0 measures the

ratio of the surface tension to the inertia force. Hence, the two coefficients can be represented

in terms of the Reynolds number Re and the Weber number We as

µ̄∗ =
1

Re
, λ∗ =

1

We
.

The capillarity number Ca, which measures the relative effect of the viscous force against

the surface tension, is defined as

Ca =
We

Re
.

The Bond number Bo measures the ratio of the body force to the surface tension and it is

defined as

Bo = |b∗|We .

There is one standard relation in thermodynamics relating the heat capacity at constant

volume Cv and the universal gas constant R:

Cv =
R

γ − 1
,

wherein γ is the heat capacity ratio. Hence, we can denote

Cv
R

=
1

γ − 1
.

Remark 6. The value of γ is related to the degrees-of-freedom of the gas molecule. For

example, γ for water vapor is 1.33 [?].

If the reference scales are chosen as

M0

L3
0

= b,

M0

L0T 2
0

= ab2,

θ0 = θcrit =
8ab

27R
,
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and the reference temperature is picked as

θref = θcrit,

the dimensionless Navier-Stokes-Korteweg equations can be written as

∂ρ∗

∂t∗
+∇∗ · (ρ∗u∗) = 0, (86)

∂(ρ∗u∗)

∂t∗
+∇∗ · (ρ∗u∗ ⊗ u∗) +∇∗p∗ −∇∗ · τ ∗ −∇∗ · ς∗ − ρ∗b∗ = 0, (87)

∂(ρ∗E∗)

∂t∗
+∇∗ · ((ρ∗E∗ + p∗)u∗ − (τ ∗ + ς∗)u∗) +∇∗ · q∗ +∇∗ ·Π∗

− ρ∗b∗u∗ − ρ∗r∗ = 0, (88)

wherein,

p∗ =
8θ∗ρ∗

27(1− ρ∗)
− ρ∗2, (89)

τ ∗ =
1

Re

(
∇∗u∗ +∇∗u∗T − 2

3
∇∗ · u∗I

)
, (90)

ς∗ =
1

We

((
ρ∗∆∗ρ∗ +

1

2
|∇∗ρ∗|2

)
I−∇∗ρ∗ ⊗∇∗ρ∗

)
, (91)

q∗ = −κ∗∇∗θ∗, (92)

Π∗ =
1

We
ρ∗∇∗ · u∗∇∗ρ∗, (93)

Re =
L0b
√
ab

µ̄
, (94)

We =
aL2

0

λ
. (95)

Likewise, the thermodynamic state variables (79)-(84) can be rescaled as

Ψ∗ = Ψ∗
loc(ρ, θ) +

1

We

1

2ρ∗
|∇∗ρ∗|2, (96)

Ψ∗
loc(ρ, θ) = −ρ∗ +

8

27
θ∗ log

(
ρ∗

1− ρ∗

)
− 8

27(γ − 1)
θ∗ log(θ∗) +

8

27(γ − 1)
θ∗, (97)

ι∗ = ι∗loc +
1

2 We ρ∗
|∇∗ρ∗|2, (98)

ι∗loc = −ρ∗ +
8

27(γ − 1)
θ∗, (99)

ν∗loc = −2ρ∗ +
8θ∗

27(1− ρ∗)
+

8

27
θ∗ log

(
ρ∗

1− ρ∗

)
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− 8

27(γ − 1)
θ∗ log(θ∗) +

8

27(γ − 1)
θ∗, (100)

s∗ = − 8

27
log

(
ρ∗

1− ρ∗

)
+

8

27(γ − 1)
log (θ∗) . (101)

Henceforth, we will restrict our discussions to the dimensionless form, and the superscript ∗
will be omitted for simplicity.

3.3 Functional entropy variables

The mathematical entropy function H is defined to be

H := −ρs =
8

27
ρ log

(
ρ

1− ρ

)
− 8

27(γ − 1)
ρ log (θ) . (102)

With this definition, the second law of thermodynamics can be written in terms of H as

∂H

∂t
+∇ · (Hu)−∇ ·

(q

θ

)
+
ρr

θ
= −1

θ
τ : ∇u− 1

θ2
∇θ · κ∇θ ≤ 0.

In three dimensions, the conservation variables can be written as

UT = [U1, U2, U3, U4, U5] := [ρ, ρu1, ρu2, ρu3, ρE].

The classical entropy variables for the compressible Navier-Stokes equations are defined

as the calculus derivatives of the mathematical entropy function H with respect to the

conservation variables U. This definition of the entropy variables was understood as a pure

algebraic change-of-variables, since the mathematical entropy function for the compressible

Navier-Stokes equation is a function in terms of the conservation variables. In contrast, due

to the constitutive relation (98), the temperature θ for the van der Waals fluid model can

be expressed in terms of the conservation variables as

θ =
27(γ − 1)

8

(
U5

U1

− U2
2 + U2

3 + U2
4

2U2
1

− 1

2 WeU1

|∇U1|2 + U1

)
The above relation includes a non-local gradient-squared term. This fact suggests that when

taking derivatives of the temperature with respect to conservation variables, the deriva-

tion should be taken in the functional setting. Therefore, for the Navier-Stokes-Korteweg
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equations, the entropy variables V are defined as the functional derivatives:

V =
δH

δU
= [V1, V2, V3, V4, V5]T =

[
δH

δU1

,
δH

δU2

,
δH

δU3

,
δH

δU4

,
δH

δU5

]T
.

Given the test functions δv = [δv1, δv2, δv3, δv4, δv5]T , the entropy variables V are represented

as linear operators acting on the test functions:

V1[δv1] =
1

θ

(
−2ρ+

8

27
θ log

(
ρ

1− ρ

)
− 8

27(γ − 1)
θ log (θ) +

8

27(γ − 1)
θ

+
8θ

27(1− ρ)
− |u|

2

2

)
δv1 +

1

We

1

θ
∇ρ · ∇δv1, (103)

V2[δv2] =
u1

θ
δv2, (104)

V3[δv3] =
u2

θ
δv3, (105)

V4[δv4] =
u3

θ
δv4, (106)

V5[δv5] = −1

θ
δv5. (107)

Remark 7. The local Helmholtz free energy ρΨloc can be regarded as a function of ρ and θ.

Taking derivatives of ρΨloc gives

H =
∂(ρΨloc)

∂θ
,

νloc =
∂(ρΨloc)

∂ρ
.

Remark 8. In Section 2.4.2, we introduced the local electrochemical potential νloc, defined

as:

νloc =
∂(ρΨloc)

∂ρ
= Ψloc + ρ

∂Ψloc

∂ρ
.

We define the global electrochemical potential ν by generalizing the partial derivative in the

above formula to the functional derivative:

ν[δv1] :=Ψ[δv1] + ρ
δΨ

δρ
[δv1]

=

(
−2ρ+

8

27
θ log

(
ρ

1− ρ

)
− 8

27(γ − 1)
θ log (θ) +

8

27(γ − 1)
θ

+
8θ

27(1− ρ)

)
δv1 +

1

We
∇ρ · ∇δv1,
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=νlocδv1 +
1

We
∇ρ · ∇δv1.

Interestingly, with this definition, the entropy variable V1 can be written as

V1[δv1] =
1

θ

(
ν − |u|

2

2

)
[δv1].

Consequently, the entropy variables V can be compactly represented as

V =
1

θ



ν − |u|
2

2

u1

u2

u3

− 1


. (108)

The expression (108) formally coincides with the definition of the entropy variables for the

perfect gas model. However, the entropy variables here should be understood as linear oper-

ators in the dual spaces of the conservation variables. The expression (108) also hints that

the formulation of the entropy variables is invariant under different choices of the Helmholtz

free energy functional.

Theorem 3. The action of entropy variables V on the Navier-Stokes-Korteweg equations

recovers the Clausius-Duhem inequality.

Proof. Testing the entropy variables V with the time derivative terms leads to

V

[
∂U

∂t

]
=
δH

δU

[
∂U

∂t

]
=
∂H

∂t
(109)

Choosing the test functions as the advective fluxes results in

V


∇ · (ρu)

∇ · (ρu⊗ u) +∇p

∇ · (ρEu + pu)


= ∇ · (Hu)
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+
1

We θ

(
∇u : ∇ρ⊗∇ρ+

1

2
|∇ρ|2∇ · u + ρ∇ρ · ∇(∇ · u)

)
. (110)

Taking the test functions as the terms related to the capillarity leads to

V


0

−∇ · ς

−∇ · (ςu) +∇ ·Π


= − 1

We θ

(
∇u : ∇ρ⊗∇ρ+

1

2
|∇ρ|2∇ · u + ρ∇ρ · ∇(∇ · u)

)
. (111)

Combing (110)-(111) yields

V


∇ · (ρu)

∇ · (ρu⊗ u) +∇p−∇ · ς

∇ · (ρEu + pu)−∇ · (ςu) +∇ ·Π


= ∇ · (Hu) . (112)

Testing the entropy variables against the viscous flux gives

V


0

−∇ · τ

−∇ · (τu)


=

1

θ
τ : ∇u. (113)

The action of entropy variables on the heat flux, the heat source, and the body force yields

V


0

− ρb

∇ · q−ρu · b− ρr


= −∇ ·

(q

θ

)
+
ρr

θ
+
∇θ · κ∇θ

θ2
. (114)
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Combing the relations (109), (112), (113), and (114) leads to

∂H

∂t
+∇ · (Hu)−∇ ·

(q

θ

)
+
ρr

θ
= −∇θ · κ∇θ

θ2
− 1

θ
τ : ∇u,

or equivalently,

∂(ρs)

∂t
+∇ · (ρsu) +∇ ·

(q

θ

)
− ρr

θ
=
∇θ · κ∇θ

θ2
+

1

θ
τ : ∇u.

This is exactly the dissipation relation for the Navier-Stokes-Korteweg equations.

3.4 An alternative statement of the strong problem

Theorem 3 suggests that a weak formulation for the Navier-Stokes-Korteweg equations will

satisfy the Clausius-Duhem inequality weakly as long as the entropy variables V are in the

test function spaces. For the compressible Navier-Stokes equations, one may rewrite the

equation in terms of the entropy variables V, since the mapping between U and V is purely

algebraic. By using the Bubnov-Galerkin method, the entropy variables are enforced in

the test function spaces, and consequently one can prove the entropy stability for the finite

element formulation. This approach has been adopted for constructing entropy stable finite

element formulations for a variety of problems [?, ?, ?, ?]. However, for the van der Waals

fluid, there is an additional difficulty coming from the differential relation in the definition

of V1 in (103). The classical approach becomes nonviable, since there is a second-order

differential operator in the definition of V1, and inverting a differential operator is not a

straightforward task. Inspired from the form of V1, we introduce a new independent variable

and couple it with the conservation laws by replacing the pressure. Hence, we may derive a

new system of equations, which is a consistent statement of the original strong problem. In

doing so, the entropy variable V1 is weakly enforced in the test function space for the mass

balance equation, and we can prove entropy stability for the weak problem. To derive the

alternative statement of the Navier-Stokes-Korteweg equations, we introduce the auxiliary

variable V here as

V :=
1

θ

(
νloc −

|u|2

2

)
− 1

We
∇ ·
(
∇ρ
θ

)
. (115)

Recall that the local electrochemical potential is related to the thermodynamic pressure by

νloc =
p

ρ
+ Ψloc.
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Hence, the auxiliary variable V can be rewritten as

V =
1

θ

(
p

ρ
+ Ψloc −

|u|2

2

)
− 1

We
∇ ·
(
∇ρ
θ

)
.

Rearranging terms in the above relation yields

p = ρV θ − ρΨloc +
ρ|u|2

2
+

1

We
ρθ∇ ·

(
∇ρ
θ

)
. (116)

The above relation is an equivalent expression of the van der Waals equation of state (66) in

terms of the newly introduced auxiliary variable V . Taking gradient at both sides of (116),

we have

∇p = ∇
(
ρV θ +

ρ|u|2

2
+

1

We
ρθ∇ ·

(
∇ρ
θ

))
−∇ (ρΨloc)

= ∇
(
ρV θ +

ρ|u|2

2
+

1

We
ρθ∇ ·

(
∇ρ
θ

))
− ∂ (ρΨloc)

∂ρ
∇ρ− ∂ (ρΨloc)

∂θ
∇θ

= ∇
(
ρV θ +

ρ|u|2

2
+

1

We
ρθ∇ ·

(
∇ρ
θ

))
− νloc∇ρ−H∇θ

= ∇
(
ρV θ +

ρ|u|2

2
+

1

We
ρθ∇ ·

(
∇ρ
θ

))
−
(
V θ +

|u|2

2
+

1

We
θ∇ ·

(
∇ρ
θ

))
∇ρ−H∇θ. (117)

Using (116), the term ρE + p can be reorganized as

ρE + p =ρΨloc − θH +
1

2 We
|∇ρ|2 +

1

2
ρ|u|2

+ ρV θ +
1

2
ρ|u|2 − ρΨloc +

1

We
ρθ∇ ·

(
∇ρ
θ

)
=ρV θ − θH +

1

2 We
|∇ρ|2 + ρ|u|2 +

1

We
ρθ∇ ·

(
∇ρ
θ

)
. (118)

Making use of (117) and (118), the pressure force ∇p and the power expenditure of pressure

∇ · (pu) can be consistently represented in terms of V . Then the original strong problem

(86)-(88) can be rewritten as

∂ρ

∂t
+∇ · (ρu) = 0, (119)

∂(ρu)

∂t
+∇ · (ρu⊗ u) +∇

(
ρV θ +

ρ|u|2

2
+

1

We
ρθ∇ ·

(
∇ρ
θ

))
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−
(
V θ +

|u|2

2
+

1

We
θ∇ ·

(
∇ρ
θ

))
∇ρ−H∇θ −∇ · τ −∇ · ς = ρb, (120)

∂(ρE)

∂t
+∇ ·

((
ρV θ − θH +

1

2 We
|∇ρ|2 + ρ|u|2 +

1

We
ρθ∇ ·

(
∇ρ
θ

))
u

)
−∇ · ((τ + ς) u) +∇ · q +∇ ·Π = ρb · u + ρr, (121)

V =
1

θ

(
νloc −

|u|2

2

)
− 1

We
∇ ·
(
∇ρ
θ

)
. (122)

The equation (122) defines the auxiliary variable V . Based on our derivation, the new

balance equations (119)-(121), together with the auxiliary variable (122), is equivalent to

the original Navier-Stokes-Korteweg equations.

