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Abstract The growth of new vascular networks from1

pre-existing capillaries (angiogenesis) plays a pivotal role2

in tumor development. Mathematical modeling of tumor-3

induced angiogenesis may help understand the underlying4

biology of the process and provide new hypotheses for exper-5

imentation. Here, we couple an existing deterministic con-6

tinuum theory with a discrete random walk, proposing a new7

model that accounts for chemotactic and haptotactic cellu-8

lar migration. We propose an efficient numerical method to9

approximate the solution of the model. The accuracy, sta-10

bility and effectiveness of our algorithms permitted us to11

perform large-scale three-dimensional simulations which, in12

contrast to two-dimensional calculations, show a topologi-13

cal complexity similar to that found in experiments. Finally,14

we use our model and simulations to investigate the role of15

haptotaxis and chemotaxis in the mobility of tip endothelial16

cells and its influence in the final vascular patterns.17

Keywords Tumor angiogenesis · Isogeometric analysis ·18

Numerical simulations · Random walk · Capillary growth19

1 Introduction20

Tumor growth may be understood as a multistage process.21

The cells forming the tumor, descendants of a single abnor-22

mal cell [74], acquire through mutations several malignant23

characteristics [39,40] that determine the stage wherein the24
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tumor is. For many tumors, the first of these stages is avascu- 25

lar growth. At this stage, the tumor relies on diffusion mecha- 26

nisms to get nutrients and to remove the waste products of the 27

cell activity through nearby blood vessels and the lymphatic 28

system. However, as the tumor grows, diffusion mechanisms 29

become insufficient to maintain the high proliferation rate of 30

tumor cells and those located far from the vessels enter non- 31

proliferative hypoxic states or die from anoxia, starvation, 32

or metabolic poisoning. Diffusion-limited growth imposes a 33

threshold in the maximum diameter of an avascular tumor 34

(usually between 1 and 2 mm [26]), for which the prolifera- 35

tive rate is balanced with the apoptotic rate [67]. The tumor 36

may be years or decades immersed in the avascular stage [27] 37

without causing any harm to the host tissue. 38

Eventually, a tumor cell may find a way to access nutrients 39

and to eliminate wastes. One of these ways (first hypothesized 40

by Folkman [26]) is to create its own blood supply through a 41

process called angiogenesis: the creation of new capillaries 42

from pre-existing ones. Endothelial cells, the cells that line 43

blood vessels, are usually in a quiescent state tightly con- 44

trolled by the balance of pro- and anti-angiogenic factors. 45

This balance is only disrupted during the normal adult life 46

in certain situations and for short periods of time, such as 47

in wound healing or in the female reproductive cycle. Nev- 48

ertheless, the genomic instability of tumor cells may lead 49

to daughter cells that have gained the ability to control the 50

balance of angiogenic factors, for example under hypoxic 51

conditions. As a consequence, the tumor may overcome the 52

size-limited avascular growth and enter the so-called vascu- 53

lar stage. This step, usually called the angiogenesis switch 54

[12,27], is often related to a malignant state of the tumor, as 55

cell proliferation is no longer limited and cells may enter the 56

bloodstream and migrate to any part of the body, attaining 57

the tumor the metastatic stage. 58
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Cancer cells use a number of strategies to unbalance the59