3.5 Weak formulation

In this section, we construct a weak formulation based on the alternative statement (119)-

(122). In the weak formulation, we solve for six unknowns in three dimensions. The set of

variables is denoted as

Y =



Y1

Y2

Y3

Y4

Y5

Y6



:=



ρ

u1

θ
u2

θ
u3

θ

−1

θ

V



. (123)

Let V1 be the trial solution space for Y1 = ρ and Y6 = V ; V2 be the trial solution space for

Yi+1 = ui/θ, i = 1, 2, 3; V3 be the trial solution space for Y5 = −1/θ. The test function spaces

are taken to be identical to the corresponding trial solution spaces. The weak formulation can

be stated as follows. Find Y1(t) = ρ(t) ∈ L2(0, T ;V1)∩H1(0, T ;L2(Ω)), Yi+1(t) = ui(t)/θ(t) ∈
L2(0, T ;V2)∩H1(0, T ;L2(Ω)) for i = 1, 2, 3, Y4(t) = −1/θ(t) ∈ L2(0, T ;V3)∩H1(0, T ;L2(Ω)),
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and Y6(t) = V ∈ L2(0, T ;V1), such that(
w1,

∂ρ

∂t

)
Ω

− (∇w1, ρu)Ω = 0, ∀w1 ∈ V1, (124)(
w,

∂(ρu)

∂t

)
Ω

− (∇w, ρu⊗ u)Ω −
(
∇ ·w, ρV θ +

1

2
ρ|u|2 +

1

We
ρθ∇ ·

(
∇ρ
θ

))
Ω

−
(

w,

(
V θ +

|u|2

2
+

1

We
θ∇ ·

(
∇ρ
θ

))
∇ρ
)

Ω

− (w, H∇θ)Ω + (∇w, τ )Ω + (∇w, ς)Ω

= (w, ρb)Ω , ∀w = (w2;w3;w4)T ∈ (V2)3 , (125)(
w5,

∂(ρE)

∂t

)
Ω

−
(
∇w5,

(
ρV θ − θH +

1

2 We
|∇ρ|2 + ρ|u|2 +

1

We
ρθ∇ ·

(
∇ρ
θ

))
u

)
Ω

+ (∇w5, τu)Ω + (∇w5, ςu)Ω − (∇w5,q)Ω − (∇w5,Π)Ω

= (w5, ρb · u)Ω + (w5, ρr)Ω , ∀w5 ∈ V3, (126)

(w6, V )Ω =

(
w6,

1

θ

(
νloc −

|u|2

2

))
Ω

+

(
∇w6,

1

We θ
∇ρ
)

Ω

,∀w6 ∈ V1, (127)

with ρ(0) = ρ0, u(0)/θ(0) = u0/θ0, and −1/θ(0) = −1/θ0 in Ω.

Comparing (127) with (103), one may find that the auxiliary variable V is identical to the

entropy variable V1 in the weak formulation. Therefore, in the set of variables (123), we are

actually solving for the entropy variables V together with density ρ, which is the conjugate

variable to V1 = V . By choosing the test function and trial solution spaces identical for

the equations (119) and (122), the entropy variable V1 is weakly enforced to be in the test

function space for the mass balance equation. This is a key ingredient in the proof of the

following theorem.

Theorem 4. Sufficiently smooth weak solutions of the problem (124)-(127) verify the second

law of thermodynamics, i.e.,

∫
Ω

(
∂H

∂t
+∇ · (Hu)−∇ ·

(q

θ

)
+
ρr

θ

)
dVx = −

∫
Ω

1

θ
τ : ∇udVx −

∫
Ω

∇θ · κ∇θ
θ2

dVx. (128)

Proof. Choosing w1 = V in (124) and w6 = ∂ρ/∂t in (127) yields(
V,
∂ρ

∂t

)
Ω

− (∇V, ρu)Ω = 0,(
∂ρ

∂t
, V

)
Ω

=

(
∂ρ

∂t
,
1

θ

(
νloc −

|u|2

2

))
Ω

+

(
∇
(
∂ρ

∂t

)
,

1

We θ
∇ρ
)

Ω

.
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Combing the above two relations leads to∫
Ω

δH

δρ

[
∂ρ

∂t

]
dVx =

(
∂ρ

∂t
,
1

θ

(
νloc −

|u|2

2

))
Ω

+

(
∇
(
∂ρ

∂t

)
,

1

We θ
∇ρ
)

Ω

= (∇V, ρu)Ω . (129)

Taking w = u/θ in (125) results in∫
Ω

δH

δ(ρu)

[
∂(ρu)

∂t

]
dVx =

(
u

θ
,
∂(ρu)

∂t

)
Ω

=
(
∇
(u

θ

)
, ρu⊗ u

)
Ω

+

(
∇ ·
(u

θ

)
, ρV θ +

1

2
ρ|u|2 +

1

We
ρθ∇ ·

(
∇ρ
θ

))
Ω

+

(
u

θ
,

(
V θ +

|u|2

2
+

1

We
θ∇ ·

(
∇ρ
θ

))
∇ρ
)

Ω

+
(u

θ
,H∇θ

)
Ω
−
(
∇
(u

θ

)
, τ
)

Ω
−
(
∇
(u

θ

)
, ς
)

Ω

+
(u

θ
, ρb
)

Ω
. (130)

Choosing w5 = −1/θ in (126) yields∫
Ω

δH

δ(ρE)

[
∂(ρE)

∂t

]
dVx =

(
−1

θ
,
∂(ρE)

∂t

)
Ω

= −
(
∇
(

1

θ

)
,

(
ρV θ − θH

+
1

2 We
|∇ρ|2 + ρ|u|2 +

1

We
ρθ∇ ·

(
∇ρ
θ

))
u

)
Ω

+

(
∇
(

1

θ

)
, τu

)
Ω

+

(
∇
(

1

θ

)
, ςu

)
Ω

+

(
1

θ
,∇ · q

)
Ω

−
(
∇
(

1

θ

)
,Π

)
Ω

−
(

1

θ
, ρb · u

)
Ω

−
(

1

θ
, ρr

)
Ω

. (131)

Grouping all terms in (129)-(131) involving V , one has

(∇V, ρu)Ω +
(
∇ ·
(u

θ

)
, ρV θ

)
Ω

+
(u

θ
, V θ∇ρ

)
Ω
−
(
∇
(

1

θ

)
, V θρu

)
Ω

=

∫
Ω

∇ · (ρV u) dVx =

∫
∂Ω

ρV u · ndAx = 0. (132)
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Summing all terms in (129)-(131) involving H yields

(u

θ
,H∇θ

)
Ω

+

(
∇
(

1

θ

)
, θHu

)
Ω

=
(u

θ
,H∇θ

)
Ω
−
(

1

θ
,∇ (θHu)

)
Ω

= −
∫

Ω

∇ · (Hu) dVx. (133)

Next, collecting all terms in (129)-(131) explicitly involving We, we have(
∇ ·
(u

θ

)
,

1

We
ρθ∇ ·

(
∇ρ
θ

))
Ω

+

(
u

θ
,

1

We
θ∇ ·

(
∇ρ
θ

)
∇ρ
)

Ω

−
(
∇
(

1

θ

)
,

1

We
ρθ∇ ·

(
∇ρ
θ

)
u

)
Ω

−
(
∇
(

1

θ

)
,

1

2 We
|∇ρ|2u

)
Ω

=

∫
Ω

1

We
∇ · (ρu)∇ ·

(
∇ρ
θ

)
− 1

2 We
∇
(

1

θ

)
· u|∇ρ|2dVx

=−
∫

Ω

1

Weθ
∇ (∇ · (ρu)) · ∇ρ+

1

2 Weθ
∇ ·
(
u|∇ρ|2

)
dVx

=

∫
Ω

−1

We θ

(
1

2
|∇ρ|2∇ · u +∇ρ⊗∇ρ : ∇u + ρ∇ρ · ∇ (∇ · u)

)
dVx. (134)

Combing all the terms in (129)-(131) including the Korteweg stress ς and the interstitial

working, we have

−
(
∇
(u

θ

)
, ς
)

Ω
+

(
∇
(

1

θ

)
, ςu

)
Ω

−
(
∇
(

1

θ

)
,Π

)
Ω

= −
(

1

θ
,∇u : ς

)
Ω

+

(
1

θ
,∇ ·Π

)
Ω

=

∫
Ω

1

We θ

(
1

2
|∇ρ|2∇ · u +∇ρ⊗∇ρ : ∇u + ρ∇ρ · ∇ (∇ · u)

)
dVx. (135)

Making use of (132)-(135), the summation of (129)-(131) gives∫
Ω

δH

δρ

[
∂ρ

∂t

]
+

δH

δ(ρu)

[
∂(ρu)

∂t

]
+

δH

δ(ρE)

[
∂(ρE)

∂t

]
dVx

= −
∫

Ω

∇ · (Hu) dVx −
(
∇
(u

θ

)
, τ
)

Ω
+

(
∇
(

1

θ

)
, τu

)
Ω

+

(
1

θ
, ρb · u

)
Ω

−
(

1

θ
, ρb · u

)
Ω

+

(
1

θ
,∇ · q

)
Ω

−
(

1

θ
, ρr

)
Ω
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= −
∫

Ω

∇ · (Hu) dVx −
∫

Ω

1

θ
τ : ∇udVx +

(
1

θ
,∇ · q

)
Ω

−
(

1

θ
, ρr

)
Ω

= −
∫

Ω

∇ · (Hu) dVx −
∫

Ω

1

θ
τ : ∇udVx +

∫
Ω

∇ ·
(q

θ

)
+

q · ∇θ
θ2

− ρr

θ
dVx.

The above equation implies

∫
Ω

(
∂H

∂t
+∇ · (Hu)−∇ ·

(q

θ

)
+
ρr

θ

)
dVx = −

∫
Ω

1

θ
τ : ∇udVx −

∫
Ω

∇θ · κ∇θ
θ2

dVx,

which completes the proof of this theorem.

Remark 9. In our discussion, we assumed periodic boundary conditions. Under the periodic

boundary conditions, the divergence terms in (128) are canceled out and the statement can

be simplified as

∫
Ω

(
∂H

∂t
+
ρr

θ

)
dVx = −

∫
Ω

1

θ
τ : ∇udVx −

∫
Ω

∇θ · κ∇θ
θ2

dVx.

Even though we proved the case with periodic boundary conditions, the proof of Theorem

4 can proceed under other boundary conditions, such as the no-slip boundary conditions

for the velocity field and the heat flux boundary condition for the temperature field. The

major difficulty comes from the non-homogeneous essential boundary conditions. If there

are non-zero functions built in the trial solution spaces, we cannot choose the test function

as the entropy variables and the technique in the above proof is no more viable. The same

issue arises for the compressible Navier-Stokes equations [?]. This suggests that the strong

imposition of Dirichlet type boundary conditions is not an entropy-dissipative approach. The

recently developed weak imposition technique [?] may provide a solution to this issue.

3.6 Semi-discrete formulation

We perform spatial discretization of (119)-(122) by invoking the Galerkin method [?]. Let

Vh1 ⊂ V1, Vh2 ⊂ V2, and Vh3 ⊂ V3 be finite-dimensional function spaces, in which the super-

script h denotes a mesh parameter. Then the spatial discretization of (119)-(122) can be

stated as follows.

Find Y h
1 (t) = ρh(t) ∈ L2(0, T ;Vh1 ) ∩H1(0, T ;L2(Ω)), Y h

i+1(t) = uhi (t)/θ
h(t) ∈ L2(0, T ;Vh2 ) ∩

H1(0, T ;L2(Ω)) for i = 1, 2, 3, Y h
4 (t) = −1/θh(t) ∈ L2(0, T ;Vh3 ) ∩ H1(0, T ;L2(Ω)), and
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Y h
6 = V h ∈ L2(0, T ;Vh1 ), such that(

wh1 ,
∂ρh

∂t

)
Ω

−
(
∇wh1 , ρuh

)
Ω

= 0, ∀wh1 ∈ Vh1 , (136)

(
wh,

∂(ρhuh)

∂t

)
Ω

−
(
∇wh, ρhuh ⊗ uh

)
Ω

−
(
∇ ·wh, ρhV hθh +

1

2
ρh|uh|2 +

1

We
ρhθh∇ ·

(
∇ρh

θh

))
Ω

−
(

wh,

(
V hθh +

|uh|2

2
+

1

We
θh∇ ·

(
∇ρh

θh

))
∇ρh

)
Ω

−
(
wh, Hh∇θh

)
Ω

+
(
∇wh, τ h

)
Ω

+
(
∇wh, ςh

)
Ω

=
(
wh, ρhb

)
Ω
,

∀wh = (wh2 ;wh3 ;wh4 )T ∈
(
Vh2
)3
, (137)(

wh5 ,
∂(ρhEh)

∂t

)
Ω

−
(
∇wh5 ,

(
ρhV hθh − θhHh +

1

2 We
|∇ρh|2 + ρh|uh|2

+
1

We
ρhθh∇ ·

(
∇ρh

θh

))
uh
)

Ω

+
(
∇wh5 , τ huh

)
Ω

+
(
∇wh5 , ςhuh

)
Ω

−
(
∇wh5 ,qh

)
Ω
−
(
∇wh5 ,Πh

)
Ω

=
(
wh5 , ρ

hb · uh
)

Ω
+
(
wh5 , ρ

hr
)

Ω
, ∀wh5 ∈ Vh3 , (138)

(
wh6 , V

h
)

Ω
=

(
wh6 ,

1

θh

(
νhloc −

|uh|2

2

))
Ω

+

(
∇wh6 ,

1

We θh
∇ρh

)
Ω

, ∀wh6 ∈ Vh1 , (139)

with ρh(0) = ρh0 , uh(0)/θh(0) = uh0/θ
h
0 , and −1/θh(0) = −1/θh0 in Ω.

In the above formulation, ρh0 , uh0/θ
h
0 , and −1/θh0 are L2-projections of ρ0(x), u0(x)/θ0(x),

and −1/θ0(x) onto Vh1 , Vh2 , and Vh3 respectively. Employing the same techniques used in

the proof of Theorem 4, we can obtain the following theorem, which implies that the spatial

discretization (136)-(139) is entropy dissipative.

Theorem 5. The solutions of the semi-discrete formulation (136)-(139) satisfy the second

law of thermodynamics in the following sense.

∫
Ω

(
∂H(ρh, θh)

∂t
+∇ ·

(
H(ρh, θh)uh

)
−∇ ·

(
qh

θh

)
+
ρhr

θh

)
dVx

= −
∫

Ω

1

θh
τ h : ∇uhdVx −

∫
Ω

∇θh · κ∇θh

(θh)2 dVx.

Remark 10. In our implementation, the same discrete space Vh, up to the prescription of the

boundary conditions, is used to approximate V1, V2, and V3. Specifically, the Non-Uniform

Rational B-Spline (NURBS) basis functions are used to define Vh as well as the geometry
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of the computational domain. This approach directly leads to the concept of isogeometric

analysis [?].

3.7 The fully discrete formulation

In the preceding section, we have constructed an entropy-dissipative semi-discrete formula-

tion. It remains to design discretizations of the time derivatives such that the dissipation

property can be inherited in the time direction. In our previous work [?], we have successfully

developed a suite of temporal schemes for the isothermal Navier-Stokes-Korteweg equations.

For the thermal case, the difficulty comes from the term ∂(ρE)/∂t. If one uses the traditional

jump operator to approximate the time derivative, it will be hard to estimate the dissipation

of the resulting scheme. In this work, the total energy ρE is split into four parts:

ρE = ρΨloc − θH +
1

2
ρ|u|2 +

1

2 We
|∇ρ|2, (140)

and the time approximation for each of the four parts will be carefully designed to ensure

consistency and temporal dissipation. It is noteworthy that, in the design of the discrete

scheme, the special quadrature rules developed in [?, ?] will be used repeatedly as a key

technique. In the following text, we will first state the fully discrete scheme in Section 3.7.1.

Following that, five preliminary lemmas are given in Section 3.7.2. The main results about

the entropy-dissipation property and time accuracy are proven in Section 3.7.3.

3.7.1 The fully discrete scheme

To discretize the semi-discrete formulation, the time interval I = (0, T ) is divided into Nts

subintervals In = (tn, tn+1), n = 0, · · · , Nts− 1, of size ∆tn = tn+1− tn. We use the notation

Yh
n :=

[
ρhn;

uh1,n
θhn

;
uh2,n
θhn

;
uh3,n
θhn

;
−1

θhn
;V h

n

]T
(141)

to denote the fully discrete solutions at the time level n. The fully discrete primitive variables

at the same time level can be represented in terms of Yh
n as

ρhn = ρh(Yh
n) = Y h

1,n,

uhi,n = uhi (Y
h
n) = −Y h

i+1,n/Y
h

5,n, i = 1, 2, 3,

θhn = θh(Yh
n) = −1/Y h

5,n.
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We define the jump of density, linear momentum, and total energy over each time step as

JρhnK :=ρhn+1 − ρhn, (142)

Jρhnu
h
nK :=ρhn+1u

h
n+1 − ρhnuhn, (143)

JρhnE(ρhn,u
h
n, θ

h
n)K :=(ρΨloc)(ρ

h
n+ 1

2
, θhn+1)− (ρΨloc)(ρ

h
n+ 1

2
, θhn)

+ (ρΨloc)(ρ
h
n+1, θ

h
n+ 1

2
)− (ρΨloc)(ρ

h
n, θ

h
n+ 1

2
)

− θh
n+ 1

2

(
H(ρhn+1, θ

h
n+1)−H(ρhn, θ

h
n)
)

−
θhn+1 − θhn

2

(
H(ρh

n+ 1
2
, θhn+1) +H(ρh

n+ 1
2
, θhn)

)
+

(θhn+1 − θhn)3

12

∂2H

∂θ2
(ρh
n+ 1

2
, θhn+1)

+
1

2

(
ρhn+1|uhn+1|2 − ρhn|uhn|2

)
+

1

2 We

(
|∇ρhn+1|2 − |∇ρhn|2

)
. (144)

Remark 11. According to the energy split (140), the definition (144) can be rewritten as a

summation of four jumps:

JρhnE(ρhn,u
h
n, θ

h
n)K =JρhnΨloc(ρ

h
n, θ

h
n)K− JθhnH(ρhn, θ

h
n)K + J

ρhn
2
|uhn|2K + J

1

2 We
|∇ρhn|2K, (145)

wherein,

JρhnΨloc(ρ
h
n, θ

h
n)K :=(ρΨloc)(ρ

h
n+ 1

2
, θhn+1)− (ρΨloc)(ρ

h
n+ 1

2
, θhn)

+ (ρΨloc)(ρ
h
n+1, θ

h
n+ 1

2
)− (ρΨloc)(ρ

h
n, θ

h
n+ 1

2
), (146)

JθhnH(ρhn, θ
h
n)K :=θh

n+ 1
2

(
H(ρhn+1, θ

h
n+1)−H(ρhn, θ

h
n)
)

+
θhn+1 − θhn

2

(
H(ρh

n+ 1
2
, θhn+1) +H(ρh

n+ 1
2
, θhn)

)
−

(θhn+1 − θhn)3

12

∂2H

∂θ2
(ρh
n+ 1

2
, θhn+1), (147)

J
ρhn
2
|uhn|2K :=

1

2

(
ρhn+1|uhn+1|2 − ρhn|uhn|2

)
, (148)

J
1

2 We
|∇ρhn|2K :=

1

2 We

(
|∇ρhn+1|2 − |∇ρhn|2

)
. (149)

The definitions (146) and (147) are inspired by the fact that the summation of first-order

partial derivatives approximates the total derivative. In (147), there is an additional third-

order perturbation term, whose role will be revealed in Lemma 6. The jump operators for the
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kinetic energy and the surface energy follow the classical definition.

With the jump operators defined above, the fully discrete scheme is stated as follows.

In each time step, given Yh
n and the time step ∆tn, find Yh

n+1 such that for all wh1 ∈ Vh,
wh = (wh2 ;wh3 ;wh4 )T ∈

(
Vh
)3

, wh5 ∈ Vh, and wh6 ∈ Vh,

BM(wh1 ; Yh
n+1) :=

(
wh1 ,

JρhnK
∆tn

)
Ω

−
(
∇wh1 , ρhn+ 1

2
uh
n+ 1

2

)
Ω

= 0, (150)

BU(wh; Yh
n+1) :=

(
wh,

JρhnuhnK
∆tn

)
Ω

−
(
∇wh, ρh

n+ 1
2
uh
n+ 1

2
⊗ uh

n+ 1
2

)
Ω

−

(
∇ ·wh, ρh

n+ 1
2
V h
n+ 1

2
θh
n+ 1

2
+

1

2
ρh
n+ 1

2
|uh
n+ 1

2
|2 +

1

We
ρh
n+ 1

2
θh
n+ 1

2
∇ ·

(∇ρh
n+ 1

2

θh
n+ 1

2

))
Ω

−

(
wh,

(
V h
n+ 1

2
θh
n+ 1

2
+
|uh
n+ 1

2

|2

2
+

1

We
θh
n+ 1

2
∇ ·

(∇ρh
n+ 1

2

θh
n+ 1

2

))
∇ρh

n+ 1
2

)
Ω

−
(
wh, Hh

n+ 1
2
∇θh

n+ 1
2

)
Ω

+
(
∇wh, τ h

n+ 1
2

)
Ω

+
(
∇wh, ςh

n+ 1
2

)
Ω
−
(
wh, ρh

n+ 1
2
b
)

Ω
= 0, (151)

BE(wh5 ; Yh
n+1) :=

(
wh5 ,

JρhnE(ρhn,u
h
n, θ

h
n)K

∆tn

)
Ω

−

(
∇wh5 ,

(
ρh
n+ 1

2
V h
n+ 1

2
θh
n+ 1

2

− θh
n+ 1

2
Hh
n+ 1

2
+

1

2 We
|∇ρh

n+ 1
2
|2 +

1

We
ρh
n+ 1

2
θh
n+ 1

2
∇ ·

(∇ρh
n+ 1

2

θh
n+ 1

2

)
+ ρh

n+ 1
2
|uh
n+ 1

2
|2
)

uh
n+ 1

2

)
Ω

+
(
∇wh5 , τ hn+ 1

2
uh
n+ 1

2

)
Ω

+
(
∇wh5 , ςhn+ 1

2
uh
n+ 1

2

)
Ω
−
(
∇wh5 ,qhn+ 1

2

)
Ω
−
(
∇wh5 ,Πh

n+ 1
2

)
Ω

−
(
wh5 , ρ

h
n+ 1

2
b · uh

n+ 1
2

)
Ω
−
(
wh5 , ρ

h
n+ 1

2
r
)

Ω
= 0, (152)

BA(wh6 ; Yh
n+1) :=

(
wh6 , V

h
n+ 1

2

)
Ω
−

(
wh6 ,

1

θh
n+ 1

2

(
1

2

(
νloc(ρ

h
n, θ

h
n+ 1

2
) + νloc(ρ

h
n+1, θ

h
n+ 1

2
)
)

− JρhnK2

12

∂2νloc
∂ρ2

(ρhn, θ
h
n+ 1

2
)

))
Ω

+

(
wh6 ,

1

θh
n+ 1

2

uhn · uhn+1

2

)
Ω

−

(
∇wh6 ,

∇ρh
n+ 1

2

We θh
n+ 1

2

)
Ω

= 0, (153)

wherein

Yh
n+ 1

2
:=

1

2

(
Yh
n + Yh

n+1

)
, (154)

ρh
n+ 1

2
:= ρh(Yh

n+ 1
2
), (155)

uh
n+ 1

2
:= uh(Yh

n+ 1
2
), (156)

θh
n+ 1

2
:= θh(Yh

n+ 1
2
), (157)

τ h
n+ 1

2
:=

1

Re

(
∇uh

n+ 1
2

+
(
∇uh

n+ 1
2

)T
− 2

3
∇ · uh

n+ 1
2
I

)
, (158)
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ςh
n+ 1

2
:=

1

We

((
ρh
n+ 1

2
∆ρh

n+ 1
2

+
1

2
|∇ρh

n+ 1
2
|2
)

I−∇ρh
n+ 1

2
⊗∇ρh

n+ 1
2

)
, (159)

qh
n+ 1

2
:= −κ∇θh

n+ 1
2
, (160)

Π :=
1

We
ρh
n+ 1

2
∇ · uh

n+ 1
2
∇ρh

n+ 1
2
, (161)

Hh
n+ 1

2
:=

8

27
ρh
n+ 1

2

(
log

(
ρh
n+ 1

2

1− ρh
n+ 1

2

)
− 1

γ − 1
log(θh

n+ 1
2
)

)
. (162)

3.7.2 Preliminary lemmas

We state and prove five lemmas in this section, which will be applied to prove the final

results in Section 3.7.3.

Lemma 3. The mathematical entropy function H(ρ, θ) given by (102) satisfies

∂3H

∂θ3
< 0. (163)

Proof. Straightforward calculations lead to

∂3H

∂θ3
= − 16

27(γ − 1)

ρ

θ3
.

The dimensionless temperature θ is always positive and the heat capacity ratio γ is always

greater than 1. Hence,

∂3H

∂θ3
< 0.

Lemma 4. The local electrochemical potential νloc(ρ, θ) given by (100) satisfies

∂3νloc
∂ρ3

> 0. (164)

Proof. Direct calculations yield

∂3νloc
∂ρ3

=
16θ

27

6ρ2 − 4ρ+ 1

ρ3(1− ρ)4
.
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It is known that θ > 0 and 6ρ2 − 4ρ+ 1 ≥ 1/3. Therefore, one has

∂3νloc
∂ρ3

> 0.

Lemma 5. (Perturbed trapezoidal rules) For a function f ∈ C3([m,n]), where m,n ∈ R,

there exist ξ1, ξ2 ∈ (m,n) such that the following quadrature formulas hold true.∫ n

m

f(x)dx =
n−m

2
(f(m) + f(n))− (n−m)3

12
f

′′
(m)− (n−m)4

24
f

′′′
(ξ1), (165)∫ n

m

f(x)dx =
n−m

2
(f(m) + f(n))− (n−m)3

12
f

′′
(n) +

(n−m)4

24
f

′′′
(ξ2). (166)

The proof for this lemma can be found in the appendix of [?]. There are two other suites

of quadrature formulas – the rectangular quadrature rules and the perturbed mid-point rules.

Interested readers are referred to [?, ?] for details about these formulas. A common feature

of these formulas is that each pair contains opposite signs in the asymptotic residual terms.

This allows one to perform a split of the target function and construct a discrete scheme

with a controllable residual. This technique will be demonstrated in the following lemma.