angiogenic factor equilibrium. Some of them can be quite60

sophisticated and cancer cells may even induce normal cells61

in their micro-environment to disrupt the angiogenic factor62

equilibrium on behalf of them [46]. A general assumption63

in mathematical modeling is that the process is governed64

by just one pro-angiogenic factor that diffuses from hypoxic65

cancer cells (see, for example, [54,56]). Regardless of the66

mechanism that cancer cells use to initiate angiogenesis, the67

first step of the cascade consists of endothelial cells receiv-68

ing signals that spur them to switch their usual quiescent69

phenotype to a migratory one. These cells are commonly70

called tip endothelial cells and are responsible for leading71

the growth of new capillary sprouts towards the cells that72

demand an extra supply of blood components, and in the case73

of tumors, towards hypoxic cells. However, not all endothe-74

lial cells that receive the signal become migratory. The first-75

stimulated cells release a molecule, called delta-like ligand 476

(dll-4), that binds to the Notch receptors of the neighboring77

endothelial cells, impeding them to become tip endothelial78

cells [41]. Instead, these cells acquire a proliferative pheno-79

type and form the stalk of the new capillary, being referred80

to as stalk cells for this reason.81

The migration of the endothelial cells is thought to be82

driven by three coordinated mechanisms, namely, chemo-83

taxis, haptotaxis and mechanotaxis [48]. Chemotaxis is84

defined as the movement following a gradient of concen-85

tration of a certain soluble chemical, in this case the soluble86

fraction of angiogenic factor. Haptotaxis is the motion driven87

by gradients of non-soluble chemoattractants bounded to the88

substrate of the extracellular matrix (in angiogenesis the frac-89

tion of angiogenic factor bounded to the extracellular matrix)90

or driven by gradients of focal adhesion sites. Both the non-91

soluble chemoattractants and the focal adhesion sites depend92

on the spatial distribution of the fibers of the extracellular93

matrix. As the characteristic length scale of the fiber distri-94

bution is significantly smaller than that of the global motion95

of the tip endothelial cells, haptotaxis may be understood as96

variations in the direction of cells movement. The last of these97

mechanisms, mechanotaxis, is the movement stimulated by98

mechanical forces. In order to capture all cues, tip endothelial99

cells develop multiple protrusions called filopodia [31].100

In tumor angiogenesis, the growth of a capillary is driven101

by migration of tip endothelial cells and proliferation of102

stalk cells. The process finishes when tip cells find another103

endothelial cell in their way or the stimuli end. In the first104

situation, the tip endothelial cell connects with another cap-105

illary, fusing their lumina and forming loops, through a106

process called anastomosis [3]. This process is vital, for it107

allows the blood to circulate through the vessels. It is known108

that mechanotaxis plays a pivotal role in anastomosis [68],109

because it is one of the key mechanisms whereby tip endothe-110

lial cells detect each other. In the second situation, when the111

stimuli end, the capillary regresses under pathological condi- 112

tions, such as in tumor-induced angiogenesis. The reason is 113

that, unlike in physiological angiogenesis, the new capillar- 114

ies induced by tumors are immature and stimuli dependent. 115

Other features that characterize tumor capillaries are tortuos- 116

ity, leakiness, high interstitial pressure, and poor blood flow, 117

among others [25]. The delivery of drugs through the vascu- 118

lar system using nanoscale particles [22,28,50] is affected by 119

these characteristics. In summary, vascular networks induced 120

by tumors are defective and they create three-dimensional 121

characteristic patterns. 122

Mathematical modeling of tumor angiogenesis may be 123

divided into three categories: Continuous models at the cell- 124

density level or macro-scale, discrete models at the cellular 125

and sub-cellular level, and hybrid models that incorporate 126

various scales. For a detailed review of the literature on this 127

topic the reader is referred to [64]. Continuous models are 128

usually systems of partial differential equations derived from 129

physical and biological principles. They do not consider the 130

cellular scale, so they usually do not capture the complex 131

patterns of the vasculature. Examples of this type of mod- 132

els may be found in the references [5,51,52,59]. In contrast, 133

discrete models study the behavior of each cell separately. 134

This feature is specially relevant for the study of the move- 135

ment of the tip endothelial cells [1,2,7,14,66]. A common 136

approach is to model the migration of the tip cells as a random 137

walk [11,13,29,71]. For example, based on the work of Hill 138

and Häder for the trajectories of micro-organisms [42], Plank 139

and Sleeman [62] modeled the migration of tip endothelial 140

cells as a circular biased random walk [17]. However, their 141

model and most discrete models do not explicitly include 142

stalk cells and just assume they are in the migration path 143

behind tip cells [29,61,62,70]. Another drawback of these 144

models is their computational cost. Finally, hybrid models, 145

such as [55,57,58,65] benefit from the computational sim- 146

plicity of the continuous models, while still consider the cel- 147

lular level. For example, Travasso et al. [23,72] proposed 148

a hybrid model that accounts for the chemotactic migration 149

of tip endothelial cells modeled as discrete agents and the 150

proliferation of stalk cells governed by a high-order partial 151

differential equation of the phase-field type. 152

Here, following the philosophy proposed in [4,14,15], we 153

couple the hybrid deterministic model proposed by Travasso 154

et al. [72] with a random walk model biased in the direction 155

of chemotactic migration [69]. We believe that the stochastic 156

component may represent a simple mathematical concep- 157

tualization of haptotaxis, a biological phenomenon whose 158

underlying physics takes place at a significantly smaller spa- 159

tial scale. We also propose an efficient computational method 160

to approximate the solution to our model. The effectiveness 161

of our method permitted us to perform large-scale simula- 162

tions that show three-dimensional angiogenesis at a signifi- 163

cant level of detail. 164
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The rest of the paper is organized as follows: In Sect. 2, we165

derive the extended mathematical model of tumor induced166

angiogenesis that includes chemotaxis and haptotaxis. We167

explain separately the continuous partial differential equa-168

tions of the macro-scale and the discrete agents at cellular169

level, and then explain the equations that couple both scales.170

We pay special attention to the movement of the tip endothe-171

lial cells governed by the biased circular random walk. In172

Sect. 3, we propose a numerical method to solve the mathe-173

matical model. We start by detailing the stochastic motion of174

tip endothelial cells, continue with the coupling methodol-175

ogy and finalize with the discretization of the partial differ-176

ential equations. The numerical method allows us to perform177

two- and three-dimensional simulations of the mathematical178

model, as shown in Sect. 4. There, we perform a paramet-179

ric study of the model through two-dimensional simulations.180

Then, supported by four simulations, we discuss the behavior181

of the model in three-dimensional settings and qualitatively182

characterize the vascular networks. At the end of the sec-183

tion we compare the mathematical models with and without184

haptotaxis. Finally, the conclusions and future work are pre-185

sented in Sect. 5.186

2 The mathematical model187

This section presents the multi-scale, hybrid model proposed188

by Travasso et al. [72], and shows how we extended the model189

to account for haptotaxis, a relevant biological phenomenon190

that was not considered in the original model. Travasso et al.191

derived their model assuming that the hypoxic regions of the192

tissue release Tumor Angiogenic Factor (TAF) that is con-193

sumed by the endothelial cells. The model naturally describes194

the initiation of angiogenesis, which is controlled by discrete195

rules that evaluate the angiogenic factor and its gradient, addi-196

tionally enforcing the Delta-Notch effect. Endothelial cells197

may exhibit a proliferative (stalk cells) or a migratory (tip198

cells) phenotype in the model, being the phenotype switch199

controlled by discrete rules. Hence, the growth of new cap-200

illaries is achieved by way of proliferation of stalk cells and201

migration of tip endothelial cells.202

Here, we extend the model to account for haptotaxis dur-203

ing the migration of the tip endothelial cells. The original204

model treats this type of cells as discrete agents and assumes205

their movement to be deterministic and driven by chemotaxis.206

Thus, the velocity of tip endothelial cells is proportional to the207

gradient of the tumor angiogenic factor. We introduce a new208

definition for the velocity based on the random walk frame-209

work, specifically on the work by Plank and Sleeman [62].210

The new model considers the migration of the tip endothelial211

cells as an stochastic process and defines it as a biased circu-212

lar random walk. The biasing direction of the random walk213

represents chemotaxis, whereas the directional randomness214

is understood as haptotaxis, which acts at a smaller spatial 215

scale. 216

In the following, we summarize the new model, detail- 217

ing the definition of the velocity of the tip endothelial cells. 218

First, we describe the continuous equations for the tumor 219

angiogenic factor and the quiescent and stalk endothelial 220

cells. Afterwards, we explain the discrete agents, both for the 221

hypoxic cells and for the tip endothelial cells. At this point, 222

we introduce the biased circular random walk for the tip cells. 223

Then, we proceed describing how the discrete agents at the 224

cellular level are coupled with the macro-scale, continuous 225

equations. 226

2.1 The continuous problem 227

The model considers two continuous variables defined in the 228

spatial domain Ω ⊂ R
d , where d = 2, 3. The first one, f , 229

represents a balance of tumor angiogenic factors released by 230

hypoxic cells that promote the activation of tip endothelial 231

cells and the proliferation of the stalk cells. The second con- 232

tinuous variable, c, is a phase field defining the location of 233

the capillaries in the extracellular matrix. The equation that 234

governs the dynamics of c favors two homogeneous states 235

(c = 1 and c = −1) that can co-exist stably. The region 236

where c ≥ 0 represents the capillaries, while c < 0 defines 237

the area of the extracellular matrix without capillaries. 238

The dynamics of the tumor angiogenic factor concentra- 239

tion is governed by the following reaction-diffusion equation 240

241

∂ f

∂t
= ∇ · (D∇ f ) − Bu f cH (c) (1) 242

where D is the diffusion constant, Bu is the uptake rate con- 243

stant, and H(·) is the Heaviside function. The first term on 244

the right-hand side of the equation models the diffusion of 245

the tumor angiogenic factor from the hypoxic cells to the 246

remaining part of the extracellular matrix. The second term 247

accounts for the consumption of the factor by the endothelial 248

cells. 249

The dynamics of the quiescent and stalk endothelial cells 250

is described by the phase-field equation 251

∂c

∂t
= ∇ ·

(

M∇
(

µc − λ2∆c
))

+ Bp ( f ) cH (c) (2) 252

where M is the constant mobility, µc(c) = −c + c3 is the 253

chemical potential, and λ is a positive constant proportional 254

to the width of the capillary wall. Bp(·) is the proliferative 255

rate function, given by 256

Bp( f ) =

{

Bp f if f < f p

Bp f p if f ≥ f p

, (3) 257
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where Bp is the proliferative rate constant and f p is the tumor258

angiogenic factor condition for highest proliferation.259

The dynamics of Eq. (2) may be understood in the con-260

text of phase-field methods. The chemical potential µc is the261

derivative of a double-well potential that energetically favors262

two homogeneous states separated by a smooth interface. The263

separation force can be interpreted from a biological stand-264

point as the driving force that maintains endothelial cells265

together exerted by the cells themselves. In addition, the sec-266

ond term on the right-hand side accounts for the proliferation267

of stalk cells in presence of tumor angiogenic factor.268

Remarks:269

1. In Eq. (2) the value of λ defines the length scale of the270

problem. As λ → 0 the model tends to a sharp interface271

model [47]. The lower this value, the more accurate is272

the description of the capillary walls, at the expense of a273

higher computational cost.274

2. The proliferative rate is defined as a piecewise linear func-275

tion with a plateau that imposes a maximum threshold for276

proliferation. Hence, this function accounts for the sat-277

uration of the tumor angiogenic factor receptors of the278

surface of the endothelial cells.279

2.2 The discrete agents280

The model accounts for two types of discrete agents, which281

represent, respectively, hypoxic and tip endothelial cells.282

These cells are supposed to be spherical with radii R
hyc

and283

R
tec

, respectively.284

2.2.1 Hypoxic cells285

A hypoxic cell is assumed to be a static agent centered at a286

fixed point that we call generically x
hyc

. The agents asso-287

ciated to hypoxic cells have two states: active and inactive.288

Initially, all the hypoxic cells are distributed in the hypoxic289

regions of the tissue and are active. While they are active, they290

produce a fixed amount of angiogenic factor f
hyc

. When-291

ever a hypoxic cell becomes normoxic, its associated agent292

becomes inactive. The model assumes that this situation hap-293

pens when a capillary is closer than a certain distance, δnox ,294

which represents the oxygen characteristic diffusion length.295

An inactive agent does not produce angiogenic factor.296

2.2.2 Tip endothelial cells297

These agents may be created at any point of the domain or298

removed according to several criteria. A new agent is created299

at a point, provided that the following conditions are met:300

(1) the point is inside a capillary (c ≥ cact ); (2) the tumor301

angiogenic factor concentration is high enough to stimulate302

the differentiation of an endothelial cell ( f ≥ fact ); (3) the 303

chemotactic signal is strong (G = ‖∇ f ‖ ≥ Gact ); and (4) 304

there is no other tip endothelial cell nearby releasing dll- 305

4 to prevent its differentiation. The characteristic diffusion 306

length of the dll-4 is denoted here by δ4. If at some point a 307

tip endothelial cell fails to meet these conditions, its asso- 308

ciated agent is removed, assuming that the cell changed its 309

phenotype to a non-migratory one. 310

In contrast to hypoxic cells, tip endothelial cells are 311

mobile. We define the movement of a tip endothelial cell 312

as a biased circular random walk. Let us discretize the 313

time interval of interest, namely (0, T ), into N sub-intervals 314

In = (tn−1, tn); n = 1, . . . , N , where 0 = t0 < t1 < · · · < 315

tN = T . We call ∆tn = tn − tn−1. Given a tip endothelial 316

cell defined by its center, xn
tec

=
(

xn
tec

, yn
tec

, zn
tec

)

, at time 317

tn , we define its trajectory by the set of equations 318

xn
tec

= xn−1
tec

+ ρ cos(θn) sin(ϕn)∆tn

yn
tec

= yn−1
tec

+ ρ sin(θn) sin(ϕn)∆tn

zn
tec

= zn−1
tec

+ ρ cos(ϕn)∆tn

⎫

⎪

⎬

⎪

⎭

, (4) 319

where ρ, the velocity magnitude, is a deterministic func- 320

tion of the model parameters and the magnitude of the gra- 321

dient of tumor angiogenic factor concentration. θn and ϕn 322

are realizations of the discrete stochastic variables Θn and 323

Φn which denote, respectively, the azimuthal and the polar 324

(zenith) angles of the spherical system of coordinates. We 325

will assume that Θn and Φn are independent for all n > 0. 326

The range of Θn , namely RΘn , is defined as 327

RΘn = {θn−1 + δ, θn−1, θn−1 − δ} (5) 328

while the range of Φn is 329

RΦn = {ϕn−1 + δ, ϕn−1, ϕn−1 − δ} . (6) 330

Equations (5)–(6) can be straightforwardly applied to the 331

case n > 1. When n = 1, θ0 and ϕ0 should be understood as 332

deterministic values given by the gradient of the angiogenic 333

factor at the initial time. We denote the azimuthal component 334

of the gradient by θch
0 and the polar component by ϕch

0 , where 335

the superscript indicates that this is the direction of chemo- 336

tactic migration. Note that {Θn}n>0 and {Φn}n>0 define two 337

Markov chains, as follows from Eqs. (5)–(6), and the inde- 338

pendence of Θn and Φn for all n > 0. Eqs. (5)–(6) show that, 339

from one time step to the next and for each angular direction, 340

the tip endothelial cell may turn clockwise or anticlockwise 341

an angle δ or remain advancing in the same direction. The 342

probabilities of these events are given by the probability func- 343

tions of Θn and Φn defined as 344

P
[

Θn = θn−1 + δ
]

= τ̂+
θch

n
∆tn (7) 345

P
[

Θn = θn−1 − δ
]

= τ̂−
θch

n
∆tn (8) 346
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Fig. 1 Probability function of turning anticlockwise through an angle

δ = π
50

for 200 time steps. We plot three probability functions, each

for a different value of the turning rate dv . The rotational diffusivity

is Dr = 1, the biased direction is θ0 = 0, and the time step size is

∆tn = 0.001

P
[

Θn = θn−1

]

=
(

1 − τ̂+
θch

n
− τ̂−

θch
n

)

∆tn (9)347

P
[

Φn = ϕn−1 + δ
]

= τ̂+
ϕch

n
∆tn (10)348

P
[

Φn = ϕn−1 − δ
]

= τ̂−
ϕch

n
∆tn (11)349

P
[

Φn = ϕn−1

]

=
(

1 − τ̂+
ϕch

n
− τ̂−

ϕch
n

)

∆tn (12)350

where τ̂+
θch

n
, τ̂−

θch
n

, τ̂+
ϕch

n
, and τ̂−

ϕch
n

are the so-called transition351

rates and θch
n and ϕch

n are the azimuthal and polar directions352

given by the positive gradient of the tumor angiogenic factor353

at time tn . The transition rates are given by354

τ̂±
θch

n
= 2ν

τ
θch

n

((

n ± 1
2

)