Lemma 6. Given JρhnK, JρhnuhnK, and JρhnE(ρhn,u
h
n, θ

h
n)K defined in (142)-(144), the following

relation holds for ξ1, ξ2 ∈ (0, 1).(
JρhnK
∆tn

,
1

θh
n+ 1

2

(
1

2

(
νloc(ρ

h
n, θ

h
n+ 1

2
) + νloc(ρ

h
n+1, θ

h
n+ 1

2
)
)
− JρhnK2

12

∂2νloc
∂ρ2

(ρhn, θ
h
n+ 1

2
)

))
Ω

−

(
JρhnK
∆tn

,
uhn+1 · uhn

2θh
n+ 1

2

)
Ω

+

(
∇JρhnK

∆tn
,

1

We θh
n+ 1

2

∇ρh
n+ 1

2

)
Ω

+

(
uh
n+ 1

2

θh
n+ 1

2

,
JρhnuhnK

∆tn

)
Ω

−

(
1

θh
n+ 1

2

,
JρhnE(ρhn,u

h
n, θ

h
n)K

∆tn

)
Ω

=

∫
Ω

H(ρhn+1, θ
h
n+1)−H(ρhn, θ

h
n)

∆tn
dVx +

(
1

θh
n+ 1

2

∆tn
,
JρhnK4

24

∂3νloc
∂ρh3

(ρhn+ξ1
, θh
n+ 1

2
)

)
Ω

−

(
1

θh
n+ 1

2

∆tn
,
JθhnK4

24

∂3H

∂θh3
(ρh
n+ 1

2
, θhn+ξ2

)

)
Ω

. (167)
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Proof. Direct calculations can shown that(
∇JρhnK

∆tn
,

1

We θh
n+ 1

2

∇ρh
n+ 1

2

)
Ω

=

∫
Ω

|∇ρhn+1|2 − |∇ρhn|2

2 We θh
n+ 1

2

∆tn
dVx,

and (
uh
n+ 1

2
, Jρhnu

h
nK
)

Ω
−
(

JρhnK,
1

2
uhn+1 · uhn

)
Ω

=

∫
Ω

1

2

(
ρhn+1|uhn+1|2 − ρhn|uhn|2

)
dVx.

Making use of the above two relations, one can get(
JρhnK
∆tn

,
1

θh
n+ 1

2

(
1

2

(
νloc(ρ

h
n, θ

h
n+ 1

2
) + νloc(ρ

h
n+1, θ

h
n+ 1

2
)
)
− JρhnK2

12

∂2νloc
∂ρh2

(ρhn, θ
h
n+ 1

2
)

))
Ω

−

(
JρhnK
∆tn

,
uhn+1 · uhn

2θh
n+ 1

2

)
Ω

+

(
∇JρhnK

∆tn
,

1

We θh
n+ 1

2

∇ρh
n+ 1

2

)
Ω

+

(
uh
n+ 1

2

θh
n+ 1

2

,
JρhnuhnK

∆tn

)
Ω

−

(
1

θh
n+ 1

2

,
JρhnE(ρhn,u

h
n, θ

h
n)K

∆tn

)
Ω

=

(
JρhnK
∆tn

,
1

θh
n+ 1

2

(
1

2

(
νloc(ρ

h
n, θ

h
n+ 1

2
) + νloc(ρ

h
n+1, θ

h
n+ 1

2
)
)
− JρhnK2

12

∂2νloc
∂ρ2

(ρhn, θ
h
n+ 1

2
)

))
Ω

−

(
1

θh
n+ 1

2

∆tn
, (ρΨloc)(ρ

h
n+ 1

2
, θhn+1)− (ρΨloc)(ρ

h
n+ 1

2
, θhn) + (ρΨloc)(ρ

h
n+1, θ

h
n+ 1

2
)

− (ρΨloc)(ρ
h
n, θ

h
n+ 1

2
)− θh

n+ 1
2

(
H(ρhn+1, θ

h
n+1)−H(ρhn, θ

h
n)
)

− JθhnK
2

(
H(ρh

n+ 1
2
, θhn+1) +H(ρh

n+ 1
2
, θhn)

)
+

JθhnK3

12

∂2H

∂θ2
(ρh
n+ 1

2
, θhn+1)

)
Ω

. (168)

Applying the perturbed trapezoidal rule (165) to

νloc =
∂(ρΨloc)

∂ρ
,

one can get

(ρΨloc)(ρ
h
n+1, θ

h
n+ 1

2
)− (ρΨloc)(ρ

h
n, θ

h
n+ 1

2
) =

∫ ρhn+1

ρhn

∂(ρΨloc)

∂ρ
dρ =

∫ ρhn+1

ρhn

νlocdρ

=
JρhnK

2

(
νloc(ρ

h
n, θ

h
n+ 1

2
) + νloc(ρ

h
n+1, θ

h
n+ 1

2
)
)
− JρhnK3

12

∂2νloc
∂ρ2

(ρhn, θ
h
n+ 1

2
)− JρhnK4

24

∂3νloc
∂ρ3

(ρhn+ξ1
, θh
n+ 1

2
),
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for ξ1 ∈ (0, 1). Consequently, the relation (168) can be rewritten as(
JρhnK
∆tn

,
1

θh
n+ 1

2

(
1

2

(
νloc(ρ

h
n, θ

h
n+ 1

2
) + νloc(ρ

h
n+1, θ

h
n+ 1

2
)
)
− JρhnK2

12

∂2νloc
∂ρ2

(ρhn, θ
h
n+ 1

2
)

))
Ω

−

(
JρhnK
∆tn

,
uhn+1 · uhn

2θh
n+ 1

2

)
Ω

+

(
∇JρhnK

∆tn
,

1

We θh
n+ 1

2

∇ρh
n+ 1

2

)
Ω

+

(
uh
n+ 1

2

θh
n+ 1

2

,
JρhnuhnK

∆tn

)
Ω

−

(
1

θh
n+ 1

2

,
JρhnE(ρhn,u

h
n, θ

h
n)K

∆tn

)
Ω

=

(
1

∆tnθhn+ 1
2

,
JρhnK4

24

∂3νloc
∂ρ3

(ρhn+ξ1
, θh
n+ 1

2
)

)
Ω

−

(
1

θh
n+ 1

2

∆tn
, (ρΨloc)(ρ

h
n+ 1

2
, θhn+1)

− (ρΨloc)(ρ
h
n+ 1

2
, θhn)− θh

n+ 1
2

(
H(ρhn+1, θ

h
n+1)−H(ρhn, θ

h
n)
)

− JθhnK
2

(
H(ρh

n+ 1
2
, θhn+1) +H(ρh

n+ 1
2
, θhn)

)
+

JθhnK3

12

∂2H

∂θ2
(ρh
n+ 1

2
, θhn+1)

)
Ω

. (169)

Next, applying the perturbed trapezoidal rule (166) to

H =
∂(ρΨloc)

∂θ

leads to

(ρΨloc)(ρ
h
n+ 1

2
, θhn+1)− (ρΨloc)(ρ

h
n+ 1

2
, θhn) =

∫ θhn+1

θhn

∂(ρΨloc)

∂θ
dθ =

∫ θhn+1

θhn

Hdθ

=
JθhnK

2

(
H(ρh

n+ 1
2
, θhn+1) +H(ρh

n+ 1
2
, θhn)

)
− JθhnK3

12

∂2H

∂θ2
(ρh
n+ 1

2
, θhn+1) +

JθhnK4

24

∂3H

∂θ3
(ρh
n+ 1

2
, θhn+ξ2

),

for ξ2 ∈ (0, 1). Using the above relation, relation (169) can be further rewritten as(
JρhnK
∆tn

,
1

θh
n+ 1

2

(
1

2

(
νloc(ρ

h
n, θ

h
n+ 1

2
) + νloc(ρ

h
n+1, θ

h
n+ 1

2
)
)
− JρhnK2

12

∂2νloc
∂ρ2

(ρhn, θ
h
n+ 1

2
)

))
Ω

−

(
JρhnK
∆tn

,
uhn+1 · uhn

2θh
n+ 1

2

)
Ω

+

(
∇JρhnK

∆tn
,

1

We θh
n+ 1

2

∇ρh
n+ 1

2

)
Ω

+

(
uh
n+ 1

2

θh
n+ 1

2

,
JρhnuhnK

∆tn

)
Ω

−

(
1

θh
n+ 1

2

,
JρhnE(ρhn,u

h
n, θ

h
n)K

∆tn

)
Ω

=

(
1

∆tnθhn+ 1
2

,
JρhnK4

24

∂3νloc
∂ρ3

(ρhn+ξ1
, θh
n+ 1

2
)

)
Ω

+

(
1

∆tn
,
(
H(ρhn+1, θ

h
n+1)−H(ρhn, θ

h
n)
))

Ω
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−

(
1

θh
n+ 1

2

∆tn
,
JθhnK4

24

∂3H

∂θ3
(ρh
n+ 1

2
, θhn+ξ2

)

)
Ω

=

∫
Ω

H(ρhn+1, θ
h
n+1)−H(ρhn, θ

h
n)

∆tn
dVx +

(
1

θh
n+ 1

2

∆tn
,
JρhnK4

24

∂3νloc
∂ρ3

(ρhn+ξ1
, θh
n+ 1

2
)

)
Ω

−

(
1

θh
n+ 1

2

∆tn
,
JθhnK4

24

∂3H

∂θ3
(ρh
n+ 1

2
, θhn+ξ2

)

)
Ω

.

This completes the proof of Lemma 6.

Remark 12. Based on Lemmas 3 and 4, one can show that the last two terms in (167)

satisfy (
1

θh
n+ 1

2

∆tn
,
JρhnK4

24

∂3νloc
∂ρ3

(ρhn+ξ1
, θh
n+ 1

2
)

)
Ω

≥ 0,(
1

θh
n+ 1

2

∆tn
,
JθhnK4

24

∂3H

∂θ3
(ρh
n+ 1

2
, θhn+ξ2

)

)
Ω

≤ 0.

The two terms represent the numerical dissipation introduced by the approximation of time

derivatives.

Remark 13. In the proof of Lemma 6, it is clear that the novel jump operator (144) is

designed based on the perturbed trapezoidal formulas (165) and (166). It should be pointed out

that one may construct different discrete jump operators for ∂(ρE)/∂t by using the perturbed

mid-point rules or the rectangular quadrature rules proposed in [?]. The resulting schemes

can be shown to guarantee the dissipation property, but the amount of numerical dissipation

will be slightly different.

Lemma 7. Replacing ρhn, uhn, and θhn in the definition (144) with corresponding time con-

tinuous functions ρh(tn), uh(tn), and θh(tn) and assuming sufficient smoothness in the time

direction, one has

Jρh(tn)E(ρh(tn),uh(tn), θh(tn))K

=
(
ρh(tn+1)E(ρh(tn+1),uh(tn+1), θh(tn+1))− ρh(tn)E(ρh(tn),uh(tn), θh(tn))

)
+O(∆t3).

Proof. Recalling the relations (145)-(149), we only need to analyze the non-classical jump

operators (146) and (147). We consider the jump operator (146) first. Taylor expansions
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lead to

(ρΨloc)(ρ
h(tn+1),θh(tn+1)) = (ρΨloc)(ρ

h(tn+ 1
2
), θh(tn+ 1

2
))

+
∂(ρΨloc)

∂ρ
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
ρh(tn+1)− ρh(tn+ 1

2
)
)

+
∂(ρΨloc)

∂θ
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
θh(tn+1)− θh(tn+ 1

2
)
)

+
1

2

∂2(ρΨloc)

∂ρ2
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
ρh(tn+1)− ρh(tn+ 1

2
)
)2

+
1

2

∂2(ρΨloc)

∂θ2
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
θh(tn+1)− θh(tn+ 1

2
)
)2

+
∂2(ρΨloc)

∂ρ∂θ
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
ρh(tn+1)− ρh(tn+ 1

2
)
)

(
θh(tn+1)− θh(tn+ 1

2
)
)

+O(∆t3), (170)

(ρΨloc)(ρ
h(tn),θh(tn)) = (ρΨloc)(ρ

h(tn+ 1
2
), θh(tn+ 1

2
))

+
∂(ρΨloc)

∂ρ
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
ρh(tn)− ρh(tn+ 1

2
)
)

+
∂(ρΨloc)

∂θ
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
θh(tn)− θh(tn+ 1

2
)
)

+
1

2

∂2(ρΨloc)

∂ρ2
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
ρh(tn)− ρh(tn+ 1

2
)
)2

+
1

2

∂2(ρΨloc)

∂θ2
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
θh(tn)− θh(tn+ 1

2
)
)2

+
∂2(ρΨloc)

∂ρ∂θ
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
ρh(tn)− ρh(tn+ 1

2
)
)

(
θh(tn)− θh(tn+ 1

2
)
)

+O(∆t3), (171)

(ρΨloc)(ρ
h(tn+ 1

2
),θh(tn+1)) = (ρΨloc)(ρ

h(tn+ 1
2
), θh(tn+ 1

2
))

+
∂(ρΨloc)

∂θ
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
θh(tn+1)− θh(tn+ 1

2
)
)

+
1

2

∂2(ρΨloc)

∂θ2
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
θh(tn+1)− θh(tn+ 1

2
)
)2

+O(∆t3), (172)

(ρΨloc)(ρ
h(tn+ 1

2
),θh(tn)) = (ρΨloc)(ρ

h(tn+ 1
2
), θh(tn+ 1

2
))

+
∂(ρΨloc)

∂θ
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
θh(tn)− θh(tn+ 1

2
)
)
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+
1

2

∂2(ρΨloc)

∂θ2
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
θh(tn)− θh(tn+ 1

2
)
)2

+O(∆t3), (173)

(ρΨloc)(ρ
h(tn+1),θh(tn+ 1

2
)) = (ρΨloc)(ρ

h(tn+ 1
2
), θh(tn+ 1

2
))

+
∂(ρΨloc)

∂ρ
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
ρh(tn+1)− ρh(tn+ 1

2
)
)

+
1

2

∂2(ρΨloc)

∂ρ2
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
ρh(tn+1)− ρh(tn+ 1

2
)
)2

+O(∆t3), (174)

(ρΨloc)(ρ
h(tn),θh(tn+ 1

2
)) = (ρΨloc)(ρ

h(tn+ 1
2
), θh(tn+ 1

2
))

+
∂(ρΨloc)

∂ρ
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
ρh(tn)− ρh(tn+ 1

2
)
)

+
∂2(ρΨloc)

∂ρ2
(ρh(tn+ 1

2
), θh(tn+ 1

2
))
(
ρh(tn)− ρh(tn+ 1

2
)
)2

+O(∆t3). (175)

Combining the above Taylor expansions leads to(
(ρΨloc)(ρ

h(tn+1), θh(tn+1))− (ρΨloc)(ρ
h(tn), θh(tn))

)
−
(

(ρΨloc)(ρ
h(tn+ 1

2
), θh(tn+1))− (ρΨloc)(ρ

h(tn+ 1
2
), θh(tn))

+ (ρΨloc)(ρ
h(tn+1), θh(tn+ 1

2
))− (ρΨloc)(ρ

h(tn), θh(tn+ 1
2
))
)

= O(∆t3).