δ
)

τ
θch

n

((

n + 1
2

)

δ
)

+ τ
θch

n

((

n − 1
2

)

δ
) (13)355

τ̂±
ϕch

n
= 2ν

τ
ϕch

n

((

n ± 1
2

)

δ
)

τ
ϕch

n

((

n + 1
2

)

δ
)

+ τ
ϕch

n

((

n − 1
2

)

δ
) (14)356

where ν = Dr

δ2 and Dr is the so-called rotational diffusivity.357

The derivation of the transition rates can be found at [60]. The358

transition probabilities τθch
n

and τϕch
n

used in Eqs. (13)–(14)359

are von Mises probability density functions given by360

τθch
n

(α) =
1

2π I0(
dv

Dr
)

exp

(

dv

Dr

cos(α − θch
n )

)

(15)361

τϕch
n

(α) =
1

2π I0(
dv

Dr
)

exp

(

dv

Dr

cos(α − ϕch
n )

)

(16)362

where I0(·) is the modified Bessel function of the first kind363

and zeroth order and dv is the turning coefficient. Figure 1364

shows the evolution of the probability function of turning365

clockwise for 200 time steps and for various values of the 366

turning coefficient. 367

Following [72], the velocity magnitude of the tip endothe- 368

lial cell is a function of the norm of the gradient of the tumor 369

angiogenic factor evaluated at the center of the tip endothelial 370

cell, such that 371

ρ = χ
∥

∥∇ f (x
tec

)
∥

∥ L (‖∇ f (x
tec

)‖) (17) 372

where χ is a chemotactic constant, the operator ‖ · ‖ denotes 373

the Euclidean norm of a vector, and L is a limiting function 374

defined as 375

L (‖∇ f ‖) = 1 +

(

G M

‖∇ f ‖
− 1

)

H (‖∇ f ‖ − G M ) (18) 376

where G M is a constant. 377

2.3 The continuum/discrete coupling 378

Both the discrete hypoxic cells and tip endothelial cells must 379

be coupled with the continuous equations of the model. First, 380

as said above, hypoxic cells are responsible for the introduc- 381

tion of the tumor angiogenic factor in the system. Hence, 382

these discrete components are coupled with Eq. (1). In the 383

regions occupied by active hypoxic cells the value of the 384

tumor angiogenic factor is constant and equal to f
hyc

. Sec- 385

ond, as discrete tip endothelial cells move, they produce, by 386

proliferation, an excess in the concentration of endothelial 387

cells. Consequently, they are coupled with Eq. (2). The ratio 388

of the material produced in the tip cell to the volume swept 389

as the cell migrates, gives us the value of the order parame- 390

ter inside the tip endothelial cell. Thus, in the region of the 391

domain occupied by a tip endothelial cell, the order parame- 392

ter is given by 393

c
tec

=
4Bp ( f (x

tec
)) R

tec

3ρ
. (19) 394

2.4 Parameters 395

As the equations of the mathematical model are written in 396

dimensionless form, we detail the value of all the correspond- 397

ing dimensionless parameters. However, many of them were 398

matched to or obtained from experiments in vivo (see [72] 399

and the references therein). The physical values of these para- 400

meters may be retrieved using the length and time scales 401

L0 = 1.25 µm and T0 = 1560 s. 402

In Table 1 we show the dimensionless parameters of the 403

continuous Eqs. (1) and (2) in the same order as in the 404

text. The remaining parameters come from the discrete agent 405

description. The radii of the discrete agents, namely R
hyc

406

and R
tec

are assumed to be equal. Travasso et al. [72], in 407

agreement with [30], fixed the radius of the tip endothelial 408

123

Journal: 466 MS: 0958 TYPESET DISK LE CP Disp.:2013/12/13 Pages: 16 Layout: Large

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Comput Mech

Table 1 Dimensionless parameters of the continuous Eqs. (1) and (2)

Parameter Value

Diffusion constant D = 100

Uptake rate constant Bu = 6.25

Constant mobility M = 1

Interface width λ = 1

Proliferative rate Bp = 1.401

taf condition for highest proliferation f p = 0.3

Table 2 Parameters related to the movement of the tip endothelial cells

Parameter Value

Chemotactic constant χ = 242.67

taf gradient for highest velocity G M = 0.03

Rotational diffusivity Dr = 0.05

Turning coefficient dv = 25

Turning angle δ = π
50

cells in 5 µm, which is 4 in the dimensionless formulation409

of the model. The oxygen diffusion length, δnox , is 25 µm410

(20 in dimensionless quantities) as in [38]. The production411

of tumor angiogenic factor per time step is f
hyc

= 1. The412

parameters that determine the activation or deactivation of413

tip endothelial cells are:414

1. Order parameter condition for activation or deactivation415

cact = 0.9.416

2. Tumor angiogenic factor condition for activation or deac-417

tivation fact = 0.055.418

3. Tumor angiogenic factor gradient condition for activation419

or deactivation Gact = 0.01.420

4. Dll-4 diffusion length δ4 = 16. The value of this parame-421

ter in vivo is 20 µm.422

Finally, in Table 2 we show the dimensionless parameters423

related to the movement of tip endothelial cells. The value424

of the rotational diffusivity and the turning coefficient were425

obtained through a parametric study of the model. The value426

of the turning angle δ was maintained equal to that proposed427

in [62].428

3 Numerical method429

In this section we present a numerical method to solve the430

mathematical model. As in the model, we naturally divide431

the algorithm in three blocks: the method for the discrete432

agents, the method for coupling the discrete and the contin-433

uous variables, and the algorithm for solving the continuous434

equations. In the method for the discrete agents, we first eval-435

uate the discrete rules that determine the activation and deac- 436

tivation of the agents. This process is simple, so we omit the 437

details of the related algorithms. Therefore, we start this sec- 438

tion explaining the method to compute the displacement of 439

the tip endothelial cells following the biased circular random 440

walk. Then, we outline how we solve the coupling between 441

the discrete components and the continuous equations. We 442

close the section explaining the method for solving the con- 443

tinuous equations, which is based on isogeometric analysis 444

[18,43] for the spatial discretization and on the generalized-α 445

method [16,44] for the time discretization. 446

3.1 The tip endothelial cell motion 447

After activation/deactivation of the discrete agents in time 448

step tn , we move each active tip endothelial cell according to 449

Eq. (4). The velocity magnitude ρ is a deterministic function 450

given by Eq. (17) which we evaluate at the center of the tip 451

endothelial cells. The angles that determine the direction, on 452

the contrary, are given by the realizations θn and ϕn of the 453

random variables Θn and Φn , respectively. 454

We follow the technique used in [62,69] to obtain the 455

value of the realizations. For the direction Θ we generate a 456

random number r with uniform distribution over the interval 457

[0,1] and divide the unit interval in three sub-intervals. If the 458

random number falls into the first sub-interval, [0, τ̂+
n ∆tn), 459

then θn = θn−1 + δ and the tip endothelial cell turns clock- 460

wise through an angle δ; if it falls into the second sub-interval, 461

[τ̂+
n ∆tn, 2ν∆tn), then θn = θn−1 − δ and the cell turns anti- 462

clockwise through an angle δ; and if the random number 463

falls into the last sub-interval, (2ν∆tn, 1], then θn = θn−1 464

and the tip endothelial cell continues in its current direction. 465

The realization ϕn is obtained analogously. 466

Remark Note that equations (7)–(12) impose an upper bound 467

on the time step ∆tn , because all probabilities should remain 468

below one. We think of this restriction as an stability condi- 469

tion for the time-stepping scheme. 470

3.2 The coupling methodology 471

We start by giving some definitions for the domains of the dis- 472

crete agents, following the ideas of the mathematical frame- 473

work of this model developed in [73]. Recalling that for any 474

time step, each hypoxic cell is characterized by its center and 475

its constant radius, R
hyc

, we can define Ω i
hyc

as the domain 476

occupied by the i-th hypoxic cell, which in three dimensions 477

is a sphere centered at xi
hyc

. Furthermore, we can define the 478

domain of all the active hypoxic cells for a given time step, 479

say tn , as 480

Ω
hyc

(tn) =
⋃

k∈A
hyc

(tn)

Ωk
hyc

(20) 481
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where A
hyc

(tn) is the set of indices of the active hypoxic482

cells at time tn .483

Similarly, for the same time step we define the domain484

Ω
j

tec
(tn) as the spherical domain occupied by the j-th tip485

endothelial cell, with radius R
tec

and center x
j

tec
. Notice486

the time dependency of the domain of each tip cell due to487

its movement, opposed to the hypoxic-cell domains which488

are time-independent and only the set of indices depends on489

time, indicating which agents are active. The domain of tip490

endothelial cells is given by491

Ω
tec

(tn) =
⋃

l∈A
tec

(tn)

Ω l
tec

(tn) (21)492

where A
tec

(tn) is the set of indices of tip endothelial cells at493

time tn . All of the above-defined domains are subsets of Ω .494

These definitions facilitate the coupling between the dis-495

crete components and the continuum variables. Therefore,496

we can now overwrite the value of the tumor angiogenic fac-497

tor, f (tn−1), and the value of the order parameter, c(tn−1), in498

the subdomains Ω
hyc

(tn) and Ω
tec

(tn), with f
hyc

and c
tec

,499

respectively. Consequently, we would introduce discontinu-500

ities in the fields f and c. However, we try to avoid the artifi-501

cial inclusion of sharp transitions in the continuous variables,502

for it goes against the philosophy of the phase-field equation.503

For this purpose we define template functions for f
hyc

and504

c
tec

that are multidimensional generalizations of the analyti-505

cal solution to the one-dimensional Cahn–Hilliard equation, a506

simplified version of Eq. (2). The template functions are con-507

tinuous and introduce smooth transitions between the fields508

and the imposed values inside the subdomains of the discrete509

agents. As shown below, the discrete counterparts of the con-510

tinuous variables f and c live in the finite dimensional space511

Vh . For this reason, the template functions must be projected512

onto the same finite dimensional space Vh before overwriting513

the discretized fields.514

3.3 The continuous equations515

We begin by considering a weak form of Eqs. (1) and (2).516

Let V denote the trial solution and the weighting function517

spaces, which are assumed to be the same. At this point we518

assume free-flux boundary conditions. Equations (1) and (2)519

may be recast in variational form by multiplying them with520

smooth functions, integrating over the domain, and applying521

integration by parts repeatedly. The problem may be stated522

as follows: find f, c ∈ V such that ∀w, q ∈ V:523

∫

Ω

w
∂ f

∂t
dΩ +

∫

Ω

∇wD∇ f dΩ +

∫

Ω

wBu f cH (c) dΩ524

+

∫

Ω

q
∂c

∂t
dΩ +

∫

Ω

∇q M∇µc dΩ +

∫

Ω

∆q Mλ2∆c dΩ525

−

∫

Ω

qBp ( f ) cH (c) dΩ = 0 (22) 526

The space V is a subset of H2, the Sobolev space of square 527

integrable functions with square integrable first and second 528

derivatives. To perform the spatial discretization of the previ- 529

ous weak formulation we make use of the Galerkin method. 530

Let us define the discrete space Vh , which is a subset of V . 531

We approximate (22) by the following variational problem 532

over the finite dimensional space: find f h, ch ∈ Vh ⊂ V 533

such that ∀wh, qh ∈ Vh ⊂ V: 534

∫

Ω

wh ∂ f h

∂t
dΩ +

∫

Ω

∇wh D∇ f hdΩ 535

+

∫

Ω

wh Bu f hch
H

(

ch
)

dΩ +

∫

Ω

qh ∂ch

∂t
dΩ 536

+

∫

Ω

∇qh M∇µ(ch)dΩ +

∫

Ω

∆qh Mλ2∆chdΩ 537

−

∫

Ω

qh
Bp

(

f h
)

ch
H

(

ch
)

dΩ = 0 (23) 538

Here f h is defined as 539

f h (x, t) =
∑nb

A=1 f A (t) NA (x) (24) 540

where nb is the dimension of the discrete space Vh and 541

NA are the basis functions. The key feature of isogeometric 542

analysis [8,18–20,43], the computational method employed 543

in this work, is that the typical finite-element piecewise- 544

polynomial basis functions are replaced with more general 545

functions frequently used in computational geometry. The 546

coefficients f A in Eq. (24) are the so-called control vari- 547

ables. The rest of the variables of Eq. (23), namely ch , wh , 548

and qh , are defined analogously to f h . Since we will use a 549

conforming discretization, the relation Vh ⊂ V holds and 550

the discrete functions are required to be in H2. This con- 551

dition is satisfied by the globally C1-continuous basis func- 552

tions that we consider in this paper, by means of isogeomet- 553

ric analysis. In this paper we utilize Non-Uniform Rational 554

B-Splines (NURBS) [43] as basis functions, which reduce 555

to B-Splines, in a three-dimensional, cube geometry. For 556

more details about the resolution of higher-order partial dif- 557

ferential equations using isogeometric analysis, the reader is 558

referred to [32,35–37], and for alternative approaches outside 559

the classical continuous finite element method, the reader is 560

referred to [6,21,24,63,75]. 561

We integrate in time using the generalized-α method [16, 562

44]. The generalized-α method is a second-order accurate, 563

unconditionally A-stable method with controllable high- 564

frequency dissipation that can be easily implemented within 565

an adaptive time step framework. All these features make it 566

a good choice for highly nonlinear problems [9,10,33] such 567
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as that addressed in this paper (for time integrators specifi-568