Next, we analyze the term (147).(
θh(tn+1)H(ρh(tn+1), θh(tn+1))− θh(tn)H(ρh(tn), θh(tn))

)
−

(
θh(tn+ 1

2
)
(
H(ρh(tn+1), θh(tn+1))−H(ρh(tn), θh(tn))

)
+
θh(tn+1)− θh(tn)

2

(
H(ρh(tn+ 1

2
), θh(tn+1)) +H(ρh(tn+ 1

2
), θh(tn))

))

=
θh(tn+1)− θh(tn)

2

(
H(ρh(tn+1), θh(tn+1)) +H(ρh(tn), θh(tn))

−H(ρh(tn+ 1
2
), θh(tn+1))−H(ρh(tn+ 1

2
), θh(tn))

)
+O(∆t3)

=
(θh(tn+1)− θh(tn))

2

(
∂H

∂ρ
(ρh(tn+ 1

2
), θh(tn+1))

(
ρh(tn+1)− ρh(tn+ 1

2
)
)
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− ∂H

∂ρ
(ρh(tn+ 1

2
), θh(tn))

(
ρh(tn)− ρh(tn+ 1

2
)
))

+O(∆t3)

=O(∆t3). (176)

According to (170) and (176), it can be concluded that

Jρh(tn)E(ρh(tn),uh(tn), θh(tn))K

−
(
ρh(tn+1)E(ρh(tn+1),uh(tn+1), θh(tn+1))− ρh(tn)E(ρh(tn),uh(tn), θh(tn))

)
=O(∆t3) +

(θh(tn+1)− θh(tn))3

12

∂2H

∂θ2
(ρh(tn+ 1

2
), θh(tn+1))

=O(∆t3).

This completes the proof of the lemma.

This lemma reveals that the jump operator we defined in (144) is in fact a third-order

perturbation to the classical energy jump. Using this fact, we can prove the second-order

accuracy of our numerical scheme.

3.7.3 Numerical dissipation and accuracy

With the above five lemmas, we are ready to state and prove the main results of the fully

discrete scheme (150)-(153).

Theorem 6. The solutions of the fully discrete scheme (150)-(153) satisfy

∫
Ω

(
H(ρhn+1, θ

h
n+1)−H(ρhn, θ

h
n)

∆tn
+∇ ·

(
H(ρh

n+ 1
2
, θh
n+ 1

2
)uh

n+ 1
2

)
−∇ ·

(
qh
n+ 1

2

θh
n+ 1

2

)

+
ρh
n+ 1

2

r

θh
n+ 1

2

)
dVx

=−
∫

Ω

1

θh
n+ 1

2

τ h
n+ 1

2
: ∇uh

n+ 1
2
dVx −

∫
Ω

∇θh
n+ 1

2

· κ∇θh
n+ 1

2(
θh
n+ 1

2

)2 dVx

−
∫

Ω

1

θh
n+ 1

2

∆tn

JρhnK4

24

∂3νloc
∂ρ3

(ρhn+ξ1
, θh
n+ 1

2
)dVx +

∫
Ω

1

θh
n+ 1

2

∆tn

JθhnK4

24

∂3H

∂θ3
(ρh
n+ 1

2
, θhn+ξ2

)dVx

≤0. (177)

Proof. Taking wh1 = V h
n+ 1

2

in (150), wh = uh
n+ 1

2

/θh
n+ 1

2

in (151), wh5 = −1/θh
n+ 1

2

in (152),

wh6 = JρhnK/∆tn in (153), combing the three equations, and following the proof of Theorem
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4, one can show that

BM(V h
n+ 1

2
; Yh

n+1) + BU(
uh
n+ 1

2

θh
n+ 1

2

; Yh
n+1) + BE(− 1

θn+ 1
2

; Yh
n+1)−BA(

JρhnK
∆tn

; Yh
n+1)

=

(
JρhnK
∆tn

,
1

θh
n+ 1

2

(
1

2

(
νloc(ρ

h
n, θ

h
n+ 1

2
) + νloc(ρ

h
n+1, θ

h
n+ 1

2
)
)
− JρhnK2

12

∂2νloc
∂ρ2

(ρhn, θ
h
n+ 1

2
)

))
Ω

−

(
JρhnK
∆tn

,
uhn+1 · uhn

2θh
n+ 1

2

)
Ω

+

(
∇JρhnK

∆tn
,

1

We θh
n+ 1

2

∇ρh
n+ 1

2

)
Ω

+

(
uh
n+ 1

2

θh
n+ 1

2

,
JρhnuhnK

∆tn

)
Ω

−

(
1

θh
n+ 1

2

,
JρhnE(ρhn,u

h
n, θ

h
n)K

∆tn

)
Ω

+

∫
Ω

∇ ·
(
H(ρh

n+ 1
2
, θh
n+ 1

2
)uh

n+ 1
2

)
dVx

+

∫
Ω

∇ ·

(
qh
n+ 1

2

θh
n+ 1

2

)
−
ρh
n+ 1

2

r

θn+ 1
2

dVx +

∫
Ω

1

θh
n+ 1

2

τ h
n+ 1

2
: ∇uh

n+ 1
2
dVx +

∫
Ω

∇θh
n+ 1

2

· κ∇θh
n+ 1

2(
θh
n+ 1

2

)2 dVx

= 0.

According to Lemma 6, the above relation can be reorganized as

∫
Ω

(
H(ρhn+1, θ

h
n+1)−H(ρhn, θ

h
n)

∆tn
+∇ ·

(
H(ρh

n+ 1
2
, θh
n+ 1

2
)uh

n+ 1
2

)
−∇ ·

(
qh
n+ 1

2

θh
n+ 1

2

)

+
ρh
n+ 1

2

r

θh
n+ 1

2

)
dVx

=−
∫

Ω

1

θh
n+ 1

2

τ h
n+ 1

2
: ∇uh

n+ 1
2
dVx −

∫
Ω

∇θh
n+ 1

2

· κ∇θh
n+ 1

2(
θh
n+ 1

2

)2 dVx

−
∫

Ω

1

θh
n+ 1

2

∆tn

JρhnK4

24

∂3νloc
∂ρ3

(ρhn+ξ1
, θh
n+ 1

2
)dVx +

∫
Ω

1

θh
n+ 1

2

∆tn

JθhnK4

24

∂3H

∂θ3
(ρh
n+ 1

2
, θhn+ξ2

)dVx

≤0.

The last inequality is due to Lemmas 3 and 4.

Remark 14. This theorem implies that the fully discrete solutions respect the second law of

thermodynamics. The amount of dissipation in (177) consists of two parts: the physical dis-

sipation and the numerical dissipation. From our analysis, the numerical dissipation purely

comes from the temporal scheme, and it will vanish if the time step approaches zero.

Theorem 7. The local truncation error in time τ(t) can be bounded by |τ(t)| ≤ K∆t2n for

all tn ∈ [0, T ], where K is a constant independent of ∆tn.
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Proof. We start by considering the mid-point rule applied to the semi-discrete formulation

(136)-(139). The fully discrete scheme reads

BM
mid(w

h
1 ; Yh

n+1) :=

(
wh1 ,

JρhnK
∆tn

)
Ω

−
(
∇wh1 , ρhn+ 1

2
uh
n+ 1

2

)
Ω

= 0,

BU
mid(w

h; Yh
n+1) :=

(
wh,

JρhnuhnK
∆tn

)
Ω

−
(
∇wh, ρh

n+ 1
2
uh
n+ 1

2
⊗ uh

n+ 1
2

)
Ω

−

(
∇ ·wh, ρh

n+ 1
2
V h
midθ

h
n+ 1

2
+

1

2
ρh
n+ 1

2
|uh
n+ 1

2
|2 +

1

We
ρh
n+ 1

2
θh
n+ 1

2
∇ ·

(∇ρh
n+ 1

2

θh
n+ 1

2

))
Ω

−

(
wh,

(
V h
midθ

h
n+ 1

2
+
|uh
n+ 1

2

|2

2
+

1

We
θh
n+ 1

2
∇ ·

(∇ρh
n+ 1

2

θh
n+ 1

2

))
∇ρh

n+ 1
2

)
Ω

−
(
wh,Hh

n+ 1
2
∇θh

n+ 1
2

)
Ω

+
(
∇wh, τ h

n+ 1
2

)
Ω

+
(
∇wh

n+ 1
2
, ςh

n+ 1
2

)
Ω
−
(
wh, ρh

n+ 1
2
b
)

Ω
= 0,

BE
mid(w

h
5 ; Yh

n+1) :=

(
wh5 ,

ρhn+1E(ρhn+1,u
h
n+1, θ

h
n+1)− ρhnE(ρhn,u

h
n, θ

h
n)

∆tn

)
Ω

−
(
∇wh5 ,

(
ρhV h

midθ
h
n+ 1

2
− θh

n+ 1
2
Hh
n+ 1

2
+

1

2 We
|∇ρh

n+ 1
2
|2 + ρh|uh

n+ 1
2
|2

+
1

We
ρh
n+ 1

2
θh
n+ 1

2
∇ ·

(∇ρh
n+ 1

2

θh
n+ 1

2

))
uh
n+ 1

2

)
Ω

+
(
∇wh5 , τ hn+ 1

2
uh
n+ 1

2

)
Ω

+
(
∇wh5 , ςhn+ 1

2
uh
n+ 1

2

)
Ω

−
(
∇wh5 ,qhn+ 1

2

)
Ω
−
(
∇wh5 ,Πh

n+ 1
2

)
Ω
−
(
wh5 , ρ

h
n+ 1

2
b · uh

n+ 1
2

)
Ω
−
(
wh5 , ρ

h
n+ 1

2
r
)

Ω
= 0,

BA
mid(w

h
6 ; Yh

n+1) :=
(
wh6 , V

h
mid

)
Ω
−

(
wh6 ,

1

θh
n+ 1

2

(
νloc(ρ

h
n+ 1

2
, θh
n+ 1

2
)−
|uh
n+ 1

2

|2

2

))
Ω

−

(
∇wh6 ,

1

We θh
n+ 1

2

∇ρh
n+ 1

2

)
Ω

= 0.

The local truncation errors associated with the mid-point rule can be obtained by replacing

the time discrete solutions with the corresponding exact time continuous solution:

BM
mid(w

h
1 ; Yh(t)) =

(
wh1 ,Θ

mid
ρ

)
Ω
,

BU
mid(w

h; Yh(t)) =
(
wh1 ,Θ

mid
u

)
Ω
,

BE
mid(w

h
5 ; Yh(t)) =

(
wh1 ,Θ

mid
E

)
Ω
,

BA
mid(w

h
6 ; Yh(t)) =

(
wh1 ,Θ

mid
A

)
Ω
.
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Assuming sufficient smoothness for the time continuous solutions, one can show that

Θmid
ρ = O(∆t2n), Θmid

u = O(∆t2n)1,

Θmid
E = O(∆t2n), Θmid

A = O(∆t2n).

Now replacing the time discrete solutions with corresponding time continuous solutions in

the fully discrete formulation (150)-(153):

BM(wh1 ; Yh(t)) =
(
wh1 ,Θρ

)
Ω
,

BU(wh; Yh(t)) =
(
wh1 ,Θu

)
Ω
,

BE(wh5 ; Yh(t)) =
(
wh1 ,ΘE

)
Ω
,

BA(wh6 ; Yh(t)) =
(
wh1 ,ΘA

)
Ω
.

Taylor expansions lead to

1

2

(
νloc(ρ

h(tn), θh(tn+ 1
2
)) + νloc(ρ

h(tn+1), θh(tn+ 1
2
)
)

= νloc(ρ
h(tn+ 1

2
), θh(tn+ 1

2
)) +O(∆t2n),

Jρh(tn)K2

12

∂2νloc
∂ρ2

(ρh(tn), θh(tn+ 1
2
)) = O(∆t2n),

2|uh(tn+ 1
2
)|2 − 1

2
(|uh(tn)|2 + |uh(tn+1)|2) = |uh(tn+ 1

2
)|2 +O(∆t2n).

Due to Lemma 7, one has

ρhn+1E(ρhn+1,u
h
n+1, θ

h
n+1)− ρhnE(ρhn,u

h
n, θ

h
n)

∆tn
− JρhnE(ρhn,u

h
n, θ

h
n)K

∆tn
= O(∆t2n).

Combing the above results gives us

(
wh1 ,Θρ

)
Ω

=
(
wh1 ,Θ

mid
ρ

)
Ω

+O(∆t2n) = O(∆t2n),(
wh1 ,Θu

)
Ω

=
(
wh1 ,Θ

mid
u

)
Ω

+O(∆t2n)1 = O(∆t2n)1,(
wh1 ,ΘE

)
Ω

=
(
wh1 ,Θ

mid
E

)
Ω

+O(∆tn) = O(∆t2n),(
wh1 ,ΘA

)
Ω

=
(
wh1 ,Θ

mid
A

)
Ω

+O(∆t2n) = O(∆t2n).

This completes the proof.

Remark 15. According to the proof of Theorem 7, we can see that the fully discrete scheme

(150)-(153) is a second-order perturbation of the mid-point scheme. This perturbation guar-

antees the entropy dissipation (177).

60



4 Benchmark problems

In this section, we use a suite of benchmark problems to verify the theoretical estimates we

made in Section 3.