cally designed for phase-field models, the reader is referred to569

[34,53]). In addition, we use a time-step size selection algo-570

rithm that considerably reduces the computational time. This571

algorithm was first proposed in [49] for reaction-diffusion572

equations and was then utilized for other mathematical mod-573

els, such as in [32]. After space and time discretization, we574

obtain a non-linear system which is solved using a predic-575

tor multi-corrector algorithm based on the Newton-Raphson576

method.577

4 Results and discussion578

We begin this section with an analysis of the tumor angio-579

genesis model. The analysis is performed through two-580

dimensional simulations, as the visualization of the patterns581

created during angiogenesis is easier in this simplified set-582

ting. We show in Fig. 2 various snapshots that capture the583

time evolution of the vascular network. In this simulation we584

analyze the directionality of the tip endothelial cells, from585

the initiation of angiogenesis until the complete oxygena-586

tion of the tissue. Then, we present the final patterns of four587

two-dimensional simulations in Figs. 3 and 4. One of the588

two parameters that determine the biased circular random589

walk, namely the rotational diffusivity (Dr ) and the turning590

coefficient (dv), is changed for each pair of simulations. This591

enables us to study how the frequency and the amplitude592

of the turnings influence the development of the network.593

We finalize this section presenting four three-dimensional594

simulations of the tumor angiogenesis model. The results595

of the simulations are discussed based on Figs. 5, 6, 7 and596

videos Online Resources 1–4. In addition, we study through597

Fig. 8 the effect of haptotaxis in the model presented in598

Sect. 2. To carry out this study, we compare the previous599

three-dimensional simulations with the same simulations for600

a model that only considers chemotaxis.601

4.1 Analysis of the model602

The five two-dimensional simulations that we present are per-603

formed on the square domain Ω = [0, 300]2. This domain604

represents a tissue of 375 × 375 µm, although the periodic605

condition imposed in the horizontal direction, allows the vas-606

culature to spread further than in a tissue of the mentioned607

size. We have used a regular mesh defined by 1282 knot spans608

and quadratic basis functions with C1-continuity across ele-609

ment boundaries (see [18,43] to understand the basic termi-610

nology of isogeometric analysis). In order to facilitate the611

comparison among the two-dimensional simulations, all the612

initial conditions are the same: a blood vessel at the bottom of613

the domain and 200 hypoxic cells randomly scattered on the614

extracellular matrix according to a uniform distribution. The615

Fig. 2 Formation of a vascular network driven by tumor induced angio-

genesis. 200 hypoxic cells produce tumor angiogenic factor (green) that

promotes the initiation and growth of new sprouts (red). The simula-

tion is performed on the domain Ω = [0, 300]2 using the parameters

presented in Sect. 2.4
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Fig. 3 Comparison of the final patterns of two simulations for different

values of the rotational diffusivity: 1000 % (left) and 10 % (right) of

Dr . The remaining parameters and conditions of the simulations are the

same as those in Fig. 2. Tip endothelial cells constantly change their

direction for high values of the rotational diffusivity and do not change

it for low values

Fig. 4 Comparison of the final patterns of two simulations for different

values of the turning coefficient: 200 % (left) and 10 % (right) of dv . The

remaining parameters and conditions of the simulations are the same

as those in Fig. 2. The higher the values of dv the better tip endothelial

cells reorient towards hypoxic cells

radius of the initial vessel is set to 37.5 µm. The first snap-616

shot of Fig. 2 shows these initial conditions, where the red617

color represents the capillary and the green color represents618

the tumor angiogenic factor. This color code is maintained619

for the remaining figures and videos.620

Figure 2 shows the initiation and evolution of a new vascu-621

lar network promoted by an avascular tumor, represented here622

by its hypoxic region. The simulation uses the parameters of623

the model presented in Sect. 2.4. At the beginning of the simu-624

lation, the 200 hypoxic cells start to release tumor angiogenic625

factor, which diffuses throughout the domain. The angiogen-626

esis process is initiated when the factor reaches the initial627

vessel at the bottom of the domain, with enough quantity to628

activate a tip endothelial cell. Thus, in the second snapshot629

of Fig. 2 we observe that one tip endothelial cell has become630

active and has started its migration. At this moment, there is631

only one of these cells because, the cell itself prevents the632

differentiation of the surrounding cells into the tip endothe-633

lial cell phenotype. The other cells stimulated by the tumor634

angiogenic factor, instead, attain a proliferative phenotype,635

generating the capillary behind the tip endothelial cell. How-636

ever, as the leading cell moves away, new tip endothelial cells 637

get activated, for the delta-like ligand 4 released by the first 638

tip endothelial cell does not reach them anymore. Hence, 639

more sprouts are created and the vascular network spreads. 640

As the network grows, it consumes tumor angiogenic factor 641

and returns the hypoxic cells into their normoxic condition, 642

as shown in the remaining snapshots. 643

In this simulation we can study the movement of tip 644

endothelial cells. Although the global migration of the lead- 645

ing cells is governed by the gradient of the tumor angio- 646

genic factor, we observe in the simulation how tip endothe- 647

lial cells turn and reorient towards this gradient. This phe- 648

nomenon, introduced by the biased circular random walk 649

in the mathematical model, represents our simple concep- 650

tualization of haptotaxis. The variation of gradients of non- 651

soluble molecules bounded to the extracellular matrix hin- 652

ders the movement towards hypoxic cells. Tip endothelial 653

cells find their chemotaxis-driven migration obstructed by a 654

scarcity of non-soluble molecules, so they eventually alter 655

their direction of migration. Additionally, the turns allow the 656

cells to better detect the changes in their micro-environment, 657

as they explore a broader area when they turn. In Fig. 2, sev- 658

eral of these turning events are highlighted. For example, in 659

the fifth snapshot (third row, first column) we distinguish a 660

zigzag movement of various tip endothelial cells. This kind 661

of short-angled, high-frequent turns only affect the direction 662

of the capillary growth and do not create zigzag final patterns, 663

for the undulating morphology is afterwards eliminated by 664

the local remodeling of the phase-field equation. When the 665

direction is maintained for a large time because the gradient 666

of non-soluble molecules of the extracellular matrix favors 667

one direction, tip cells do not reorient and the capillaries 668

deviate from their supposed objective (the hypoxic cells). 669

In these cases, the final pattern of the vasculature is signifi- 670

cantly altered, as in the sixth snapshot where the highlighted 671

tip endothelial cell turns left although a hypoxic cell is just 672

above it. The previous set of examples shows, as observed in 673

experiments, the relevant role of haptotaxis in the patterns of 674

the vasculature after an angiogenesis event. 675

In this mathematical model, anastomosis events can occur 676

for two reasons. The first one, also considered in the model 677

without the biased circular random walk, is the distribution of 678

hypoxic cells. In this case, tip cells grow towards the gradient 679

of angiogenic factor and they mainly anastomose at the loca- 680

tion of the hypoxic cells. The second cause of anastomosis 681

is the new physics that we added to the model: haptotac- 682

tic migration. Anastomosis events occur more frequently in 683

our model because tip endothelial cells alter their direction 684

of migration and come across another endothelial cell. One 685

example is in the highlighted area of the seventh snapshot 686

where two capillaries turn towards the initial vessel produc- 687

ing anastomosis, although the hypoxic cell is in the other 688

direction. We can see there that anastomosis events are not 689
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Fig. 5 A new vascular network develops from two parent capillaries.