Table 1: One-dimensional manufactured solution for the thermal Navier-Stokes-Korteweg
equations: Temporal convergence rates at t = 0.5.

Temporal errors in L2 norm with polynomial degree p = 2

∆t 1.0× 10−1 5.0× 10−2 1.0× 10−2 5.0× 10−3 1.0× 10−3

‖Y1 − Y h
1 ‖L2(Ω) 8.00× 10−4 1.99× 10−4 7.96× 10−6 1.99× 10−6 7.93× 10−8

order - 2.01 2.00 2.00 2.00
‖Y2 − Y h

2 ‖L2(Ω) 1.50× 10−2 3.77× 10−3 1.49× 10−4 3.72× 10−5 1.48× 10−6

order - 1.99 2.01 2.00 2.00
‖Y3 − Y h

3 ‖L2(Ω) 6.23× 10−3 1.52× 10−3 5.95× 10−5 1.49× 10−5 5.94× 10−7

order - 2.04 2.01 2.00 2.00

Temporal errors in H1 semi-norm with polynomial degree p = 3

∆t 1.0× 10−1 5.0× 10−2 1.0× 10−2 5.0× 10−3 1.0× 10−3

|Y1 − Y h
1 |H1(Ω) 5.03× 10−3 1.25× 10−3 5.00× 10−5 1.25× 10−5 5.00× 10−7

order - 2.01 2.00 2.00 2.00
|Y2 − Y h

2 |H1(Ω) 9.59× 10−2 2.58× 10−2 9.84× 10−4 2.46× 10−4 9.84× 10−6

order - 1.89 2.03 2.00 2.00
|Y3 − Y h

3 |H1(Ω) 3.04× 10−2 7.70× 10−3 2.78× 10−4 6.95× 10−5 2.78× 10−6

order - 1.98 2.06 2.00 2.00

4.1 Manufactured solutions

As a first example, we construct a set of one-dimensional manufactured solutions for the

Navier-Stokes-Korteweg equations to corroborate the time accuracy estimate given in The-

orem 7. The computations are restricted to Ω = (0, 1); the exact density, velocity, and

temperature for this problem are chosen as

ρ(x, t) = 0.5 + 0.1 sin(πt) cos(2πx),

u(x, t) = sin(πt) cos(2πx),

θ(x, t) = 0.85 + 0.1 sin(πt) sin(4πx).
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The forcing terms for the balance equations are obtained by substituting the above exact

solutions into the original strong problem (86)-(88). The Y variables can be obtained as

Y1 = ρ = 0.5 + 0.1 sin(πt) cos(2πx),

Y2 =
u

θ
=

sin(πt) cos(2πx)

0.85 + 0.1 sin(πt) sin(4πx)
,

Y3 = −1

θ
= − 1

0.85 + 0.1 sin(πt) sin(4πx)
.

The dimensionless numbers for this verification problem are fixed to be Re = 1.0, We = 1.0,

and γ = 1.333. The dimensionless thermal conductivity is chosen as κ = 1.0. Periodic

boundary conditions are enforced for all variables. The problem is computed with spatial

mesh size ∆x = 1.0×10−3 for polynomial degrees p = 2 and 3. The time step sizes are taken

as 1.0 × 10−1, 5.0 × 10−2, 1.0 × 10−2, 5.0 × 10−3, and 5.0 × 10−4. In Table 1, the errors in

L2-norm for the quadratic NURBS solutions and the errors in H1 semi-norm for the cubic

NURBS solutions are summarized. It can be observed that the temporal errors converge

like O(∆t2) in both cases. This immediately confirms the time accuracy estimate given in

Theorem 7.

4.2 Coalescence of two vapor bubbles

In this example, we consider a one-dimensional problem without external sources (i.e., b = 0

and r = 0) to verify the entropy dissipation estimate given in Theorem 6. The computational

domain is set to be Ω = (0, 1). The initial conditions consist of two static vapor bubbles

with centers at points C1 = 0.39 and C2 = 0.61. The radii of the bubbles are set to be

R1 = R2 = 0.1. The initial density is given by the following hyperbolic tangent function.

ρ0(x) = 0.1 + 0.25

[
tanh

(
d1(x)−R1

2

√
We

)
+ tanh

(
d2(x)−R2

2

√
We

)]
,

di(x) = |x− Ci|, for i = 1, 2.

The initial velocity is zero and the initial temperature is θ0 = 0.95. Periodic boundary

conditions are applied for all variables. The dimensionless numbers are taken as Re =

4.0 × 102, We = 1.6 × 105, and γ = 1.333; the dimensionless thermal conductivity is taken

as κ = 1.0. The spatial mesh consists of 104 quadratic NURBS functions. The problem is

integrated up to T = 10.0 with time step sizes ∆t = 1.0× 10−2, 5.0× 10−3, 2.0× 10−3, and

1.0× 10−5.

The two vapor bubbles will merge together to minimize the surface energy. At the
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Figure 6: Illustration of the thermal bubble dynamics. ρv,0 and ρl,0 are the initial vapor and
liquid densities; ρA and ρB are the Maxwell state at the initial temperature; ρv,T and ρl,T
are the vapor and liquid densities at time T = 10.0.

63



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

x

ρ

 

 

t = 0.0

t = 0.1

t = 0.5

t = 1.0

t = 2.0

t = 10.0

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

x

θ

 

 

t = 0.0

t = 0.1

t = 0.5

t = 1.0

t = 2.0

t = 10.0

(b)

Figure 7: Coalescence of two bubbles for the one-dimensional thermal Navier-Stokes-
Korteweg equations: (a) density profiles and (b) temperature profiles at times t = 0.0,
0.1, 0.5, 1.0, 2.0 and 10.0.
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Figure 8: Coalescence of two bubbles for the one-dimensional thermal Navier-Stokes-
Korteweg equations: Evolution of the discrete entropy. (a) Global view; (b) Detailed view
in the vicinity of t = 2.49.

65



temperature θ = 0.95, the energetically stable liquid and vapor densities are 0.487 and 0.193

respectively; the initial vapor and liquid densities are ρv,0 = 0.1 and ρl,0 = 0.6. Hence, the

vapor phase will become denser and the liquid phase will become lighter to minimize the free

energy. In the meantime, the phase transition is accompanied with latent heat release and

absorption, which will change the local temperature distribution. Consequently, the shape

of the free energy and the Maxwell states are changed. This coupled process will eventually

reach an equilibrium state. This dynamic process is illustrated in a density-temperature

phase diagram in Figure 6. In Figure 7, snapshots of the density and the temperature are

depicted at times t = 0.0, 0.1, 0.5, 1.0, 2.0 and 10.0. It is observed that the initial interface

between the two vapor bubbles gradually vanishes, and the vapor and liquid densities are

adjusted to achieve the energy-stable states. In the mean time, the temperature of this

system fluctuates. The temperature first drops to about 0.876 at time t = 1.0, then it raises

to 0.898 uniformly at time t = 10.0. The Maxwell states at θ = 0.898 are ρv = 0.1403 and

ρl = 0.5546. Figure 7 (a) shows that the density at t = 10.0 is very close to the Maxwell

states. Since we applied periodic boundary conditions, the dissipation relation is∫
Ω

H(ρhn+1, θ
h
n+1)−H(ρhn, θ

h
n)

∆tn
dx

=−
∫

Ω

1

θh
n+ 1

2

τ h
n+ 1

2
: ∇uh

n+ 1
2
dx−

∫
Ω

∇θh
n+ 1

2

· κ∇θh
n+ 1

2(
θh
n+ 1

2

)2 dx

−
∫

Ω

1

θh
n+ 1

2

∆tn

JρhnK4

24

∂3νloc
∂ρ3

(ρhn+ξ1
, θh
n+ 1

2
)dx +

∫
Ω

1

θh
n+ 1

2

∆tn

JθhnK4

24

∂3H

∂θ3
(ρh
n+ 1

2
, θhn+ξ2

)dx

≤0. (178)

The discrete mathematical entropy are plotted against time in Figure 8 (a). It can be

observed that H(ρhn, θ
h
n) monotonically decreases with respect to time, which confirms the

theoretical estimate given in Theorem 6. In Figure 8 (b), a detailed view of the discrete

mathematical entropy in the vicinity of t = 2.49 is provided. It can be observed that the

differences between the numerical solutions and the overkill solution decrease with reductions

of time step sizes. To verify the time accuracy estimate, overkill solutions were first computed

with ∆t = 1.0 × 10−5. Then the computations were repeated with larger time steps ∆t =

5.0× 10−2, 1.0× 10−2, 5.0× 10−3, 1.0× 10−3 and 5.0× 10−4. The errors at time t = 1.0 are

listed in Table 2. It can be seen that the numerical solutions converge optimally in time to

the overkill solutions. This again corroborates the theoretical estimates given in Theorem 7.

66



Table 2: Coalescence of two bubbles for the one-dimensional thermal Navier-Stokes-Korteweg
equations: Temporal errors in L2-norm at time t = 1.0.

∆t 5.0× 10−2 1.0× 10−2 5.0× 10−3 1.0× 10−3 5.0× 10−4

‖Y1 − Y h
1 ‖L2(Ω) 8.40× 10−5 4.02× 10−6 1.02× 10−6 4.14× 10−8 1.04× 10−8

order - 1.94 1.98 1.99 1.99
‖Y2 − Y h

2 ‖L2(Ω) 2.69× 10−4 6.57× 10−6 1.64× 10−6 6.54× 10−8 1.64× 10−8

order - 2.02 2.00 2.00 2.00
‖Y3 − Y h

3 ‖L2(Ω) 2.70× 10−5 1.50× 10−6 3.83× 10−7 1.56× 10−8 3.93× 10−9

order - 1.92 1.97 1.99 1.99

5 Application problems

In this section, we investigate the van der Waals fluid model by performing simulations with

the numerical algorithm developed in Section 3.

Figure 9: Velocity streamlines near a single bubble at time t = 15.0: θbc = 0.85.

5.1 Evaporation and condensation

In this example, we numerically investigate the dynamics of a single vapor bubble in the

presence of temperature raise or drop on the boundary. In this study, the computational

domain is restricted to a unit square Ω = (0, 1)2. The center of the vapor bubble is located

at the center of the domain, i.e., C1 = (0.5, 0.5); the radius of the bubble is R1 = 0.25. A
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hyperbolic tangent function is utilized to give the initial density profile:

ρ0(x) = 0.3545 + 0.2479 tanh

(
d1(x)−R1

2

√
We

)
, (179)

d1(x) = |x− C1|. (180)

The initial velocity is set to be zero. The initial temperature is given by

θ0(x) = 0.85, if x ∈ Ω,

θ0(x) = θbc, if x ∈ ∂Ω.

The boundary conditions for this problem are

∇ρ · n = 0, on ∂Ω× (0, T ),

u = 0, on ∂Ω× (0, T ),

θ = θbc, on ∂Ω× (0, T ).

It is known that the hyperbolic tangent function is only an approximation of the steady

state solution. In the function (179), the liquid density is 0.6024 and the vapor density is

0.1066, which are very close to the Maxwell states at temperature θ = 0.85. Hence, there will

be a low-intensity velocity field generated near the interfacial region to adjust the interface

profile. The phenomenon occurring near the interface is commonly referred to as the parasitic

currents [?], and a snapshot of the parasitic currents at time t = 15.0 is depicted in Figure

9. If θbc 6= 0.85, as time evolves, thermal diffusion will drive the temperature inside Ω to

θbc. This change of temperature directly leads to the change of the Maxwell states, which

is observed as condensation or evaporation of the bubble. If θbc > 0.85, the bubble will

evaporate; if θbc < 0.85, the bubble will condense.

Ju, I do not understand this sentence. The bubble cannot evaporate because it is already

vapor. Looking at Fig. 10(f) it does not look like the bubble condenses for θbc < 0.85. This

statement does not look right. Something that I think might be relevant to comment is that

the lower the temperature, the stronger the separation and the larger the ratio ρl/ρv.

In Table 3, the Maxwell states at different temperatures are listed. With these values,

the radius of the vapor bubble at the new stable configuration can be estimated by using

the mass conservation relation. Assuming the interfacial region has measure zero, then the

total mass in Ω is

0.1066× 0.252π + 0.6024× (1.0− 0.252π) = 0.6024− 0.031π. (181)
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If the Maxwell-state liquid and vapor densities at the temperature θ are denoted as ρθl and

ρθv. The new radius of the vapor bubble Rst can be determined by the mass conservation

relation

ρθv ×R2
stπ + ρθl × (1.0−R2

stπ) = 0.6024− 0.031π, (182)

if ρθl and ρθv satisfy ρθv ≤ 0.6024− 0.031π ≤ ρθl . If ρθl < 0.6024− 0.031π, the steady state will

be a uniform liquid state with density 0.6024− 0.031π; if 0.6024− 0.031π ≤ ρθv, the steady

state will be a uniform vapor state with density 0.6024 − 0.031π. The solutions of Rst for

θ = 0.95, 0.90, 0.85, 0.80, and 0.75 are listed in Table 3.

θ 0.95 0.90 0.85 0.80 0.75

ρv 0.1930 0.1419 0.1066 0.0799 0.0591

ρl 0.4872 0.5524 0.6024 0.6442 0.6808

Rst - 0.1916 0.2500 0.2802 0.3000

Table 3: The liquid and vapor densities at the Maxwell states of the van der Waals fluid model
at different temperatures. The values are rounded to four decimal places. Rst represents
the steady-state vapor bubble radius with the given initial density profile (179)-(180) in the
sharp interface limit. When θ = 0.95, a uniform liquid state with density ρ = 0.5050 will
form at the steady state.

In the numerical simulations, the dimensionless numbers are taken as Re = 1.451× 103,

We = 5.263× 105, and γ = 1.333; the dimensionless thermal conductivity is

κ =

[
1.378× 10−3 0.0

0.0 1.378× 10−3

]
.

The external body force b and the heat source r are fixed to be zero. The spatial mesh

is comprised of 5122 quadratic NURBS elements. The simulation is integrated up to T =

2.0 × 102 with time step size ∆t = 1.0 × 10−3. In Figure 10, the density profiles at time

t = 200.0 are depicted for θbc = 0.75, 0.80, 0.85, 0.90, and 0.95. The solution for θbc = 0.95

at t = 200.0 forms a uniform liquid state. From θbc = 0.90 to θbc = 0.75, the radius of the

bubble increases with the decrease of the boundary temperature. Also, it can be observed

that the interface width reduces with the decrease of the temperature, which confirms a

previous estimate [?].
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Density profiles of a single bubble under different temperature boundary condi-
tions: (a) Initial condition, (b) θbc = 0.95, (c) θbc = 0.90, (d) θbc = 0.85, (e) θbc = 0.80, (f)
θbc = 0.75.
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5.2 Thermocapillary motion

Nowadays, the motion of interfaces induced by the imbalance of surface tension is generally

referred to as the Marangoni effect [?]. Among the many different Marangoni effects, motion

driven by the temperature gradient is of keen interest and is often specifically referred to as

the thermocapillary effect. This effect is critical in understanding many complicated physical

phenomena, such as boiling [?] and welding [?]. In the seminal paper [?], the authors modeled

the surface tension as a function of the temperature. Under a temperature gradient, there will

be an imbalance of the stress, which drives the bubble move in the negative thermal gradient

direction. Under this model, the bubble velocity in the creeping flow limit was derived.

Soon, this theory is coupled with the multiphase flow solvers to simulate the thermocapillary

motion [?, ?]. Recently, a theoretical analysis for the thermocapillary motion was given for

the van der Waals fluid [?, ?]. In those works, the interstitial working flux Π was ignored,

and hence the models they considered are totally different from the model we derived. In

this section, we investigate the thermocapillary motion of a single vapor bubble in two and

three-dimensions with very fine resolutions.

5.2.1 Two-dimensional thermocapillary motion

In this example, the computational domain is a two-dimensional square Ω = (0, 1)2. The

boundary of Ω is partitioned into three non-overlapping subdivisions:

∂Ω = Γv ∪ Γt ∪ Γb,

Γv := ∂Ω ∩
{{

x ∈ R2|x = 0
}
∪
{
x ∈ R2|x = 1

}}
,

Γb := ∂Ω ∩
{
x ∈ R2|y = 0

}
,

Γt := ∂Ω ∩
{
x ∈ R2|y = 1

}
.

The initial density is given by

ρ0(x) = 0.35 + 0.25 tanh

(
d1(x)− 0.2

2

√
We

)
,

d1(x) = |x− C1|,

wherein the center of the static vapor bubble is C1 = (0.5, 0.5). The initial velocity is fixed

to be zero and the initial temperature is

θ0(x) = 0.85 x ∈ Ω ∪ Γv ∪ Γb,
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θ0(x) = 0.87 x ∈ Γt.

The boundary conditions for this problem are

∇ρ · n = 0, on ∂Ω× (0, T ),

u = 0, on ∂Ω× (0, T ),

θ = 0.85, on Γb × (0, T ),

θ = 0.87, on Γt × (0, T ),

− q · n = 0, on Γv × (0, T ).

The dimensionless numbers and the dimensionless thermal conductivity are chosen as

Re = 1.738× 104,

We = 3.277× 106,

γ = 1.333,

κ =

[
3.453× 10−3 0.0

0.0 3.453× 10−3

]
.

(a) (b)

Figure 11: Thermocapillary motion of a single bubble in a two-dimensional square: Initial
conditions for density (a) and temperature (b).

The spatial discretization is comprised of 10242 quadratic NURBS functions. The time

integration is performed with a fixed step size ∆t = 5.0×10−4 up to the final time T = 500.0.

In Figure 11, the initial density and temperature profiles are illustrated. In Figures 12-13,

the density, temperature, and velocity fields are depicted at various time steps. It is noted
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(a) (b)

(c) (d)

(e) (f)

Figure 12: Thermocapillary motion of a single bubble in a two-dimensional square: Solutions
at t = 5.0 × 10 (left column) and t = 2.0 × 102 (right column). The first row depicts the
density profiles; the second row depicts the temperature profiles; the third row visualizes the
velocity streamlines.
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(a) (b)

(c) (d)

(e) (f)

Figure 13: Thermocapillary motion of a single bubble in a two-dimensional square: Solutions
at t = 3.0 × 102 (left column) and t = 5.0 × 102 (right column). The first row depicts the
density profiles; the second row depicts the temperature profiles; the third row visualizes the
velocity streamlines.
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that there is a velocity field generated immediately after the simulation starts. The velocity

drives the vapor bubble migrate toward the negative thermal gradient direction. Eventually,

the vapor bubble attaches the heated wall boundary and forms a hemispheric shape, as is

shown in Figure 13 (b). It can be observed that, in the liquid phase, there is a temperature

gradient generated between the heated top boundary and the cooled bottom boundary.

Inside the vapor bubble, the temperature distribution remains homogeneous throughout the

whole process. The homogeneous temperature inside the vapor bubble was analyzed in [?]

and was attributed to the latent heat diffusion.

5.2.2 Three-dimensional thermocapillary motion

As a second example, a three-dimensional numerical simulation is performed. The com-

putation domain is restricted to be Ω = (0, 0.5) × (0, 0.5) × (0, 1). The boundary of Ω is

partitioned into three non-overlapping subdivisions:

∂Ω = Γt ∪ Γb ∪ Γv,

Γb := ∂Ω ∩
{
x ∈ R2|z = 0

}
,

Γt := ∂Ω ∩
{
x ∈ R2|z = 1

}
,

Γv := ∂Ω ∩
{{

x ∈ R2|x = 0
}
∪
{
x ∈ R2|x = 0.5

}
∪
{
x ∈ R2|y = 0

}
∪
{
x ∈ R2|y = 0.5

}}
.

The center of the vapor bubble is initially located at C1 = (0.25, 0.25, 0.3), and the bubble

radius is 0.2. The initial density and velocity are

ρ0(x) = 0.35 + 0.25 tanh

(
d1(x)− 0.2

2

√
We

)
,

d1(x) = |x− C1|,

u0(x) = 0.

The initial temperature is

θ0(x) = 0.85, x ∈ Ω ∪ Γv ∪ Γb,

θ0(x) = 0.87, x ∈ Γt.
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The boundary conditions for this problem are

∇ρ · n = 0, on ∂Ω× (0, T ),

u = 0, on ∂Ω× (0, T ),

θ = 0.85, on Γb × (0, T ),

θ = 0.87, on Γt × (0, T ),

− q · n = 0, on Γv × (0, T ).

The dimensionless numbers and the dimensionless thermal conductivity are taken as

Re = 3.570× 103,

We = 1.383× 105,

γ = 1.333,

κ =

1.681× 10−2 0.0 0.0

0.0 1.681× 10−2 0.0

0.0 0.0 1.681× 10−2

 .
The spatial mesh for this problem is comprised of 128×128×256 quadratic NURBS elements.

The time integration is performed up to the final time T = 200 with a fixed time step size of

∆t = 1.0×10−3. Figures 14-16 present snapshots of density isosurfaces, velocity streamlines,

and temperature contours at various slices. As soon as the simulation starts, there is a

temperature gradient generated in the liquid phase; the temperature field inside the vapor

bubble remains nearly homogeneous. Similarly to the two-dimensional counterpart, there

is a velocity field generated instantaneously after the top boundary is heated. The initial

static vapor bubble is then driven by the velocity toward the heated boundary. At about

t = 160, the vapor bubble touches the top heated boundary. At t = 200, a vapor layer is

formed, which separates the heated wall boundary from the bulk liquid phase. The velocity

magnitude at t = 200 is uniformly small. The solutions shown in Figure 16 (c) and (d) can

be regarded to be very close to the steady state solutions.

5.3 Boiling

Boiling is a thermally induced phase transition process in which new liquid-vapor interfaces

are generated in a bulk liquid region [?, ?]. The new interfaces may form from discrete

cavities on heated surfaces, which is called nucleate boiling, or from a stable superheated

vapor layer, which is referred to as film boiling. Nucleate boiling is characterized by isolated
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(a) (b)

(c) (d)

Figure 14: Three-dimensional thermocapillary motion of a single bubble: (a) density iso-
surface at t = 0.0, (b) temperature on various slices at t = 0.0, (c) density isosurface and
streamlines at t = 40.0, (b) temperature on various slices at t = 40.0.
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(a) (b)

(c) (d)

Figure 15: Three-dimensional thermocapillary motion of a single bubble: (a) density isosur-
face and streamlines at t = 80.0, (b) temperature on various slices at t = 80.0, (c) density
isosurface and streamlines at t = 120.0, (b) temperature on various slices at t = 120.0.
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(a) (b)

(c) (d)

Figure 16: Three-dimensional thermocapillary motion of a single bubble: (a) density isosur-
face and streamlines at t = 160.0, (b) temperature on various slices at t = 160.0, (c) density
and streamlines isosurface at t = 200.0, (b) temperature on various slices at t = 200.0.
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bubble generation and is the most efficient mode in heat transfer. If the surface temperature

increases, bubbles on the surface tend to move horizontally and merge together to form a

vapor layer. Beyond a certain critical surface temperature, a stable vapor film may even-

tually form between the heated solid surface and the bulk liquid phase, and vapor bubbles

detach from the layer periodically. Film boiling is quite dangerous and should be avoided in

most industry facilities because of the heat accumulated in the vapor film. Boiling has been

extensively employed in energy conversion facilities, such as power generators, cooling sys-

tems for electronic devices, and petroleum refineries. Despite its importance in industry, the

fundamental mechanism of boiling is still not well understood, as was admitted by physicists

[?, ?] and engineers [?, ?]. To date, knowledge about boiling is mainly obtained by correlat-

ing experimental data to empirical formulas. In view of its disparity of spatiotemporal scales

and elusive nature of many subprocesses, a predictive model for boiling is highly important

for engineering designs.

There have been a few but growing numerical studies of boiling in the past years. Film

boiling is regarded as most amenable to modeling, since its governing mechanism is princi-

pally the Rayleigh-Taylor instability. A multiphase solver that can simulate the Rayleigh-

Taylor instability should be capable of simulating film boiling. Existing numerical simula-

tions have been carried out by the level set method [?], the front tracking method [?], and

the volume-of-fluid method [?]. In those numerical studies, the simulations all started with

a preexisting perturbed flat interface as the initial condition. In other words, none of those

methods captured the film generation process. On the other side, very few simulations of

nucleate boiling have been performed. The reason is that more physical mechanisms are

involved in this phenomenon. A credible nucleate boiling solver is expected to be capable

of describing the creation of new interfaces near the nucleation sites, handling the Rayleigh-

Taylor instability and the Rayleigh-Bénard instability, and tracking the moving interfaces of

bubbles and free surfaces. In [?], the authors have studied the nucleate boiling by specifi-

cally designing a model for the region near the nucleate cavities. This approach destroys the

conservation structure and relies on empirical data, including the bubble release rate, the nu-

cleation site density, etc. In this work, we simulate boiling flows in two and three dimensions,

using the Navier-Stokes-Korteweg equations. To obtain successful boiling simulations, there

are several additional modeling considerations. First, the transport parameters are chosen to

be density dependent in order to differentiate the properties of the liquid and vapor phases.

Specifically, the dimensionless viscosity µ̄ and the thermal conductivity κ are larger in the

liquid region than those in the vapor region. In our simulations, these two parameters are
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taken as

µ̄ = Cboil
µ ρ,

κ = Cboil
κ ρI,

with Cboil
µ and Cboil

κ being constants independent of ρ. Second, the gravity effect should be

taken into account to generate the buoyant effect. The dimensionless body force b is chosen

as

b = (0; 0;−0.025)T ,

for the three-dimensional case and

b = (0;−0.025)T ,

for the two-dimensional case. Third, the boundary conditions are designed as follows. The

ninety-degree contact angle boundary condition is used for the density variable and the slip

boundary condition is applied to the velocity field. To specify the boundary condition for

the temperature, the boundary ∂Ω is divided into three non-overlapping parts:

∂Ω = Γt ∪ Γb ∪ Γv,

Γt = {x ∈ ∂Ω|n(x) · b < 0} ,

Γb = {x ∈ ∂Ω|n(x) · b > 0} ,

Γv = {x ∈ ∂Ω|n(x) · b = 0} .

With the above partition, the boundary condition for θ is

θ = θh, on Γb × (0, T ),

θ = θc, on Γt × (0, T ),

−q · n = 0, on Γv × (0, T ).

In the numerical calculations, the Dirichlet boundary conditions for θ on Γb and Γt should

be transformed to the Dirichlet boundary conditions for the entropy variable Y5 as

Y5 = Y5,h = − 1

θh
, on Γb × (0, T ),

Y5 = Y5,c = − 1

θc
, on Γt × (0, T ).
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Throughout, the Dirichlet data are chosen as θh = 0.950 and θc = 0.775. In real situations,

the temperature on the solid surface cannot be evenly distributed due to surface unevenness.

This effect is modeled by adding perturbations to the Dirichlet data:

Y5,h = − 1

0.950
+ δY5,h(x),

Y5,c = − 1

0.775
+ δY5,c(x),

wherein δY5,h(x) and δY5,c(x) are scalar perturbation functions that mimic the uneven tem-

perature distribution on the solid surface. As for the initial conditions, the initial density

and temperature are given by hyperbolic tangent functions; the initial velocity is zero. The

detailed formulations of the initial conditions are given in the subsequent subsections. These

conditions represent a static free surface, with liquid in the bottom region and vapor in the

top region. It is worth emphasizing that the initial liquid and vapor densities are uniform

with no perturbations. In contrast to existing boiling models, there is no artificial manipu-

lation used to serve as boiling onset in this model. The following results will show that the

vapor bubble or the vapor film may form automatically without preexisting nuclei simply due

to local temperature variations. Another appealing property of this model is that nucleate

boiling and film boiling can be simulated within a unified framework by tuning dimensionless

parameters. These features should be credited to the thermodynamically consistent nature

of the model and the algorithm. It is expected that this new methodology may lead to a

predictive tool for the boiling phenomenon.