The new sprouts are initiated by the tumor angiogenic factor (green

isosurfaces) released from hypoxic cells disposed forming a tumor-like

structure. The tip endothelial cells that lead the growth of the sprouts

migrate by chemotaxis and haptotaxis. At the end of the simulations

the vasculature pervades the tumor, leaving no cells under hypoxic con-

ditions. Many anastomosis events create loops in the new vasculature

and connect the parent capillaries. The simulation is performed on the

domain Ω = [0, 300]3 using the parameters presented in Sect. 2.4

determined by the location of hypoxic cells, but also depend690

on haptotaxis. In addition, there are more anastomoses than691

there would be in an identical simulation of the model with-692

out the circular biased random walk incorporated (results not693

shown).694

Figures 3 and 4 allow us to further investigate in two695

dimensions how endothelial cells migrate under different val-696

ues of two of the parameters that define the biased random 697

walk, namely the rotational diffusivity Dr and the turning 698

coefficient dv . We maintain the remaining parameters and 699

initial conditions equal to those in the simulation of Fig. 2, 700

for the sake of an easier comparison. Thus, for the two simu- 701

lations in Fig. 3 we alter the value of the rotational diffusivity. 702

In the simulation on the left-hand side the value of the para- 703
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Fig. 6 Evolution of a vascular network promoted by hypoxic cells mimicking a multifocal tumor. Three sets of sprouts grow from the initial

capillaries until there are not hypoxic cells. The simulation is performed on the domain Ω = [0, 300]3 using the parameters presented in Sect. 2.4

meter is 1000 % of Dr and in that of the right-hand side,704

it is 10 % of Dr . The final patterns of both simulations are705

drastically different. In the first one, since the rotational dif-706

fusivity is increased, the frequency at which the turns occur707

is too high for tip endothelial cells to lead the capillaries708

towards the hypoxic cells following a smooth curve. This709

may be interpreted as a vascular network developing within710

an extracellular matrix with very low concentration of non-711

soluble molecules or focal adhesion sites. The tip endothelial712

cells in this situation wander in small regions, trying to find 713

a migration path. In contrast, in the second simulation, the 714

low value of the rotational diffusivity almost impedes the 715

tip endothelial cells to deviate from its original trajectory. In 716

this case, the distribution of the non-soluble chemoattractants 717

or of the focal adhesion sites may be thought of as strongly 718

biased in some preferential directions. The resulting capillar- 719

ies are highly tortuous in the first simulation and too straight 720

in the second. 721
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Fig. 7 Formation of two vascular networks with disguising character-

istics. The capillaries in the first simulation (the three snapshots in the

upper row) promoted by 200 hypoxic cells are thinner than those in the

second simulation (bottom row), which are promoted by 100 hypoxic

cells. In addition the first vasculature is composed of a higher number

of capillaries

In Fig. 4, in the simulation on the left-hand side, the value722

of the turning coefficient is 200 % of dv and in that of the723

right-hand side, it is 10 % of dv . When the value of the turning724

coefficient is high, the ability of tip endothelial cells to reori-725

ent towards the preferred direction at each turn is increased,726

while when it is low, for the same value of the rotational diffu-727

sivity, the reorientation is hindered. We observe in the figure728

that the tip endothelial cells on the left-hand-side simulation729

tend to go rapidly towards the hypoxic cells, compared to730

the simulation on the right-hand side. The reason is that the731

bias of the random walk is increased on the left-hand-side732

simulation, so the chemotatic direction is highly favored. In733

addition, the higher the value of the turning coefficient the734

lower the number of anastomoses that are not promoted by735

the distribution of the hypoxic cells.736

4.2 Three-dimensional simulations737

The numerical method developed in Sect. 3 permits us to per-738

form three-dimensional simulations of our tumor angiogene-739

sis model. All the simulations are performed on the computa-740

tional domain Ω = [0, 300]3, which represents a cube with741

side length 375 µm. We use quadratic basis functions and 742

a uniform mesh defined by the tensor product of open knot 743

vectors, each composed by 72 knots. The boundary condi- 744

tions are no-flux conditions in all the directions, except in the 745

direction parallel to the axis of the initial capillaries, where 746

the domain is periodic. Therefore, as in the two-dimensional 747

simulations, we allow the capillaries to spread in the men- 748

tioned direction forming more connected patterns. 749

4.2.1 Angiogenesis triggered by a cluster of hypoxic cells 750

Here, we analyze two simulations (Figs. 5, 6 and Online 751

Resources 1 and 2), showing four snapshots of the dynamic 752

evolution of the vasculature. The first snapshot of each sim- 753

ulation represents the initial conditions, while the rest are 754

snapshots of relevant situations during the development of 755

the vasculature. 756

The simulations differ from each other in the initial con- 757

ditions, while all the parameters are kept constant and equal 758

to those described in Sect. 2.4. For both simulations, we set 759

two initial capillaries, rectilinear and parallel, which traverse 760

the domain from one face of the cube to the opposite, being 761
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Fig. 8 Influence of haptotaxis in angiogenesis. Left column Four sim-