The rest of this section is organized as follows. In Section 5.3.1, we perform a mesh sensi-

tivity test. In Sections 5.3.2 and 5.3.3, two-dimensional nucleate boiling and two-dimensional

film boiling are numerically studied. Following that, a three-dimensional boiling simulation

is investigated in Section 5.3.4.

5.3.1 Two-dimensional mesh sensitivity test

Before we start simulating practical examples, a mesh sensitivity test is performed to examine

the mesh independence of the solution. The simulation domain is Ω = (0, 1)× (0, 0.5). The

material parameters are chosen as

We = 2.103× 106,

γ = 1.333,

Cboil
µ = 2.298× 10−4,

Cboil
κ = 3.448× 10−5.
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(a) 800× 400 quadratic NURBS elements (b) 1024× 512 quadratic NURBS elements

(c) 2048× 1024 quadratic NURBS elements (d) 4096× 2048 quadratic NURBS elements

Figure 17: Density profiles of the mesh sensitivity test at t = 35.0.

The initial conditions for this problem are

ρ0(x) = 0.3660− 0.2971 tanh

(
x2 − 0.35

2

√
We

)
,

u0(x) = 0,

θ0(x) = 0.775.

The perturbation for the temperature on the boundary δY5,h(x) and δY5,c(x) are

δY5,h(x) = 5.0× 10−2 sin(10πx),

δY5,c(x) = 5.0× 10−3 sin(10πx).

The problem is integrated up to T = 35.0 with time step size ∆t = 1.0× 10−4. We use four

different spatial meshes: 800×400 quadratic NURBS elements, 1024×512 quadratic NURBS

elements, 2048 × 1024 quadratic NURBS elements, and 4096 × 2048 quadratic NURBS

elements. The density profiles at t = 35 are depicted in Figure 17. As can be seen, the

density profiles are similar for all four meshes. In the coarsest mesh, the shape of the second

bubble attached to the bottom (from left to right) is significantly different from those in the
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finer meshes. The solutions shown in Figure 17 (c) and (d) are indistinguishable. Therefore,

in the following two-dimensional calculations, we use 2048×1024 quadratic NURBS elements

to save computation time without loosing accuracy.

5.3.2 Two-dimensional nucleate boiling

(a)

(b)

Figure 18: Initial conditions of the two-dimensional boiling simulation: (a) density, (b)
temperature.

In this example, we simulate boiling flows in a two-dimensional rectangular domain Ω =

(0, 1)× (0, 0.5). The material parameters are chosen as

We = 8.401× 106,

γ = 1.333,

Cboil
µ = 1.150× 10−4,

Cboil
κ = 1.725× 10−5.
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(a)

(b)

(c)

Figure 19: Solutions of the two-dimensional nucleate boiling simulation at t = 1.25: (a)
density, (b) temperature, (c) velocity streamlines.
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(a)

(b)

(c)

Figure 20: Solutions of the two-dimensional nucleate boiling simulation at t = 18.75: (a)
density, (b) temperature, (c) velocity streamlines.
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(a)

(b)

(c)

Figure 21: Solutions of the two-dimensional nucleate boiling simulation at t = 31.25: (a)
density, (b) temperature, (c) velocity streamlines.
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(a)

(b)

(c)

Figure 22: Solutions of the two-dimensional nucleate boiling simulation at t = 62.5: (a)
density, (b) temperature, (c) velocity streamlines.
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(a)

(b)

(c)

Figure 23: Solutions of the two-dimensional nucleate boiling simulation at t = 100.0: (a)
density, (b) temperature, (c) velocity streamlines.
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The initial conditions for this problem are

ρ0(x) = 0.3660− 0.2971 tanh

(
x2 − 0.35

2

√
We

)
, (183)

u0(x) = 0, (184)

θ0(x) = 0.775. (185)

In Figure 18, the initial conditions for density and temperature have been illustrated. The

perturbation for the temperature on the boundary δY5,h(x) and δY5,c(x) are uniform random

distributions and satisfy

δY5,h(x) ∈ [−5.0× 10−2, 5.0× 10−2],

δY5,c(x) ∈ [−5.0× 10−3, 5.0× 10−3].

The spatial mesh consists of 2048 × 1024 quadratic NURBS elements. The problem is

integrated up to the final time T = 1.0× 102 with time step fixed as ∆t = 5.0× 10−4.

In Figures 19-23, snapshots of the density, temperature, and velocity streamlines are

depicted. In Figure 19, it can be observed that tiny vapor bubbles are generated at discrete

sites of the heated wall surface during the initial times. These small bubbles grow in size, and

some bubbles merge together to form larger bubbles, as is shown in Figure 20. The increase

of bubble size leads to the growth of the buoyant effect. Beyond a certain critical point,

the bubbles get detached from the bottom boundary and rise upward. At about t = 18.75,

the first three bubbles get detached from the bottom. More bubbles are generated on the

bottom surface in the mean time. Figures 21 and 22 show the moments when two bubbles

are about to reach the free surface. Interestingly, from Figures 22 and 23, small droplets can

be observed as a result of the breakage of the liquid film when the vapor bubbles reach the

free surface. There are totally 30 bubbles formed in the time interval of 0 < t < 100.

5.3.3 Two-dimensional film boiling

In the third example, the same two-dimensional problem considered in the preceding section

is simulated again with a different parameter Cboil
µ . Here, the parameter Cboil

µ is chosen to be

4.600 × 10−4, which is four times larger than that of the previous example. Since the fluid

motion in this example is slower, the simulation is integrated in time up to T = 5.0×102. All

the other conditions are identical to those of the previous case. In Figures 24-28, snapshots

of the density, temperature, and velocity streamlines at different time steps are presented.

Once the simulation starts, a thin vapor film is gradually generated at the bottom during the
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(a)

(b)

(c)

Figure 24: Solutions of the two-dimensional film boiling simulation at t = 100.0: (a) density,
(b) temperature, (c) velocity streamlines.
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(a)

(b)

(c)

Figure 25: Solutions of the two-dimensional film boiling simulation at t = 175.0: (a) density,
(b) temperature, (c) velocity streamlines.
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(a)

(b)

(c)

Figure 26: Solutions of the two-dimensional film boiling simulation at t = 200.0: (a) density,
(b) temperature, (c) velocity streamlines.
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(a)

(b)

(c)

Figure 27: Solutions of the two-dimensional film boiling simulation at t = 225.0: (a) density,
(b) temperature, (c) velocity streamlines.
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(a)

(b)

(c)

Figure 28: Solutions of the two-dimensional film boiling simulation at t = 500.0: (a) density,
(b) temperature, (c) velocity streamlines.
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early stage of the simulation (see Figure 24). As time evolves, the interface becomes unstable

and there are three mushroom-shaped vapor bubbles formed, as are shown in Figures 25 and

26. From t = 200.0 to t = 225.0, the first two vapor bubbles pinch off from the vapor film

and rise upward in ellipsoidal shapes. As the bubbles get released from the vapor film, two

stems are left on the vapor film, which serve as onsets of new bubbles. This process repeats

itself periodically. Till the final time t = 500.0, there are totally seven bubbles detached

from the vapor film. The average bubble release rate for this film boiling problem is much

less than that of the nucleate boiling counterpart.

5.3.4 Three-dimensional boiling

As the last example, we simulate the Navier-Stokes-Korteweg equations in a three-dimensional

domain Ω = (0, 1)× (0, 0.5)× (0, 0.25). The material properties are chosen as

We = 6.533× 105,

γ = 1.333,

Cboil
µ = 1.289× 10−4,

Cboil
κ = 7.732× 10−5.

The initial conditions for this three-dimensional problem are similar to those of the two-

dimensional problem, except the free surface is defined by x3 = 0.15:

ρ0(x) = 0.33565− 0.26675 tanh

(
x3 − 0.15

2

√
We

)
,

u0(x) = 0,

Y5,0(x) = −1.2334− 0.0569 tanh

(
x3 − 0.15

2

√
We

)
.

The perturbation for the temperature on the boundary δY5,h(x) and δY5,c(x) are uniform

random distributions and satisfy

δY5,h(x) ∈ [−5.0× 10−2, 5.0× 10−2],

δY5,c(x) ∈ [−5.0× 10−3, 5.0× 10−3].

The spatial mesh consists of 600 × 300 × 150 quadratic NURBS elements. The problem is

integrated in time up to T = 20.0 with a fixed time step size ∆t = 2.0× 10−3.

Remark 16. The initial condition for Y5 is in fact a hyperbolic tangent interpolation of
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θ = 0.85 for x2 < 0.15 and θ = 0.775 for x2 > 0.15.

(a)

(b)

Figure 29: Initial conditions of the three-dimensional boiling: (a) density isosurfaces, (b)
temperature isosurfaces.

In Figures 29-34, snapshots of density isosurfaces, velocity streamlines, and temperature

isosurfaces are presented at times t = 0.0, 0.6, 5.0, 11.0, 14.0 and 20.0. At the initial

stage, there is an unstable vapor film formed over the heated wall surface (see Figure 30).

This film soon separates into isolated vapor bubbles located at random sites on the bottom
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(a)

(b)

Figure 30: Solutions of the three-dimensional boiling at time t = 0.6: (a) density isosurfaces
and velocity streamlines, (b) temperature isosurfaces.
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(a)

(b)

Figure 31: Solutions of the three-dimensional boiling at time t = 5.0: (a) density isosurfaces
and velocity streamlines, (b) temperature isosurfaces.
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(a)

(b)

Figure 32: Solutions of the three-dimensional boiling at time t = 11.0: (a) density isosurfaces
and velocity streamlines, (b) temperature isosurfaces.
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(a)

(b)

Figure 33: Solutions of the three-dimensional boiling at time t = 14.0: (a) density isosurfaces
and velocity streamlines, (b) temperature isosurfaces.
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(a)

(b)

Figure 34: Solutions of the three-dimensional boiling at time t = 20.0: (a) density isosurfaces
and velocity streamlines, (b) temperature isosurfaces.
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surface (see Figures 31 and 32). With the growth of the bubbles, the thermal energy is

conducted through the vapor region. Since the simulation domain is very shallow in the

vertical direction, these bubbles reach the free surface before they get fully detached from

the bottom. When these high-temperature vapor bubbles reach the cooled top surface, they

condense into liquid droplets instantaneously (see Figure 33). At t = 20.0, a second round

of vapor bubbles is clearly generated on the bottom and the liquid droplets on the top

surface get merged together. There is a complex Rayleigh-Bénard mixing structure for the

temperature field, as is shown in Figure 34.

6 Conclusions and future work

In this work, we presented a comprehensive suite of theoretical and numerical methodology

for the study of liquid-vapor two-phase flows. The contributions are elaborated as follows.

A continuum mechanic modeling framework for multiphase flows has been constructed.

In its derivation, the microforce theory [?] is adopted with the objective of accommodating

non-local effects. This modeling framework enjoys several appealing properties. First, all

constitutive relations are represented in terms of a thermodynamically potential. Therefore,

the modeling work is reduced to the design of a proper form of the thermodynamic potential.

Second, the framework intrinsically satisfies the second law of thermodynamics. Third, in this

framework, some previously mysterious modeling terms find rational mechanics explanations

as a result of the Coleman-Noll procedure. For example, the “interstitial working flux” [?]

is the power expenditure of the microstress. Within this framework, the Navier-Stokes-

Korteweg equations and the compressible Navier-Stokes equations are recovered by proper

choices of the Helmholtz free energy functional.

A thermodynamically consistent numerical scheme for the Navier-Stokes-Korteweg equa-

tions is constructed in this work. For the van der Waals fluid model, the definition of the

entropy variables is generalized to the functional setting to overcome the difficulty induced

by the non-convexity of the entropy function. Interestingly, the functional entropy variables

for the van der Waals fluid are formally identical to those of the perfect gas model. The

difference is that the entropy variables are not merely algebraic change-of-variables, but

rather they are mappings from the conservation variables to their dual spaces. An alterna-

tive statement of the strong problem is devised such that the entropy variables are weakly

enforced in the test function spaces. In doing so, the weak problem is guaranteed to be

entropy dissipative, as is shown in Theorem 4. In addition to the spatial discretization, new

time integration schemes are developed based on a family of new quadrature rules [?]. In

contrast to the traditional temporal schemes [?], the new time integration schemes do not
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require the convexity property of the entropy function. Essentially, the new schemes can be

viewed as a second-order perturbation to the mid-point rule. The second-order perturbation

guarantees that the temporal approximation is provably entropy dissipative. The theoretical

estimates have been numerically verified by comparing solutions with manufactured solutions

and overkill solutions.

The new model and the new algorithm have been applied to investigate a variety of

application problems, including evaporation, condensation, thermocapillarity, and boiling

flows. In particular, the advantage of the diffuse-interface method is demonstrated by the two

and three-dimensional boiling simulations. Our approach enjoys several desirable properties.

First, the dependency on empirical knowledge and assumptions are significantly reduced. In

contrast, existing boiling models rely heavily on the empirical data and sometimes introduce

artificial modeling terms. Second, our approach provides a unified modeling framework for

both nucleate boiling and film boiling. It is optimistic that our methodology may provide a

predictive tool for a wide spectrum of the boiling phenomenon.

Based on our current work, there are several promising research directions for future work.

The Navier-Stokes-Korteweg equations are believed to be applicable to simulating cavitating

flows, which is the liquid-vapor phase transition induced by pressure variations. A potential

challenge for this simulation is a proper design of the open boundary conditions. The van der

Waals model can be further improved to give more accurate material descriptions. Recently,

new models have been introduced [?], and we anticipate that applying these new equation-

of-state may lead to better results in comparison with the van der Waals model. On the

computation side, the anisotropic structure of the solutions makes the adaptive isogeometric

analysis techniques [?, ?] highly desirable.
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