ulations (corresponding to Figs. 5, 6, 7), but assuming no haptotactic

migration. Right column The same four simulations (identical parame-

ters and initial conditions), but including haptotaxis in the model. The

patterns of the vasculature differ in tortuosity, number of anastomosis

events (connectivity) and length of the capillaries

the axis of the capillaries perpendicular to both faces. This762

configuration allows angiogenesis to be initiated in both cap-763

illaries and increases the number of anastomoses. The initial764

diameter of the capillaries is constant and equal to 12.5 µm,765

in accordance with the data from the literature [68]. The dif-766

ference in the initial conditions comes from the distribution767

and number of hypoxic cells. In the first simulation (Fig. 5),768

we set 200 hypoxic cells with locations that follow a normal 769

distribution and mimic a tumor centered in the domain. In 770

the second example (Fig. 6), we set 300 hypoxic cells that 771

aim to represent a three-focus tumor. 772

In Figs. 5 and 6, we observe the initiation and develop- 773

ment of two vascular networks driven by the presence of 774

hypoxic cells disposed in tumor-like structures. In both sim- 775

ulations, the tumor angiogenic factor, represented by green 776

isosurfaces, diffuses from hypoxic cells until it reaches the 777

initial capillaries. At that moment, new capillaries are initi- 778

ated in the regions where hypoxic cells are closer to the initial 779

capillaries. 780

In the first simulation (Fig. 5), new sprouts appear first in 781

the upper capillary and they grow forming a network while 782

they consume the tumor angiogenic factor. Meanwhile, the 783

factor reaches the other capillary and several tip endothelial 784

cells become active and start its migration. Both networks 785

continue growing, turning hypoxic cells into normoxic on 786

their way. Towards the end of the simulation, both networks 787

get connected through various anastomoses, allowing the 788

blood to flow between the two main capillaries. The vir- 789

tual tumor at the center of the domain is now completely 790

pervaded by tortuous capillaries that may trigger the uncon- 791

trolled growth of the tumor. 792

In the second simulation (Fig. 6), the tumor angiogenic 793

factor activates tip endothelial cells in three regions of the 794

initial capillaries in a short time span, as shown in the sec- 795

ond snapshot of the simulation. Thus, the three groups of new 796

sprouts grow at a similar rate and almost at the same time. The 797

third snapshot of the simulation shows a plain example of the 798

effect of the biased circular random walk. In the set of sprouts 799

that grow from the upper initial capillary, there are three of 800

them which are led by tip endothelial cells that instead of 801

migrating towards the hypoxic tumor regions grow towards 802

the observer. As shown in Sect. 4.1, in two-dimensional set- 803

tings this migration driven by haptotaxis usually leads to 804

anastomosis events. However, in three dimensions the prob- 805

ability of a tip endothelial cell coming across a capillary is 806

significantly smaller. As shown in the last snapshot, in this 807

specific case, the three sprouts just stop their growth when 808

there is no more angiogenic factor without anastomosing the 809

two main capillaries. 810

In all the examples the simulation ends when there is no 811

more tumor angiogenic factor, i.e. no more hypoxic regions 812

are present in the domain. This model does not account nei- 813

ther for the vascular shutdown produced by the high inter- 814

stitial pressure inside the tumor, nor for the characteris- 815

tic capillary regression and regrowth (vascular remodeling) 816

after the shutdown events. We think that this is the rea- 817

son why when both simulations are compared to in vivo 818

tumor images one may observe differences in the patterns 819

(see Fig. 1 in [45] where some tumors present hypoxic 820

regions). 821
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4.2.2 Angiogenesis triggered by randomly distributed822

hypoxic cells823

In Fig. 7 and Online Resources 3 and 4, we present two824

simulations (top and bottom of the figure) whereby we can825

analyze the influence of the number of hypoxic cells when826

they are randomly distributed. The initial distribution of cap-827

illaries is identical to that of the previous examples. On the828

snapshots of the initial conditions (left-hand-side column of829

Fig. 7) the position and number of hypoxic cells is revealed830

by the isosurfaces of the tumor angiogenic factor: 200 for831

the first simulation (top) and 100 for the second (bottom).832

As shown on the remaining snapshots, the difference in the833

number of hypoxic cells promotes the creation of vascular834

patterns with distinguishing characteristics. There are two835

main differences, noticeable by simple observation: the thick-836

ness and number of capillaries. Both differences are inti-837

mately related. For example, in the first simulation, more838

hypoxic cells initiate more capillaries which consume the839

tumor angiogenic factor in a high-rate manner. They leave840

less tumor angiogenic factor per branch for the proliferation841

of the stalk endothelial cells, and, consequently, the capillar-842

ies are thinner. Nevertheless, in the second simulation, as less843

sprouts appear, each branch has more angiogenic factor and844

more stalk cells proliferate, enlarging the capillaries. Another845

difference is in the time of initiation of new branches, being846

shorter for the first simulation. In the second, the branching847

is delayed due to a lower number of hypoxic cells, which848

in turn, leads to a lower concentration of angiogenic factor,849

and delays the initiation of new sprouts at the beginning. As850

the network evolves, initiation events occur more and more851

frequently because the tumor angiogenic factor has enough852

time to diffuse throughout the extracellular matrix.853

4.2.3 Importance of haptotaxis854

In Fig. 8 we present four pairs of numerical simulations at855

an advanced time stage of the network development, each856

pair corresponding to one of the rows of the figure. In the857

snapshots on the left-hand side we present the same numer-858

ical simulations we described in the previous sections (and859

in the same order), but considering no haptotactic migration.860

Each of these simulations has an associated simulation pre-861

sented on the right-hand side of the figure, which represents862

exactly the same setting and conditions that its left-hand-side863

counterpart, but considering haptotaxis in the model.864

We omitted the representation of the tumor angiogenic865

factor, in order to focus on the different vascular morpholo-866

gies generated by the original model [72] and our model.867

We observe that the growth patterns are dissimilar in various868

aspects. The most prominent difference is the tortuosity of869

the sprouts. Thus, in the simulations of the extended model,870

tip endothelial cells randomly deviate from the path marked871

by the gradient of angiogenic factor and create more tortu- 872

ous capillaries. In contrast, in the simulations on the left-hand 873

side, the tip endothelial cells go directly towards the hypoxic 874

cells resulting in straighter capillaries. The second observable 875

difference is that the number of anastomoses is higher in our 876

model, leading to more connected vasculatures. This leads 877

to a third fundamental difference between the morphology 878

of the networks of both models: the capillaries are shorter in 879

the proposed model because their growth is stopped by anas- 880

tomosis. Note that these dissimilarities between the models 881

are clearer in the three-dimensional settings than in the two- 882

dimensional ones. 883

5 Conclusions and future work 884

Tumor-induced angiogenesis is a complex biological phe- 885

nomenon and our understanding of it is still limited. However, 886

it is widely accepted that the migration of tip endothelial cells 887

during the growth of new capillaries is driven by three migra- 888

tion mechanisms: chemotaxis, haptotaxis and mechanotaxis. 889

In this paper, we coupled an existing continuum theory with 890

a random walk model, to develop a generalized mathematical 891

model that accounts for chemotaxis and a simple modeliza- 892

tion of haptotaxis. We also proposed accurate and efficient 893

algorithms to approximate the solution to the model. 894

Our model and algorithms provide a framework to perform 895

in silico three-dimensional experiments and to study the role 896

of haptotaxis and its interaction with chemotaxis in angio- 897

genesis. Our results indicate that haptotaxis may have a sig- 898

nificant impact in the final pattern achieved by capillary net- 899

works. The three-dimensional computations presented in this 900

paper also suggest that, for mathematical models to achieve 901

the topological complexity observed in in vivo angiogen- 902

esis experiments, two-dimensional simulations may not be 903

enough. We also believe that the accurate modeling of anas- 904

tomosis, a crucial process in tumor angiogenesis, may require 905

full-scale three-dimensional simulation. 906

As future work, we believe that a robust and automated 907

quantitative method is needed both for the analysis of math- 908

ematical models of angiogenesis and for model validation. 909

We also plan to extend the model to include mechanotaxis 910

and vascular remodeling. 911
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